ON ADDITIVE FUNCTIONS SATISFYING SOME RELATIONS

K. Chakraborty (Allahabad, India)I. Kátai and Bui Minh Phong¹(Budapest, Hungary)

Dedicated to Dr. János Fehér on his 75th anniversary

Communicated by L. Germán

(Received July 10, 2012)

Abstract. We prove that if an additive commutative semigroup \mathbb{G} (with identity element 0) and \mathbb{G} -valued completely additive functions f_0 , f_1 , f_2 satisfy the relation $f_0(n) + f_1(2n+1) + f_2(n+2) = 0$ for all $n \in \mathbb{N}$, then $f_0(n) = f_1(2n+1) = f_2(n) = 0$ for all $n \in \mathbb{N}$. The same result is proved when the relation $f_0(n) + f_1(2n-1) + f_2(n+2) = 0$ holds for all $n \in \mathbb{N}$.

1. Introduction

Let \mathbb{G} be an additive commutative semigroup with identity element 0. Let $\mathcal{A}^*_{\mathbb{G}}$ denote the set of those functions $f : \mathbb{N} \to \mathbb{G}$, for which f(nm) = f(n) + f(m) holds for all $n, m \in \mathbb{N}$. The domain of $f \in \mathcal{A}^*_{\mathbb{G}}$ can be extended to \mathbb{Q}_+ (the multiplicative group of positive rationals) by

$$f\left(\frac{n}{m}\right) = f(n) - f(m).$$

 $^{^1{\}rm The}$ last two authors have been supported for this project by the European Union and the European Social Fund under the grant agreement TÁMOP-4.2.1/B-09/1/KMR-2010-0003.

If we define $f(-\alpha) := f(\alpha)$ for $\alpha \in \mathbb{Q}_+$, then the equation $f(\alpha\beta) = f(\alpha) + f(\beta)$ remains valid for arbitrary nonzero rational numbers α, β . Let \mathcal{P} be the set of primes.

In case $\mathbb{G} = \mathbb{R}$, then we simply write \mathcal{A}^* instead of $\mathcal{A}^*_{\mathbb{R}}$.

In an old paper written by Kátai I. [6] the following conjecture has been formulated:

Conjecture 1. If $f_0, f_1, \ldots, f_k \in \mathcal{A}^*$ and,

(1.1)
$$L_n = f_0(n) + f_1(n+1) + \ldots + f_k(n+k) \equiv 0 \pmod{1}$$

for all $n \in \mathbb{N}$, then

(1.2)
$$f_0(n) \equiv f_1(n) \equiv \ldots \equiv f_k(n) \equiv 0 \pmod{1}$$

are satisfied for all $n \in \mathbb{N}$

This conjecture has been proved for k = 2, 3 (see [4] and [5]) and in [3] the case k = 4 assuming the fulfilment of relation (1.1) for every $n \in \mathbb{Z}$. Here we define $f_j(0) = 0$ $(j = 0, \dots, k)$. P.D.T.A. Elliott investigated the case when $f_j = f_0$ and $f_j = -f_0$ for $j = 1, \dots, k$ is arbitrary (see [1] and [2]), and even the case when $f_j \in \{f_0, -f_0, f_1, -f_1\}, (j = 2, \dots, k)$.

For other results we refer to works [7], [8], [9] and [10]

The following, more general problem seems to be interesting, also. Let $A_0(n), A_1(n), \ldots, A_k(n) \in \mathbb{Q}$ for all $n \in \mathbb{N}$ and $f_0, f_1, \ldots, f_k \in \mathcal{A}^*$ for which

$$f_0(A_0(n)) + f_1(A_1(n)) + \ldots + f_k(A_k(n)) \equiv 0 \pmod{1}$$

holds. Under what conditions can we assert that

$$f_0(n) \equiv f_1(n) \equiv \ldots \equiv f_k(n) \equiv 0 \pmod{1}$$

are satisfied for all $n \in \mathbb{N}$.

In this short paper we investigate the simple non-trivial case

$$(A_0(n), A_1(n), A_2(n)) = (n, 2n + 1, n + 2)$$

and

$$(A_0(n), A_1(n), A_2(n)) = (n, 2n - 1, n + 2).$$

2. Formulation of the theorems

We shall prove the following two theorems.

Theorem 2.1. Let \mathbb{G} be an additive commutative semigroup with identity element 0. If f_0 , f_1 , $f_2 \in \mathcal{A}^*_{\mathbb{G}}$ and

$$\mathcal{A}(n) := f_0(n) + f_1(2n+1) + f_2(n+2) = 0$$

holds for all $n \in \mathbb{N}$, then

$$f_0(n) = f_1(2n+1) = f_2(n) = 0$$

hold for all $n \in \mathbb{N}$.

Theorem 2.2. Let \mathbb{G} be an additive commutative semigroup with identity element 0. If f_0 , f_1 , $f_2 \in \mathcal{A}^*_{\mathbb{G}}$ and

$$\mathcal{B}(n) := f_0(n) + f_1(2n-1) + f_2(n+2) = 0$$

holds for all $n \in \mathbb{N}$, then

$$f_0(n) = f_1(2n - 1) = f_2(n) = 0$$

hold for all $n \in \mathbb{N}$.

3. Lemmas

Firstly we prove a few lemmas.

Lemma 1. Assume that f_0 , f_1 , $f_2 \in \mathcal{A}^*_{\mathbb{G}}$ satisfy the condition $\mathcal{A}(n) = 0$ in Theorem 2.1 for all $n \in \mathbb{N}$. Let $f_1(2) = 0$. Then

$$f_0(n) = f_1(n) = f_2(n) = 0$$

holds for all $n \leq 5$.

Proof. Let \mathcal{B} be the subgroup of \mathbb{Q}^3_+ generated by the element (1, 2, 1) and the sequences

$$L_n = \left(n, \ 2n+1, \ n+2\right) \quad (n \in \mathbb{N}).$$

Since $\mathcal{A}(n) = 0$, therefore

$$f_0(a) + f_1(b) + f_2(c) = 0$$
 for all $(a, b, c) \in \mathcal{B}$.

We use the following notations for a prime p:

$$a_p = (p, 1, 1), b_p = (1, p, 1)$$
 and $c_p = (1, 1, p).$

We show that a_p, b_p , and c_p are elements of \mathcal{B} for all primes $p \leq 19$. This assertion proves Lemma 1.

Using a simple Maple program and the relation $\mathcal{A}(n) = 0$ for n = 4, 25, 38, 40 and n = 42, we will get the following 5 equations.

(3.1)
$$E_1 := \frac{L_4}{L_2} = a_2^2 b_3 c_2 \in \mathcal{B}_2$$

(3.2)
$$E_2 := \frac{L_3 L_{12} L_{16} L_{25}}{L_1^4 L_2^2 L_5 L_8 L_{10}} = \frac{a_3^2}{b_3^3 c_2^5} \in \mathcal{B},$$

(3.3)
$$E_3 := \frac{L_1^3 L_6 L_{12} L_{38}}{L_2^2 L_3 L_{16} L_{19}} = \frac{a_3 b_3 c_2^2}{a_2^2} \in \mathcal{B},$$

(3.4)
$$E_4 := \frac{L_{16}L_{40}}{L_1^3 L_5} = a_2^7 b_3^2 c_2^2 \in \mathcal{B},$$

and

(3.5)
$$E_5 := \frac{L_1^3 L_2 L_{28} L_{42}}{L_7^2 L_8 L_9} = \frac{a_2 b_3^2 c_2^4}{a_3} \in \mathcal{B}.$$

This system has solutions in a_2, a_3, b_3, c_2 , which are given in terms of E_1, \dots, E_5 . Thus a_2, a_3, b_3, c_2 are elements of \mathcal{B} .

The solutions of the above equations (3.1)-(3.5) are:

$$a_{2} = \frac{E_{1}^{98} E_{2}^{24} E_{5}^{32}}{E_{3}^{16} E_{4}^{37}}, \qquad a_{3} = \frac{E_{1}^{558} E_{2}^{136} E_{5}^{181}}{E_{3}^{90} E_{4}^{211}}$$
$$b_{3} = \frac{E_{3}^{5} E_{4}^{11}}{E_{1}^{28} E_{2}^{8} E_{5}^{11}} \quad \text{and} \quad c_{2} = \frac{E_{3}^{27} E_{4}^{63}}{E_{1}^{167} E_{5}^{53} E_{2}^{40}}.$$

Finally, we express a_5 , b_5 , c_3 and c_5 in the terms of a_2, a_3, b_3, c_2 and L_n . We have

$$a_5 = \frac{L_1^2 L_2^2 L_5 a_2^4 a_3}{L_{12} L_{16} b_3 c_2^2}, \quad b_5 = \frac{L_2}{a_2 c_2^2}$$

and

$$c_3 = \frac{L_1}{b_3}$$
 and $c_5 = \frac{L_1^3 L_2^2 L_3 L_5 a_2^5}{L_{10} L_{12} L_{16} b_3}$

are elements of \mathcal{B} . This completes the proof of Lemma 1.

Lemma 2. Assume that f_0 , f_1 , $f_2 \in \mathcal{A}^*_{\mathbb{G}}$ satisfy the condition $\mathcal{B}(n) = 0$ in Theorem 2.2 for all $n \in \mathbb{N}$. Let $f_1(2) = 0$. Then

$$f_0(n) = f_1(n) = f_2(n) = 0$$

holds for all $n \leq 7$.

Proof. The proof is similar to the proof of Lemma 1. Let \mathcal{D} be the subgroup of \mathbb{Q}^3_+ generated by the element (1, 2, 1) and the sequences

$$D_n := (n, 2n-1, n+2) \ (n \in \mathbb{N}).$$

From our assumption $\mathcal{B}(n) = 0$ for all $n \in \mathbb{N}$, we have

$$f_0(a) + f_1(b) + f_2(c) = 0$$
 for all $(a, b, c) \in \mathcal{D}$.

We shall use the following notations (p is prime):

$$A_p := (p, 1, 1) \in \mathcal{D}, \ B_p := (1, p, 1) \in \mathcal{D} \text{ and } C_p := (1, 1, p) \in \mathcal{D}.$$

By using a simple Maple program and the relation $\mathcal{B}(n) = 0$ for n = 8, 18, 26, 28 and n = 63, we obtain the following 5 equations in A_2, A_3, B_5, C_2 :

(3.6)
$$F_1 := \frac{D_8}{D_2 D_3} = \frac{A_2^2}{A_3 C_2} \in \mathcal{D},$$

(3.7)
$$F_2 := \frac{D_1 D_{18}}{D_3 D_4} = \frac{A_3 C_2}{A_2} \in \mathcal{D},$$

(3.8)
$$F_3 := \frac{D_1^3 D_3 D_{14} D_{20} D_{26}}{D_2^3 D_5 D_7 D_9 D_{13}} = \frac{A_2 C_2}{A_3 B_5} \in \mathcal{D},$$

K. Chakraborty, I. Kátai and B. M. Phong

(3.9)
$$F_4 := \frac{D_2^3 D_{28}}{D_1 D_3 D_6 D_{14}} = \frac{A_2^3}{A_3^2} \in \mathcal{D},$$

(3.10)
$$F_5 := \frac{D_2^5 D_3^3 D_6 D_{10}^2 D_{63}}{D_1^2 D_{14} D_{48}^2 D_{50}} = \frac{A_3^4 B_5^4 C_2^9}{A_2^2} \in \mathcal{D}.$$

This system has solutions in A_2, A_3, B_5, C_2 , which are given in terms of F_1, \dots, F_5 . Thus A_2, A_3, B_5, C_2 are elements of \mathcal{D} .

The solutions of the above equations (3.6)-(3.10) are:

$$\begin{aligned} A_2 &= F_1 F_2, \quad A_3 = \frac{F_2^{10} F_4^6}{F_1^3 F_3^4 F_5}, \\ B_5 &= \frac{F_3^7 F_5^2 F_1^8}{F_2^{17} F_4^{12}} \quad \text{and} \quad C_2 = \frac{F_3^4 F_5 F_1^4}{F_2^8 F_4^6} \end{aligned}$$

Now, we express A_5 , A_7 , B_3 , B_7 , C_3 , C_5 and C_7 in the terms of A_2 , A_3 , B_5 , C_2 and L_n . We have

$$A_5 = \frac{L_3^2 L_{10} A_2^3}{L_1 L_{48} A_3 B_5 C_2}, \quad A_7 = \frac{L_{14} A_2^2 C_2^2}{L_2^3},$$

$$B_3 = \frac{L_2}{A_2 C_2^2}, \quad B_7 = \frac{L4}{L_1 A_2^2 C_2}$$

and

$$C_3 = L1, \quad C5 = \frac{L_3}{A_3 B_5}, \quad C_7 = \frac{L_1 L_5 L_{48} A_3 B_5 C_2^5}{L_2^2 L_3^2 L_{10} A_2}$$

are elements of \mathcal{D} . This completes the proof of Lemma 2.

4. Proof of Theorem 2.1

Let \mathbb{G} be an additive commutative semigroup with identity element 0. If $f_0, f_1, f_2 \in \mathcal{A}^*_{\mathbb{G}}$ and

$$\mathcal{A}(n) := f_0(n) + f_1(2n+1) + f_2(n+2) = 0$$

holds for all $n \in \mathbb{N}$. By using Lemma 1, we have $f_0(p) = f_1(q) = f_2(p) = 0$ for primes $p \leq 5$ and q = 3, 5.

Assume indirectly that the theorem is not true. Let n_0 be the smallest positive integer for which $f_j(n_0) \neq 0$. Then $n_0 = P \in \mathcal{P}$, P > 5 and either $f_0(P) \neq 0$ or $f_2(P) \neq 0$.

Case I. $f_0(P) = \xi \ (\neq 0).$

If $P \equiv 1 \pmod{3}$, then 3|P+2, 3|2P+1, thus $f_1(P+2) = 0, f_2(2P+1) = 0$, consequently $\mathcal{A}(P) = 0$ implies that $f_0(P) = 0$.

It remains to consider the case $P \equiv -1 \pmod{3}$. Let 4P + 1 = 3Q. Then it follows from the fact P > 5 that $\frac{Q-1}{2} < \frac{Q+3}{2} < P$, consequently $\mathcal{A}(\frac{Q-1}{2}) = 0$ implies that

$$0 = f_0\left(\frac{Q-1}{2}\right) + f_1(Q) + f_2\left(\frac{Q+3}{2}\right) = f_1(Q),$$

thus we infer from $\mathcal{A}(2P) = 0$ that

$$0 = f_0(2P) + f_1(3Q) + f_2\left(4\frac{P+1}{2}\right)$$

and so $f_0(P) = 0$.

Case II. $f_2(P) = \nu \ (\neq 0).$

	From $\mathcal{A}(n) = 0$	we obtain that	and that
(1)	$\mathcal{A}(P-2) = 0$	$2P-3 \in \mathcal{P}$	$f_1(2P-3) = -\nu$
(2)	$\mathcal{A}(2P-2) = 0$	$4P - 3 \in \mathcal{P}$	$f_1(4P-3) = -\nu$
(3)	$\mathcal{A}(6P-2) = 0$	$4P - 1 \in \mathcal{P}$	$f_1(4P-1) = -\nu$
(4)	$\mathcal{A}(3P-5) = 0$	$\frac{3P-5}{2} \in \mathcal{P}$	$f_0(\frac{3P-5}{2}) = \nu$
(5)		$P \equiv 2 \pmod{3}$	
(6)	$\mathcal{A}(4P-2) = 0$	$8P-3 \in \mathcal{P}$	$f_1(8P-3) = -\nu$
(7)		$P \equiv 3 \pmod{5}$	

The assertions (1) and (2) are clear.

In order to show (3), let $Q := \frac{3P-1}{2}$. Then we have

$$Q \equiv 1 \pmod{3}, 3|Q+2, \ \frac{Q+2}{3} = \frac{P+1}{2} < P \text{ and } 2Q+1 = 3P,$$

which with $\mathcal{A}(Q) = 0$ shows that

$$f_0(Q) + f_1(2Q+1) + f_2(Q+2) = f_0(Q) + f_1(P) = 0.$$

It is clear from $\mathcal{A}(\frac{P-1}{2}) = 0$ that $f_1(P) = 0$, consequently $f_0(Q) = f_0(3P-1) = f_0(6P-2) = 0$, thus $\mathcal{A}(6P-2) = 0$ implies

$$0 = f_0(6P - 2) + f_1(12P - 3) + f_2(6P) = f_1(4P - 1) + f_2(P)$$

which proves (3).

From $\mathcal{A}(3P-5) = 0$ we have

$$0 = f_0(3P - 5) + f_1(6P - 9) + f_2(3P - 3) = f_0\left(\frac{3P - 5}{2}\right) + f_1(2P - 3),$$

from (1) we obtain (4).

Since $P \in \mathcal{P}$, the assertion (5) follows from (3).

From (5), we have 3|2P - 1 and $\frac{2P-1}{3} < P$, consequently $f_0(4P - 2) = f_0(2P - 1) = 0$. Thus we obtain from $\mathcal{A}(4P - 2) = 0$ that

$$0 = f_0(4P - 2) + f_1(8P - 3) + f_2(4P) = f_1(8P - 3) + f_2(P),$$

which proves (6). Since $P \in \mathcal{P}$, the assertion (7) follows from (1), (2) and (6).

Let
$$T := \frac{3P-5}{2}$$
. Then we infer from (4) and (7) that

$$(4.1) T \in \mathcal{P}, \quad f_0(T) = \nu$$

and

$$(4.2) T \equiv -1 \pmod{3}, \ T \equiv 2 \pmod{5}.$$

From (4.2) we have 5|2T + 1, $\frac{2T+1}{5} = \frac{3P-4}{5} < P$, consequently we obtain from $\mathcal{A}(T) = 0$ that

$$\mathcal{A}(T) = f_0(T) + f_1(2T+1) + f_2(T+2) = f_0(T) + f_2(T+2) = 0$$

This with (4.1) implies

(4.3)
$$f_2(T+2) = -\nu_1$$

From (4.2), we have 5|3T+4, $\frac{3T+4}{5} = \frac{9P-7}{10} < P$ and $f_0(3T+4) = f_0(\frac{3T+4}{5}) = 0$. Thus we obtain from $\mathcal{A}(3T+4) = 0$ that

$$0 = f_0(3T+4) + f_1(6T+9) + f_2(3T+6) = f_1(2T+3) + f_2(T+2),$$

which with (4.3) implies

(4.4)
$$f_1(2T+3) = \nu.$$

Finally, $\mathcal{A}(T+1) = 0$ implies that

$$f_0(T+1) + f_1(2T+3) + f_2(T+3) = 0.$$

Since $\frac{T+1}{2} = 3\frac{P-1}{4} < P$, $\frac{T+3}{2} = \frac{3P+1}{4} < P$, we deduce that $f_1(2T+3) = 0$. This contradicts to (4.4).

The proof of Theorem 1 is complete.

5. Proof of Theorem 2.2

Let \mathbb{G} be an additive commutative semigroup with identity element 0. If $f_0, f_1, f_2 \in \mathcal{A}^*_{\mathbb{G}}$ and

$$\mathcal{B}(n) := f_0(n) + f_1(2n+1) + f_2(n+2) = 0$$

holds for all $n \in \mathbb{N}$. By using Lemma 2, we have $f_0(p) = f_1(q) = f_2(p) = 0$ for primes $p \leq 5$ and q = 3, 5.

Assume indirectly that the theorem is not true. Let n_0 be the smallest positive integer for which $f_j(n_0) \neq 0$. Then $n_0 = P \in \mathcal{P}, P > 7$ and either $f_0(P) \neq 0$ or $f_2(P) \neq 0$.

Case I. $f_2(P) = \nu \ (\neq 0).$

We infer from $\mathcal{B}(P-2) = 0$ that $f_1(2P-5) = -\nu, 2P-5 \in \mathcal{P}$ and so $P \equiv -1 \pmod{3}$. We have

$$\mathcal{B}(2P-2) = f_0(2P-2) + f_1(4P-5) + f_2(2P) = 0.$$

Since $f_0(2P-2) = 0$, therefore $f_1(4P-5) = -\nu, Q = \frac{4P-5}{3} \in \mathcal{P}$ and

$$\mathcal{B}\left(\frac{Q+1}{2}\right) = f_0\left(\frac{Q+1}{2}\right) + f_1(Q) + f_2\left(\frac{Q+5}{2}\right) = 0$$

Since P > 5, we have $\frac{Q+1}{2} = \frac{2P-1}{3} < P$ and $\frac{Q+5}{2} = \frac{2P+5}{3} < P$, consequently

$$f_1(Q) = f_1\left(\frac{4P-5}{3}\right) = f_1(4P-5) = 0.$$

This cannot occur.

Case II. $f_0(P) = \xi \ (\neq 0).$

Since 4|2P+2 and $\frac{2P+2}{4} = \frac{P+1}{2} < P$, we infer from $\mathcal{B}(2P) = 0$ that

$$0 = \mathcal{B}(2P) = f_0(2P) + f_1(4P - 1) + f_2(2P + 2) = \xi + f_1(4P - 1).$$

Thus $f_1(4P-1) = -\xi$ and either $4P-1 \in \mathcal{P}$ or $\frac{4P-1}{3} \in \mathcal{P}$.

If $Q := \frac{4P-1}{3} \in \mathcal{P}$, then P > 7 shows that $\frac{Q+1}{2} = \frac{2P+1}{3} < P$ and $\frac{Q+5}{2} = \frac{2P+7}{3} < P$, consequently

$$0 = \mathcal{B}\left(\frac{Q+1}{2}\right) = f_0\left(\frac{Q+1}{2}\right) + f_1(Q) + f_2\left(\frac{Q+5}{2}\right) = f_1(Q).$$

This cannot occur. Thus we have proved that $4P - 1 \in \mathcal{P}$, and so

$$(5.1) P \equiv -1 \pmod{3}.$$

From (5.1) we have 3|2P-1, consequently $\mathcal{B}(P) = 0$ implies that $f_2(P+2) = -\xi$, $P+2 \in \mathcal{P}$.

Since

$$0 = \mathcal{B}(2P) = f_0(2P) + f_1(4P - 1) + f_2(2P + 2)$$

and $f_2(2P+2) = 0$, we have

$$0 = \mathcal{B}(2P) = f_0(2P) + f_1(4P - 1) + f_2(2P + 2) = \xi + f_1(4P - 1),$$

consequently $f_1(4P-1) = -\xi, \ 4P-1 \in \mathcal{P}.$

On the other hand, we have

$$\mathcal{B}(2P+2) = f_0(2P+2) + f_1(4P+3) + f_2(2P+4) = 0,$$

which implies that $f_1(4P+3) = \xi$, $4P+3 \in \mathcal{P}$. Since $P, P+2, 4P-1, 4P+3 \in \mathcal{P}$, therefore $P \equiv 1 \pmod{5}$ or $P \equiv 2 \pmod{5}$.

Case II.a. $P \equiv 2 \pmod{5}$.

Since 15|8P-1, 5|2P+1, therefore

$$\mathcal{B}(4P) = f_0(4P) + f_1\left(\frac{8P-1}{15}\right) + f_2\left(\frac{2P+1}{5}\right) = 0,$$

therefore $f_0(P) = 0$.

Case II.b. $P \equiv 1 \pmod{5}$.

In this case 6P - 1 = 5Q, $\frac{Q+1}{2} = \frac{3P+2}{5} < P$ and $\frac{Q+5}{2} = \frac{3P+12}{5} < P$. Thus

$$\mathcal{B}\left(\frac{Q+1}{2}\right) = f_0\left(\frac{Q+1}{2}\right) + f_1(Q) + f_2\left(\frac{Q+5}{2}\right) = f_1(Q).$$

Hence

(5.2)
$$f_1(Q) = f_1(6P - 1) = 0.$$

Since 5|3P + 2, $f_2(3P + 2) = 0$, therefore $\mathcal{B}(3P) = 0$ with (5.2) implies that $f_0(P) = 0$.

The proof of Theorem 2 is complete.

6. Final remarks

Theorem 6.1. Let $\alpha_0 = \beta_0 = (1, 2, 1)$ and $\alpha_n = (n, 2n + 1, n + 2)$, $\beta_n = (n, 2n - 1, n + 2)$. Let \mathcal{B} be the subgroup of \mathbb{Q}^3_+ generated by α_n $(n = 0, 1, 2, \cdots)$ and \mathcal{D} be the subgroup of \mathbb{Q}^3_+ generated by β_n $(n = 0, 1, 2, \cdots)$. Then

$$\mathcal{B} = \mathbb{Q}^3_+$$
 and $\mathcal{D} = \mathbb{Q}^3_+$.

It means that for every $(r_1, r_2, r_3) \in \mathbb{Q}^3_+$ there exist $n_1, n_2, \cdots, n_k \in \mathbb{N}_0, \epsilon_1, \epsilon_2, \cdots, \epsilon_k \in \{-1, 1\}$ and $m_1, m_2, \cdots, m_l \in \mathbb{N}_0, \delta_1, \delta_2, \cdots, \delta_l \in \{-1, 1\}$ such that

$$(r_1, r_2, r_3) = \prod_{i=1}^k \alpha_{n_i}^{\epsilon_i},$$

and that

$$(r_1, r_2, r_3) = \prod_{i=1}^{l} \alpha_{m_i}^{\delta_i}.$$

References

- Elliott, P.D.T.A., Arithmetic functions and integer products, Springer-Verlag, New York, 1985.
- [2] Elliott, P.D.T.A., On representing integers as products of integers of a preseribed type, J. Austral. Math. Soc. (Series A), 35 (1983), 143-161.
- [3] Chakraborty, K., Kátai, I. and Phong, B. M., On real valued additive functions modulo 1, Annales Univ. Sci. Budapest. Sect. Comp., 36 (2012).
- [4] Kátai, I., On additive functions satisfying a congruence, Acta Sci. Math., 47 (1984), 85-92.
- [5] Kátai, I., A remark on additive functions satisfying a relation, Annales Univ. Sci. Budapest. Sect. Math., 27 (1985), 229-233.
- [6] Kátai, I., Arithmetical functions satisfying some relations, Acta Sci. Math., 55 (1991), 249-268.

- [7] Kátai, I. and van Rossum-Wijsmuller, M., Additive functions satisfying congruences, Acta Sci. Math., 56 (1992), 63-72.
- [8] Kovács, A. and Phong, B.M., On completely additive functions satisfying a congruence, Annales Univ. Sci. Budapest. Sect. Comp., 19 (2000), 237-249.
- [9] van Rossum-Wijsmuller, M., Additive functions on the Gaussian integers, *Publ. Math. Debrecen*, 38 (1991), 255-262.
- [10] Styer, R., A problem of Kátai on sums of additive functions, Acta Sci. Math., 55 (1991), 269-286.

K. Chakraborty Department of Mathematics Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad 211 019, India kalyan@hri.res.in

I. Kátai and Bui Minh Phong

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C 1117 Budapest, Hungary katai@compalg.inf.elte.hu bui@compalg.inf.elte.hu