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Abstract. We prove that if an additive commutative semigroup G (with
identity element 0) and G-valued completely additive functions f0, f1, f2

satisfy the relation f0(n) + f1(2n + 1) + f2(n + 2) = 0 for all n ∈ N, then
f0(n) = f1(2n + 1) = f2(n) = 0 for all n ∈ N. The same result is proved
when the relation f0(n) + f1(2n− 1) + f2(n + 2) = 0 holds for all n ∈ N.

1. Introduction

Let G be an additive commutative semigroup with identity element 0. Let
A∗G denote the set of those functions f : N→ G, for which f(nm) = f(n)+ f(m)
holds for all n, m ∈ N. The domain of f ∈ A∗G can be extended to Q+ (the
multiplicative group of positive rationals) by

f
( n

m

)
= f(n)− f(m).

1The last two authors have been supported for this project by the European Union and the
European Social Fund under the grant agreement TÁMOP-4.2.1/B-09/1/KMR-2010-0003.
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If we define f(−α) := f(α) for α ∈ Q+, then the equation f(αβ) = f(α) + f(β)
remains valid for arbitrary nonzero rational numbers α, β. Let P be the set of
primes.

In case G = R, then we simply write A∗ instead of A∗R.
In an old paper written by Kátai I. [6] the following conjecture has been

formulated:

Conjecture 1. If f0, f1, . . . , fk ∈ A∗ and,

(1.1) Ln = f0(n) + f1(n + 1) + . . . + fk(n + k) ≡ 0 (mod 1)

for all n ∈ N, then

(1.2) f0(n) ≡ f1(n) ≡ . . . ≡ fk(n) ≡ 0 (mod 1)

are satisfied for all n ∈ N

This conjecture has been proved for k = 2, 3 (see [4] and [5]) and in [3] the
case k = 4 assuming the fulfilment of relation (1.1) for every n ∈ Z. Here we
define fj(0) = 0 (j = 0, · · · , k). P.D.T.A. Elliott investigated the case when
fj = f0 and fj = −f0 for j = 1, · · · , k is arbitrary (see [1] and [2]), and even the
case when fj ∈ {f0, − f0, f1, − f1}, (j = 2, · · · , k).

For other results we refer to works [7], [8], [9] and [10]

The following, more general problem seems to be interesting, also. Let
A0(n), A1(n) , . . . , Ak(n) ∈ Q for all n ∈ N and f0, f1, . . . , fk ∈ A∗ for which

f0(A0(n)) + f1(A1(n)) + . . . + fk(Ak(n)) ≡ 0 (mod 1)

holds. Under what conditions can we assert that

f0(n) ≡ f1(n) ≡ . . . ≡ fk(n) ≡ 0 (mod 1)

are satisfied for all n ∈ N.

In this short paper we investigate the simple non-trivial case

(A0(n), A1(n), A2(n)) = (n, 2n + 1, n + 2)

and
(A0(n), A1(n), A2(n)) = (n, 2n− 1, n + 2).
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2. Formulation of the theorems

We shall prove the following two theorems.

Theorem 2.1. Let G be an additive commutative semigroup with identity
element 0. If f0, f1, f2 ∈ A∗G and

A(n) := f0(n) + f1(2n + 1) + f2(n + 2) = 0

holds for all n ∈ N, then

f0(n) = f1(2n + 1) = f2(n) = 0

hold for all n ∈ N.

Theorem 2.2. Let G be an additive commutative semigroup with identity
element 0. If f0, f1, f2 ∈ A∗G and

B(n) := f0(n) + f1(2n− 1) + f2(n + 2) = 0

holds for all n ∈ N, then

f0(n) = f1(2n− 1) = f2(n) = 0

hold for all n ∈ N.

3. Lemmas

Firstly we prove a few lemmas.

Lemma 1. Assume that f0, f1, f2 ∈ A∗G satisfy the condition A(n) = 0 in
Theorem 2.1 for all n ∈ N. Let f1(2) = 0. Then

f0(n) = f1(n) = f2(n) = 0

holds for all n ≤ 5.

Proof. Let B be the subgroup of Q3
+ generated by the element (1, 2, 1) and

the sequences
Ln =

(
n, 2n + 1, n + 2

)
(n ∈ N).
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Since A(n) = 0, therefore

f0(a) + f1(b) + f2(c) = 0 for all (a, b, c) ∈ B.

We use the following notations for a prime p:

ap = (p, 1, 1), bp = (1, p, 1) and cp = (1, 1, p).

We show that ap, bp, and cp are elements of B for all primes p ≤ 19. This
assertion proves Lemma 1.

Using a simple Maple program and the relationA(n) = 0 for n = 4, 25, 38, 40
and n = 42, we will get the following 5 equations.

(3.1) E1 :=
L4

L2
= a2

2b3c2 ∈ B,

(3.2) E2 :=
L3L12L16L25

L4
1L

2
2L5L8L10

=
a2
3

b3
3c

5
2

∈ B,

(3.3) E3 :=
L3

1L6L12L38

L2
2L3L16L19

=
a3b3c

2
2

a2
2

∈ B,

(3.4) E4 :=
L16L40

L3
1L5

= a7
2b

2
3c

2
2 ∈ B,

and

(3.5) E5 :=
L3

1L2L28L42

L2
7L8L9

=
a2b

2
3c

4
2

a3
∈ B.

This system has solutions in a2, a3, b3, c2, which are given in terms of E1, · · · , E5.
Thus a2, a3, b3, c2 are elements of B.

The solutions of the above equations (3.1)-(3.5) are:

a2 =
E98

1 E24
2 E32

5

E16
3 E37

4

, a3 =
E558

1 E136
2 E181

5

E90
3 E211

4

b3 =
E5

3E11
4

E28
1 E8

2E11
5

and c2 =
E27

3 E63
4

E167
1 E53

5 E40
2

.
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Finally, we express a5, b5, c3 and c5 in the terms of a2, a3, b3, c2 and Ln. We
have

a5 =
L2

1L
2
2L5a

4
2a3

L12L16b3c2
2

, b5 =
L2

a2c2
2

and

c3 =
L1

b3
and c5 =

L3
1L

2
2L3L5a

5
2

L10L12L16b3

are elements of B. This completes the proof of Lemma 1.

Lemma 2. Assume that f0, f1, f2 ∈ A∗G satisfy the condition B(n) = 0 in
Theorem 2.2 for all n ∈ N. Let f1(2) = 0. Then

f0(n) = f1(n) = f2(n) = 0

holds for all n ≤ 7.

Proof. The proof is similar to the proof of Lemma 1. Let D be the subgroup
of Q3

+ generated by the element (1, 2, 1) and the sequences

Dn :=
(
n, 2n− 1, n + 2

)
(n ∈ N).

From our assumption B(n) = 0 for all n ∈ N, we have

f0(a) + f1(b) + f2(c) = 0 for all (a, b, c) ∈ D.

We shall use the following notations (p is prime):

Ap := (p, 1, 1) ∈ D, Bp := (1, p, 1) ∈ D and Cp := (1, 1, p) ∈ D.

By using a simple Maple program and the relation B(n) = 0 for n =
= 8, 18, 26, 28 and n = 63, we obtain the following 5 equations in A2, A3, B5, C2:

(3.6) F1 :=
D8

D2D3
=

A2
2

A3C2
∈ D,

(3.7) F2 :=
D1D18

D3D4
=

A3C2

A2
∈ D,

(3.8) F3 :=
D3

1D3D14D20D26

D3
2D5D7D9D13

=
A2C2

A3B5
∈ D,
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(3.9) F4 :=
D3

2D28

D1D3D6D14
=

A3
2

A2
3

∈ D,

(3.10) F5 :=
D5

2D
3
3D6D

2
10D63

D2
1D14D2

48D50
=

A4
3B

4
5C9

2

A2
2

∈ D.

This system has solutions in A2, A3, B5, C2, which are given in terms of
F1, · · · , F5. Thus A2, A3, B5, C2 are elements of D.

The solutions of the above equations (3.6)-(3.10) are:

A2 = F1F2, A3 =
F 10

2 F 6
4

F 3
1 F 4

3 F5
,

B5 =
F 7

3 F 2
5 F 8

1

F 17
2 F 12

4

and C2 =
F 4

3 F5F
4
1

F 8
2 F 6

4

.

Now, we express A5, A7, B3, B7, C3, C5 and C7 in the terms of A2, A3, B5, C2

and Ln. We have

A5 =
L2

3L10A
3
2

L1L48A3B5C2
, A7 =

L14A
2
2C

2
2

L3
2

,

B3 =
L2

A2C2
2

, B7 =
L4

L1A2
2C2

and

C3 = L1, C5 =
L3

A3B5
, C7 =

L1L5L48A3B5C
5
2

L2
2L

2
3L10A2

are elements of D. This completes the proof of Lemma 2.

4. Proof of Theorem 2.1

Let G be an additive commutative semigroup with identity element 0. If
f0, f1, f2 ∈ A∗G and

A(n) := f0(n) + f1(2n + 1) + f2(n + 2) = 0

holds for all n ∈ N. By using Lemma 1, we have f0(p) = f1(q) = f2(p) = 0 for
primes p ≤ 5 and q = 3, 5.
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Assume indirectly that the theorem is not true. Let n0 be the smallest positive
integer for which fj(n0) 6= 0. Then n0 = P ∈ P, P > 5 and either f0(P ) 6= 0 or
f2(P ) 6= 0.

Case I. f0(P ) = ξ ( 6= 0).
If P ≡ 1 (mod 3), then 3|P +2, 3|2P +1, thus f1(P +2) = 0, f2(2P +1) = 0,

consequently A(P ) = 0 implies that f0(P ) = 0.
It remains to consider the case P ≡ −1 (mod 3). Let 4P + 1 = 3Q. Then

it follows from the fact P > 5 that Q−1
2 < Q+3

2 < P , consequently A(Q−1
2 ) = 0

implies that

0 = f0

(Q− 1
2

)
+ f1(Q) + f2

(Q + 3
2

)
= f1(Q),

thus we infer from A(2P ) = 0 that

0 = f0(2P ) + f1(3Q) + f2

(
4
P + 1

2

)

and so f0(P ) = 0.

Case II. f2(P ) = ν ( 6= 0).

From A(n) = 0 we obtain that and that
(1) A(P − 2) = 0 2P − 3 ∈ P f1(2P − 3) = −ν
(2) A(2P − 2) = 0 4P − 3 ∈ P f1(4P − 3) = −ν
(3) A(6P − 2) = 0 4P − 1 ∈ P f1(4P − 1) = −ν

(4) A(3P − 5) = 0 3P−5
2 ∈ P f0( 3P−5

2 ) = ν
(5) P ≡ 2 (mod 3)
(6) A(4P − 2) = 0 8P − 3 ∈ P f1(8P − 3) = −ν
(7) P ≡ 3 (mod 5)

The assertions (1) and (2) are clear.
In order to show (3), let Q := 3P−1

2 . Then we have

Q ≡ 1 (mod 3), 3|Q + 2,
Q + 2

3
=

P + 1
2

< P and 2Q + 1 = 3P,

which with A(Q) = 0 shows that

f0(Q) + f1(2Q + 1) + f2(Q + 2) = f0(Q) + f1(P ) = 0.

It is clear from A(P−1
2 ) = 0 that f1(P ) = 0, consequently f0(Q) = f0(3P − 1) =

= f0(6P − 2) = 0, thus A(6P − 2) = 0 implies

0 = f0(6P − 2) + f1(12P − 3) + f2(6P ) = f1(4P − 1) + f2(P ),
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which proves (3).

From A(3P − 5) = 0 we have

0 = f0(3P − 5) + f1(6P − 9) + f2(3P − 3) = f0

(3P − 5
2

)
+ f1(2P − 3),

from (1) we obtain (4).

Since P ∈ P, the assertion (5) follows from (3).

From (5), we have 3|2P − 1 and 2P−1
3 < P , consequently f0(4P − 2) =

= f0(2P − 1) = 0. Thus we obtain from A(4P − 2) = 0 that

0 = f0(4P − 2) + f1(8P − 3) + f2(4P ) = f1(8P − 3) + f2(P ),

which proves (6). Since P ∈ P, the assertion (7) follows from (1), (2) and (6).

Let T := 3P−5
2 . Then we infer from (4) and (7) that

(4.1) T ∈ P, f0(T ) = ν

and

(4.2) T ≡ −1 (mod 3), T ≡ 2 (mod 5).

From (4.2) we have 5|2T + 1, 2T+1
5 = 3P−4

5 < P , consequently we obtain from
A(T ) = 0 that

A(T ) = f0(T ) + f1(2T + 1) + f2(T + 2) = f0(T ) + f2(T + 2) = 0.

This with (4.1) implies

(4.3) f2(T + 2) = −ν.

From (4.2), we have 5|3T +4, 3T+4
5 = 9P−7

10 < P and f0(3T +4) = f0( 3T+4
5 ) = 0.

Thus we obtain from A(3T + 4) = 0 that

0 = f0(3T + 4) + f1(6T + 9) + f2(3T + 6) = f1(2T + 3) + f2(T + 2),

which with (4.3) implies

(4.4) f1(2T + 3) = ν.

Finally, A(T + 1) = 0 implies that

f0(T + 1) + f1(2T + 3) + f2(T + 3) = 0.

Since T+1
2 = 3P−1

4 < P , T+3
2 = 3P+1

4 < P , we deduce that f1(2T + 3) = 0. This
contradicts to (4.4).

The proof of Theorem 1 is complete.
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5. Proof of Theorem 2.2

Let G be an additive commutative semigroup with identity element 0. If
f0, f1, f2 ∈ A∗G and

B(n) := f0(n) + f1(2n + 1) + f2(n + 2) = 0

holds for all n ∈ N. By using Lemma 2, we have f0(p) = f1(q) = f2(p) = 0 for
primes p ≤ 5 and q = 3, 5.

Assume indirectly that the theorem is not true. Let n0 be the smallest positive
integer for which fj(n0) 6= 0. Then n0 = P ∈ P, P > 7 and either f0(P ) 6= 0 or
f2(P ) 6= 0.

Case I. f2(P ) = ν ( 6= 0).
We infer from B(P −2) = 0 that f1(2P −5) = −ν, 2P −5 ∈ P and so P ≡ −1

(mod 3). We have

B(2P − 2) = f0(2P − 2) + f1(4P − 5) + f2(2P ) = 0.

Since f0(2P − 2) = 0, therefore f1(4P − 5) = −ν, Q = 4P−5
3 ∈ P and

B
(Q + 1

2

)
= f0

(Q + 1
2

)
+ f1(Q) + f2

(Q + 5
2

)
= 0.

Since P > 5, we have Q+1
2 = 2P−1

3 < P and Q+5
2 = 2P+5

3 < P , consequently

f1(Q) = f1

(4P − 5
3

)
= f1(4P − 5) = 0.

This cannot occur.

Case II. f0(P ) = ξ (6= 0).

Since 4|2P + 2 and 2P+2
4 = P+1

2 < P , we infer from B(2P ) = 0 that

0 = B(2P ) = f0(2P ) + f1(4P − 1) + f2

(
2P + 2

)
= ξ + f1(4P − 1).

Thus f1(4P − 1) = −ξ and either 4P − 1 ∈ P or 4P−1
3 ∈ P.

If Q := 4P−1
3 ∈ P, then P > 7 shows that Q+1

2 = 2P+1
3 < P and Q+5

2 =
= 2P+7

3 < P , consequently

0 = B
(Q + 1

2

)
= f0

(Q + 1
2

)
+ f1(Q) + f2

(Q + 5
2

)
= f1(Q).
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This cannot occur. Thus we have proved that 4P − 1 ∈ P, and so

(5.1) P ≡ −1 (mod 3).

From (5.1) we have 3|2P −1, consequently B(P ) = 0 implies that f2(P +2) =
= −ξ, P + 2 ∈ P.

Since
0 = B(2P ) = f0(2P ) + f1(4P − 1) + f2

(
2P + 2

)

and f2

(
2P + 2

)
= 0, we have

0 = B(2P ) = f0(2P ) + f1(4P − 1) + f2

(
2P + 2

)
= ξ + f1(4P − 1),

consequently f1(4P − 1) = −ξ, 4P − 1 ∈ P.
On the other hand, we have

B(2P + 2) = f0(2P + 2) + f1(4P + 3) + f2

(
2P + 4

)
= 0,

which implies that f1(4P +3) = ξ, 4P +3 ∈ P. Since P, P +2, 4P−1, 4P +3 ∈ P,
therefore P ≡ 1 (mod 5) or P ≡ 2 (mod 5).

Case II.a. P ≡ 2 (mod 5).

Since 15|8P − 1, 5|2P + 1, therefore

B(4P ) = f0(4P ) + f1

(8P − 1
15

)
+ f2

(2P + 1
5

)
= 0,

therefore f0(P ) = 0.

Case II.b. P ≡ 1 (mod 5).

In this case 6P − 1 = 5Q, Q+1
2 = 3P+2

5 < P and Q+5
2 = 3P+12

5 < P . Thus

B
(Q + 1

2

)
= f0

(Q + 1
2

)
+ f1(Q) + f2

(Q + 5
2

)
= f1(Q).

Hence

(5.2) f1(Q) = f1(6P − 1) = 0.

Since 5|3P + 2, f2(3P + 2) = 0, therefore B(3P ) = 0 with (5.2) implies that
f0(P ) = 0.

The proof of Theorem 2 is complete.



On additive functions satisfying some relations 267

6. Final remarks

Theorem 6.1. Let α0 = β0 = (1, 2, 1) and αn = (n, 2n + 1, n + 2), βn =
= (n, 2n−1, n+2). Let B be the subgroup of Q3

+ generated by αn (n = 0, 1, 2, · · · )
and D be the subgroup of Q3

+ generated by βn (n = 0, 1, 2, · · · ). Then

B = Q3
+ and D = Q3

+.

It means that for every (r1, r2, r3) ∈ Q3
+ there exist n1, n2, · · · , nk ∈ N0, ε1, ε2, · · · , εk ∈

{−1, 1} and m1,m2, · · · ,ml ∈ N0, δ1, δ2, · · · , δl ∈ {−1, 1} such that

(r1, r2, r3) =
k∏

i=1

αεi
ni

,

and that

(r1, r2, r3) =
l∏

i=1

αδi
mi

.
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