DISTRIBUTION OF THE VALUES OF
q–ADDITIVE FUNCTIONS
ON SOME MULTIPLICATIVE SEMIGROUPS II.

L. Germán (Paderborn, Germany)
I. Kátai (Budapest, Hungary)

Dedicated to Dr. Bui Minh Phong on his sixtieth birthday

Communicated by K.-H. Indlekofer
(Received November 30, 2012)

Abstract. In [1] we investigated the distribution of the values of \(q\)-additive
functions defined on multiplicative semigroups which are generated by an
infinite sequence of primes satisfying Wirsing’s condition. In this work we
extend our investigations started in [1] to polynomial sequences of such
semigroups and its subsets which contain integers with a given number of
prime divisors.

1. Introduction

1.1.

The project is supported by the European Union and co-financed by the
European Social Fund (grant agreement TAMOP 4.2.1/B/09/1/KMR/2010/
0003) and the second author is partly supported by the Hungarian and
Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

Mathematics Subject Classification: 11L07, 11A63
\[N, \mathbb{R}, \mathbb{C} \text{ are the sets of natural, real, complex numbers, respectively. } N_0 = \mathbb{N} \cup \{0\}. \text{ Let } e(x) := e^{2\pi i x}; \omega(n) = \text{number of distinct prime divisor of } n; \Omega(n) = \text{number of prime power divisors of } n. \text{ Let } \{x\} = \text{fractional part of } n, ||x|| = \min(\{x\}, 1 - \{x\}). \text{ For the sake of brevity let } x_1 = \log x, x_2 = \log x_1, \text{ and in general, let } x_{k+1} = \log x_k (k = 1, 2, \ldots). \text{ Let } \gamma \text{ be the Euler’s constant, } \Gamma \text{ be the gamma function and} \]

\[\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^2/2} du. \]

1.2.

Let \(q \in \mathbb{N}, q \geq 2 \) be fixed, \(E = \{0, 1, \ldots, q - 1\} \). The \(q \)-ary expansion of \(n \in N_0 \) is defined by

\[n = \sum_{j=0}^{\infty} a_j(n)q^j, \quad a_j(n) \in E. \tag{1.1} \]

A function \(f : N_0 \to \mathbb{R} \) is said to be \(q \)-additive, if \(f(0) = 0 \) and

\[f(n) = \sum_{j=0}^{\infty} f(a_j(n)q^j), \quad a_j(n) \in E. \tag{1.2} \]

Let \(A_q \) be the set of \(q \)-additive functions. Let \(N(= N_2) = \left\lfloor \frac{\log n}{\log q} \right\rfloor \),

\[m_k = \frac{1}{q} \sum_{b \in E} f(bq^k), \quad \sigma_k^2 = \frac{1}{q} \sum_{b \in E} f^2(bq^k) - m_k^2, \tag{1.3} \]

\[M(x) = \sum_{k=0}^{N} m_k, \quad D^2(x) = \sum_{k=0}^{N} \sigma_k^2. \tag{1.4} \]

1.3.

Let \(\nu_x(n) := \frac{f(n) - M(x)}{D(x)}. \)

In our recent paper [1] we proved the following
Theorem A. Let \mathcal{P} be an infinite sequence of primes, satisfying

\begin{equation}
\pi_P(x) := \#\{p \leq x \mid p \in \mathcal{P}\} = (\tau + o(1)) \frac{x}{\log x} \quad (x \to \infty),
\end{equation}

where $\tau > 0$ is a constant. Let \mathcal{N} be the multiplicative semigroup generated by the elements of \mathcal{P},

\((N_P(x) =) N(x) := \#\{n \leq x, n \in \mathcal{N}\}.
\)

Let $f \in A_q$, $f(bq^j) = O(1)$ as $b \in E$, $j = 0, 1, 2, \ldots$. Assume that $D(x)/\log^\lambda x \to \infty$ as x tends to infinity for some $\lambda > 0$. Let

\begin{equation}
F_x(y) := \frac{1}{N(x)} \#\{\nu_x(n) < y, n \leq x, n \in \mathcal{N}\}.
\end{equation}

Then

\begin{equation}
\lim_{x \to \infty} F_x(y) = \Phi(y).
\end{equation}

The proof is based on a theorem of Davenport for trigonometric sums (see [2], Lemma 1) and on the method developed in [3].

We observed that by using a theorem of L.K. Hua ([3], see Lemma 6.3), by using the method used by N.L. Bassily and I. Kátai [5] one can prove

Theorem 1. Let $f \in A_q$, $f(bq^j) = O(1)$ as $b \in E$, $j = 0, 1, 2, \ldots$, $D(x)/\log^\delta x \to \infty$ as x tends to infinity with a suitable $\delta > 0$. Assume that \mathcal{P} satisfies the condition (1.6). Let $P \in \mathbb{Z}[x]$ be a polynomial of degree t, with positive leading coefficient. Let

\begin{equation}
G_x(y) := \frac{1}{N(x)} \#\{n \leq x, n \in \mathcal{N}, \nu_x(P(n)) < y\}.
\end{equation}

Then

\begin{equation}
\lim_{x \to \infty} G_x(y) = \Phi(y)
\end{equation}

holds for every y.

1.4.

Let $P \in \mathbb{Z}[x]$ be a polynomial of degree t taking positive integer values on \mathbb{N}. Let q, E be as in 1.2. If $n \in \mathbb{N}$, $n = \epsilon_0(n) + \epsilon_1(n)q + \cdots + \epsilon_{r-1}(n)q^{r-1}$, then
write \(\pi = \epsilon_0(n) \cdots \epsilon_{r-1}(n) (\in E^r) \), \(\epsilon_{r-1} \neq 0 \). Let \(\mathcal{P}, \mathcal{N} \) be as in Theorem A. Let \(n_1 < n_2 < \ldots \) be the whole sequence of the integers in \(\mathcal{N} \), and let

\[
(1.11) \quad \eta = 0, P(n_1), P(n_2) \ldots
\]

where the right hand side of (1.11) is the \(q \)-ary expansion of \(\eta \).

Theorem 2. We have that \(\{q^m\eta\} (m = 1, 2, \ldots) \) is a sequence uniformly distributed mod 1.

This assertion can be derived from Theorem 3, formulated in 1.5.

1.5.

Let \(\mathcal{P}, \mathcal{N}, \mathcal{P} \) as earlier. Let \(\beta = b_0 b_1 \ldots b_{k-1} \) be a typical element of \(E^k \). We write \(\Phi_k(n) = \epsilon_j(n) \cdots \epsilon_{j+k-1}(n) \). Let \(F_k : E^k \rightarrow \mathbb{R} \) be a function such that \(F(0, \ldots, 0) = 0 \). Let

\[
\begin{align*}
\alpha_n &:= \sum_{j=0}^{\infty} F_k(\Phi_j(n)), \quad \kappa_1 := \sum_{j=0}^{\infty} F_k(\Phi_j^1(n)), \\
M &:= q^{-k} \sum_{b_1 \ldots b_k \in E^k} F_k(b_1 \ldots b_k), \\
\sigma_h^2 &= q^{-(k+h)} \sum_{b_0 \ldots b_{h+k-1} \in E^{k+h}} (F_k(b_0 \ldots b_{k-1}) - M)(F_k(b_h \ldots b_{h+k-1}) - M)
\end{align*}
\]

for \(h = 0, 1, \ldots, k-1 \). Let

\[
\sigma^2 = \sigma_0^2 + \sum_{h=1}^{k-1} \sigma_h^2.
\]

Theorem 3. Assume that \(\sigma \neq 0 \). Then

\[
\lim_{x \to \infty} \# \left\{ n \leq x, n \in \mathcal{N} \mid \frac{\alpha_n - MNr}{\sigma \sqrt{Nr}} < y \right\} = \Phi(y)
\]

holds for every \(y \in \mathbb{R} \).

We can prove also

Theorem 4. Let \(\mathcal{P}, \mathcal{N}, \mathcal{P}, f \) be as in Theorem 1. Let

\[
G_{x,k}(y) := \frac{1}{\pi_k(x)} \# \{ n \leq x, n \in \mathcal{N}, \omega(n) = k, \nu_x(P(n)) < y \}.
\]
Then, if \(k_0(x) \to \infty \), then

\[
\sup_y \sup_{k_0(x) \leq k \leq \alpha_x(1)} |G_{x,k} - \Phi(y)| = 0.
\]

Remark. Unfortunately, we cannot prove that

\[
\lim_{x \to \infty} G_{x,1}(y) = \Phi(y).
\]

2. Auxiliary results

2.1. The Erdős–Turán inequality ([6]):

The discrepancy \(D_M \) of the real numbers \(x_1, \ldots, x_M \) (mod 1) is defined by

\[
(2.1) \quad D_M \leq c \left(\sum_{0 < k \leq K} \frac{|\Psi_k|}{h} + \frac{M}{K} \right)
\]

for any positive integer \(K \). \(c \) is an absolute constant.

2.2. Lemma 6.3 of L.K. Hua ([4]):
Let \(l \) be a positive integer \((\leq x^\sigma_3)\), and
\[
\Omega = \sum_d \sum_m e(f(ldm)),
\]
\[
f(z) = \frac{h}{Q} z^t + \alpha_1 z^{t-1} + \cdots + \alpha_t,
\]
where \((h, Q) = 1\), all \(\alpha \) being real, and \(x_1^\sigma < Q < x^t \cdot x_1^{-\sigma} \). The index \(d \) in \(\Omega \) runs through a set of positive integers satisfying the conditions
\[
D < d \leq D', \quad 1 < D < \frac{x}{l}, \quad D' \leq 2D.
\]
Further, for a fixed \(d \), the index \(m \) runs through a set of positive integers satisfying the inequality
\[
P'/d < m \leq \frac{x}{Dl},
\]
where \(P' \) is a positive number. Hence, for \(x_1^{\sigma_5} < D < x \cdot x_1^{-\sigma} \), subject to the conditions
\[
\sigma \geq 2t\sigma_3 + 2^{2t+1}\sigma_6 + 2^{3(2t-1)}
\]
we have
\[
\Omega \ll \frac{x}{l} x_1^{-\sigma}.
\]

2.3.
Theorem of E. Wirsing ([7]):

Let \(F \) be a multiplicative function, satisfying the conditions: \(F(n) \geq 0 \) (\(n \in \mathbb{N} \)); \(F(p^\alpha) \leq c_1 c_2^\alpha \), \(c_2 < 2 \) for every prime \(p \) and \(\alpha = 2, 3, \ldots \). Assume that
\[
\sum_{p \leq x} F(p) = (\tau + o(1)) \frac{x}{\log x} \quad (x \to \infty),
\]
where \(\tau > 0 \) is a constant. Then, for \(x \to \infty \),
\[
\sum_{n \leq x} F(n) = \left(e^{-\gamma \tau} + o_x(1) \right) \frac{x}{\log x} \prod_{p \leq x} \left(1 + \frac{F(p)}{p} + \frac{F(p^2)}{p^2} + \cdots \right).
\]

Analyzing the proof, one can see easily that the following version of the theorem of E. Wirsing is true.
Lemma 1. Let F_λ be a family of multiplicative functions satisfying the following conditions: $F_\lambda(n) \geq 0$ ($n \in \mathbb{N}$); $F_\lambda(p^\alpha) \leq c_1 e_2^\alpha$, $c_2 < 2$ for every prime p and $\alpha = 2, 3, \ldots$. Assume that

$$\left| \sum_{p \leq x} F_\lambda(p) - \tau_\lambda \frac{x}{\log x} \right| \leq \epsilon(x) \frac{x}{\log x},$$

where $0 < c_3 < \tau_\lambda$, c_3 is a suitable constant, $\epsilon(x) \to 0$ as x tends to infinity.

Then there exists a function $\epsilon_1(x) \to 0$ ($x \to \infty$) such that

$$\left| \sum_{n \leq x} F_\lambda(n) - \frac{e^{-\gamma \tau_\lambda}}{\Gamma(\tau_\lambda)} \frac{x}{\log x} \prod_{p \leq x} \left(1 + \frac{F_\lambda(p)}{p} + \frac{F_\lambda(p^2)}{p^2} + \cdots \right) \right| \leq \epsilon_1(x) \frac{x}{\log x} \prod_{p \leq x} \left(1 + \frac{F_\lambda(p)}{p} + \frac{F_\lambda(p^2)}{p^2} + \cdots \right).$$

Let \mathcal{P}, \mathcal{N} be as defined in Theorem A. Defining the multiplicative function F on prime powers p^α by

$$F(p^\alpha) = \begin{cases} 1, & \text{if } p \in \mathcal{P}, \\ 0, & \text{if } p \notin \mathcal{P}, \end{cases}$$

from Wirsing’s theorem we obtain that

$$N_\mathcal{P}(x) = \left(e^{-\gamma} + o(1) \right) \frac{x}{\log x} \prod_{p \in \mathcal{P}} \frac{1}{1 - 1/p}.$$

2.4.

Lemma 2. Let $0 < \Delta < \frac{1}{2q}$, $\chi_0(x) = \sum c_m e(mx)$ be a $(\mod 1)$ periodic function such that $0 \leq \chi_0(x) \leq 1$,

$$\chi_0(x) = \begin{cases} 1 & \text{if } \Delta < \{x\} < \frac{1}{q} - \Delta, \\ 0 & \text{if } \frac{1}{q} + \Delta < \{x\} < 1 - \Delta, \end{cases}$$

$c_0 = \frac{1}{q}$, $c_jq = 0$ when $j \neq 0$,

$$|c_m| \leq \min \left(\frac{1}{q}, \frac{1}{\pi |m|}, \frac{1}{\Delta^2 m^2} \right).$$
Let $\chi_b(x) = \chi_0(x - \frac{b}{q}) = \sum c_m^{(b)} e(mx)$. Then $c_m^{(b)} = c_m e\left(-\frac{mb}{q}\right)$, thus $|c_m^{(b)}| = |c_m|$. See in [5].

2.5.

Let P, N be as earlier, $\pi_k(x) = \#\{n \leq x \mid n \in N, \omega(n) = k\}$, $N_k(x) = \#\{n \leq x \mid n \in N, \Omega(n) = k\}$.

Let

$$T(x) := \sum_{p^\nu \leq x \atop p \in P} \frac{1}{p^\nu}.\$$

Lemma 3. There is a function $\epsilon(x) \to 0 \ (x \to \infty)$ and positive constants c_1, c_2 such that

$$\frac{c_2(\tau - \epsilon(x))x}{\log x} T\left(\frac{x}{\pi_k(x)}\right)^{k-1} (k-1)! - (\log x) \sqrt{x} \leq \pi_k(x) \leq c_1 x \frac{T(x)^{k-1}}{\log x (k-1)!}$$

holds for every k, and

$$N_k(x) \leq \frac{c_3 x T(x)^{k-1}}{\log x (k-1)!}$$

holds for $1 \leq k \leq (1 - \delta)p_0 T(x)$, where p_0 is the smallest prime in P, δ is an arbitrary constant, $0 < \delta < 1$, and $c_3 = c_3(\delta)$ is a suitable constant.

Proof of Lemma 3. We have

$$\sum_{n \leq x \atop n \in \mathcal{P}_k} \log\nu \leq \sum_{p^\nu \leq x \atop m \in \mathcal{P}_{k-1}} \log p^\nu \leq \sum_{m \in \mathcal{P}_{k-1}} \sum_{p^\nu \leq \frac{x}{m}} \log p^\nu \leq 2x \sum_{m \in \mathcal{P}_{k-1}} \frac{1}{m} \leq \frac{2x T(x)^{k-1}}{(k-1)!}.\$$

Thus

$$(\pi_k(x) - \pi_k(\sqrt{x})) \frac{1}{2} \log x \leq \frac{2x T(x)^{k-1}}{(k-1)!},$$
\[\pi_k(x) \leq \pi_k(\sqrt{x}) + \frac{4x}{\log x} \frac{T(x)^{k-1}}{(k-1)!}. \]

Iterating this, we obtain that the right hand side of (2.3) is true. Furthermore,

\[\pi_k(x) \log x \geq \sum_{\substack{p^m \leq x \\ m \in \mathbb{P}_{k-1} \cap \sqrt{x}}} \log p^m \geq \sum_{\substack{p \leq \sqrt{x} \\ p \mid m}} \log p - \sum_{p \mid m} \log p^m \]

\[\geq (\tau - \epsilon(x)) \sum_{m \leq \sqrt{x}} \frac{x}{m} - (\log x) \sum_{m \leq \sqrt{x}} \sum_{p \mid m} 1, \]

and so

\[\pi_k(x) \geq (\tau - \epsilon(x))x \frac{T(\sqrt{x})^{k-1}}{(k-1)!} - \sqrt{x} \log x. \]

To prove (2.4), write \(n \in \mathcal{N}_k \) in the form \(n = Km \), where \(K \) is the squareful part and \(m \) is the squarefree part of \(n \).

The size of those \(n \leq x \) for which \(K > x^{1/2} \) is

\[\leq \sum_{K > \sqrt{x}} \frac{x}{K} \leq cx^{3/4}. \]

Thus,

\[\mathcal{N}_k(x) \leq \sum_{K \leq \sqrt{x}} \pi_{k-\Omega(K)} \left(\frac{x}{K} \right) + cx^{3/4}. \]

From inequality (2.3) we have

\[\mathcal{N}_k(x) \leq \frac{c_1 x}{\log \sqrt{x}} \sum_{K \leq \sqrt{x}} \frac{T(x)^{k-\Omega(K)-1}}{K(k-\Omega(K)-1)!} + cx^{3/4}. \]

Furthermore,

\[\sum_{K < \sqrt{x}} \frac{T(x)^{k-\Omega(K)-1}}{K(k-\Omega(K)-1)!} \leq \frac{T(x)^{k-1}}{(k-1)!} \sum_{K \leq \sqrt{x}} \left(\frac{k}{T(x)} \right)^{\Omega(K)} \frac{1}{K}. \]
Since $\frac{k}{T(x)} \leq (1 - \delta)p_0,$

$$\sum_{K \leq \sqrt{x}} \left(\frac{k}{T(x)} \right)^{\alpha(K)} \frac{1}{K} \leq \prod_{p \in P} \left(1 + \left(\frac{k}{T(x)} \right) \frac{1}{p^2} - \frac{1}{\left(\frac{k}{T(x)} \right) \frac{1}{p}} \right).$$

Since $cx^{3/4}$ is clearly smaller than $c\frac{x}{\log x} \frac{T(x)^{k-1}}{(k-1)!},$ our inequality holds.

3. Proof of Theorem 1

Let $y \in \mathbb{R}$ be fixed. Let $n_1 < \ldots < n_s (\leq x)$ be the set all of the integers in \mathbb{N} up to $x,$ for which $\nu_{x^*}(P(n)) < y.$ Then $s = G_x(y) \cdot N(x).$ Let $\mathcal{H}_x = \{m,p\}, p \in P, m \in N, m > x^{\epsilon_x}, p > e^{(\log x)^{\epsilon_x}}, mp \leq x\}.$ Here we assume that $\epsilon_x \to 0 \ (x \to \infty) \ (slowly).$

Let $R_x = \sum_{p \leq x} 1/p.$ Let Z be the number of those $\{m, p\} \in \mathcal{H}_x$ for which $\nu_{x^*}(P(mp)) < y.$ Repeating the argument, used in [1], we obtain that

$$\frac{1}{N(x)} \left| \frac{Z}{R_x} - s \right| \to 0 \ (x \to \infty).$$

Let $H(x) = \# \mathcal{H}_x.$ Let $(1 \leq l_1 < \ldots < l_h \leq tN, b_1, \ldots, b_h \in E$ and

$$H \left(x \left| l_1, \ldots, l_h \right. \left. b_1, \ldots, b_h \right) = \#\{m,p\} \in \mathcal{H}_x, \epsilon_j(P(mp)) = b_j, j = 1, \ldots, h \right).$$

By using the method developed in [3, 5, 1] we can prove that

$$(3.1) \max_{N^{\alpha} \leq l_1, \ldots, l_h \leq tN - N^{\alpha}} \left| q^h H \left(x \left| l_1, \ldots, l_h \right. \left. b_1, \ldots, b_h \right) - H(x) \right| \leq c(h, \lambda)H(x)N^{-\lambda}$$

holds for every fixed $h,$ every $\alpha > 0,$ and every $\lambda > 0.$

By using the theorem of L.K. Hua ([4]) we can obtain that

$$\sum_{(m,p) \in \mathcal{H}_x} e \left(\frac{A_M}{H_M} P(mp) \right) \ll H(x) \log^{-B} x$$
Distribution of the values of q-additive functions II.

holds for every fixed B, where
\[
\frac{A_M}{H_M} = \frac{m_h}{q^{h+1}} + \cdots + \frac{m_1}{q^{1+1}}, \quad q|m_j \ (j = 1, \ldots, h),
\]

$N^\alpha \leq l_1 < \ldots < l_h < tN - N^\alpha$. Continuing as in [1], by using the Frechet-Shohat theorem, we obtain Theorem 1.

4. Proofs of Theorems 2 and 3

These can be done by the method used in [9].

5. Proof of Theorem 4

Let
\[
\pi_k(x) = \# \{ n \leq x \mid n \in \mathcal{N}, \ \omega(n) = k \}
\]
and
\[
\mathcal{H}_{x, k} = \{ (m, p), m \in \mathcal{N}, p \in \mathcal{P}, \ \omega(m) = k - 1, \ p > e^{(\log x)^{x^*}}, \ m > x^{x^*}, \ mp \leq x \},
\]
where $e_x^* \to 0 \ (x \to \infty)$. Since
\[
\Sigma_1 := \sum_{m \leq x^{x^*}} \sum_{p \leq x^*} \frac{1}{m} \ll \frac{x}{\log x} \sum_{m \leq x^{x^*}} \frac{1}{m} \ll \sum_{m \leq x^{x^*}} \frac{x}{\log x} (x^*)^{-1} (k - 1)!
\]
we obtain from the left hand side of (2.3) that the right hand side of (5.1) is at most $\alpha_k(1)k\pi_k(x)$ uniformly for $2 \leq k \ll \frac{2x}{x^*}$. Furthermore, from (2.3) we
deduce that

\[\Sigma_2 := \sum_{p \leq e^{(\log x)^\epsilon x}} \sum_{m \leq \frac{x}{p}, \omega(m) = k-1} \pi_{k-1} \left(\frac{x}{p} \right) \ll \]

\[\ll \frac{x}{\log x} \frac{T^{k-2}(x)}{(k-2)!} \sum_{p \leq e^{(\log x)^\epsilon x}} \frac{1}{p} \ll \epsilon x k \pi_k(x). \]

Thus, by the right hand side of (2.3),

\[\#H_{x,k} = k \pi_k(x) + \Sigma_1 + \Sigma_2 + \mathcal{O}((k-1)\pi_{k-1}(x)) = \]

\[= k \pi_k(x) + o_x(1)k \pi_k(x). \]

Let \(H_k(x) = \#H_{x,k}. \) Let \((1 \leq) l_1 < \ldots < l_h \leq tN, b_1, \ldots, b_h \in E) \text{ and} \]

\[H_k \left(x \mid l_1, \ldots, l_h \right) = \# \{m, p \in \mathcal{H}_{x,k}, \epsilon_{ij}(P(mp)) = b_j, j = 1, \ldots, h\}. \]

In the same way as we have seen by (3.1)

\[\max_{N^\alpha \leq l_1 \leq \ldots \leq l_h \leq tN - N^\alpha} \left| q^h H_k \left(x \mid l_1, \ldots, l_h \right) - H_k(x) \right| \leq c(h, \lambda) H_k(x) N^{-\lambda} \]

holds for every fixed \(h, \) every \(\alpha > 0, \) and every \(\lambda > 0 \) uniformly for \(2 \leq k \ll \frac{2x}{x^3}. \)

Arguing as in [5], the proof is finished.

References

[1] Germán, L. and Káta, I., Distribution of the values of \(q \)-additive functions on some multiplicative semigroups (submitted)

I. Kátai
Department of Computer Algebra
Eötvös Loránd University
Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
katai@compalg.inf.elte.hu

L. Germán
Faculty of Computer Science,
Electrical Engineering and Mathematics
University of Paderborn
Warburger Straße 100
D-33098 Paderborn, Germany
laszlo@math.uni-paderborn.de