
Annales Univ. Sci. Budapest., Sect. Comp. 38 (2012) 129-145

DISTRIBUTION OF THE VALUES OF
q–ADDITIVE FUNCTIONS

ON SOME MULTIPLICATIVE SEMIGROUPS

L. Germán (Paderborn, Germany)
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Abstract. Let P be an infinite subset of primes,

#{p ≤ x | p ∈ P} = (τ + o(1))
x

log x
(x →∞),

N be the multiplicative semigroup generated by P . Distribution of the

values of q-additive functions defined on N is investigated.

1. Introduction

1.1. Let N,R,C be the set of natural, real, complex numbers respectively,
N0 = N ∪ {0}. Let e(x) = e2πix, ω(n) = number of distinct prime divisors of
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n, Ω(n) = number of prime power divisors of n. If x is a positive real number
then let x1 = log x, xk = log xk−1, k = 2, 3, . . .. Let {x} = fractional part of

x, ||x|| = min({x}, 1− {x}). Let Φ(x) = 1√
2π

x∫
−∞

e−u2/2du.

1.2. Let q ≥ 2 be a fixed integer, E = {0, 1, . . . , q− 1} be the set of digits.
Then every n ∈ N0 has a unique (q-ary) expansion, defined by

(1.1) n =
∞∑

j=1

aj(n)qj , aj(n) ∈ E.

The right hand side of (1.1) is clearly a finite sum, since aj(n) = 0 if qj > n.
A function f : N0 → R is said to be q-additive, if f(0) = 0 and

(1.2) f(n) =
∞∑

j=0

f(aj(n)qj)

holds for every n ∈ N0. The whole set of q-additive functions will be denoted
by H.

1.3. Let

(1.3) N = Nx =
[
log x

log q

]
,

(1.4) mk =
1
q

∑

b∈E

f(bqk), σ2
k =

1
q

∑

b∈E

f2(bqk)−m2
k,

(1.5) M(x) =
N∑

k=0

mk, D2(x) =
N∑

k=0

σ2
k.

1.4. Let B = Bx be a set of positive integers up to x. The multiple
occurrence of some numbers is allowed. Furthermore, let B(x) be the number
of elements in B. For an arbitrary sequence of integers (0 ≤) l1 < . . . < lh and
b1, . . . , bh ∈ E, let

(1.6) B

(
x

∣∣∣ l1, . . . , lh
b1, . . . , bh

)
= #{n ≤ x | n ∈ B, alj (n) = bj , j = 1, . . . , h}.
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1.5. Let

ν(n) : =
f(n)−M(x)

D(x)
,(1.7)

Fx(y) : =
1

B(x)
#{n ∈ B, ν(n) ≤ y}.(1.8)

Definition 1. We say that B = Bx is a sequence of q-ary smooth sets of
type α if B(x) À x

log x , and

(1.9) sup
Nα≤l1<...<lh<N−Nα

b1,...,bh∈E

∣∣∣∣qhB

(
x

∣∣∣ l1, . . . , lh
b1, . . . , bh

)
−B(x)

∣∣∣∣ ≤ c(h, λ)B(x)N−λ

holds for every fixed λ > 0, x ≥ 2.

Theorem 1. Let f ∈ Aq, f(bqj) = O(1) as b ∈ E, j = 0, 1, . . . Assume
that D(x)

logδ x
→ ∞ as x tends to infinity is satisfied for some δ > 0. Let Bx be a

q-ary smooth sequence of type α < δ/2. Then

lim
x→∞

Fx(y) = Φ(y)

holds for every y. Here

Φ(y) =
1√
2π

y∫

−∞
e−u2/2du.

Proof. Let n ≤ x

fα(n) :=
∑

Nα≤j≤N−Nα

f(aj(n)qj).

Since f(bqj) is bounded,

|fα(n)− f(n)| ≤ cNα

holds. Let

Mα(x) =
∑

Nα≤j≤N−Nα

mj , D2
α(x) =

∑

Nα≤j≤N−Nα

σ2
j .
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We have |M(x)−Mα(x)| ≤ cNα, |D2
α(x)−D2(x)| ≤ cNα. Let

να(n) =
fα(n)−Mα(x)

Dα(x)
.

We already defined ν(n) in (1.7). From the assumption we obtain that

max
n≤x

|να(n)− ν(n)| → 0

as x →∞. From the assumption (1.9) we deduce easily that

1
B(x)

∑
n≤x

n∈Bx

να(n)k − 1
x

∑

n≤x

να(n)k → 0 as x →∞,

and so

(1.10)
1

B(x)

∑
n≤x

n∈Bx

ν(n)k − 1
x

∑

n≤x

ν(n)k → 0 as x →∞

for each k ∈ N0. One can prove easily that for k ∈ N0

lim
x→∞

1
x

∑

n≤x

ν(n)k =

∞∫

−∞
xkdΦ.

(1.10) implies that

lim
x→∞

1
B(x)

∑
n≤x
n∈B

ν(n)k =

∞∫

−∞
xkdΦ

holds for every k. Therefore, our theorem directly follows from the Frechet-
Shohat theorem. A more detailed argument can be found in [1].

2. Some auxiliary results

2.1.
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Lemma 1 (Theorem of Davenport [2]). Let x be a positive integer, 1 <
< U0 < U1 < x, 1 ≤ Q ≤ x, (a,Q) = 1. Let Θ1(n, x), Θ2(r, x) be arbitrary
functions, each of which is absolutely bounded. Then

∑

U0<n≤U1

Θ1(n, x)
∑

1≤r≤x/n

Θ2(r, n)e
(

axr

Q

)
=

= O
(

x log2 x

√
1
U0

+
U1

x
+

1
Q

+
Q

x

)
.

2.2.

Lemma 2. Let 0 < ∆ < 1
2q , χ0(x) =

∞∑
m=−∞

cme(mx) be a mod 1 periodic

function such that 0 ≤ χ0(x) ≤ 1,

χ0(x) =





1, if ∆ < {x} < 1
q −∆,

0, if 1
q + ∆ < {x} < 1−∆,

c0 = 1
q , cjq = 0 when j = ±1,±2, . . . ,

|cm| ≤ min
(

1
q
,

1
π|m| ,

1
∆π2m2

)
.

Let χb(x) = χ0(x − b
q ) =

∑
c
(b)
m e(mx). Then χ

(b)
m = cme(−mb

q ), thus |c(b)
m | =

= |cm|.
This lemma is proved in [3].

2.3.

The Erdős-Turán inequality for the discrepancy of sequences
mod 1

The discrepancy DM of the real numbers x1, . . . , xM mod 1 is defined by

(2.1) sup
∣∣∣∣

1
M

#{n ≤ M | {xn} ∈ [α, β)} − (β − α)
∣∣∣∣

where the supremum is taken for all intervals [α, β) ⊂ [0, 1].
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Lemma 3 ([4]). Let ψm :=
M∑

e=1
e(mxl). We have

(2.2) DM ≤ c


 ∑

0<h≤K

|ψh|
h

+
M

K




for any positive integer K. c is an absolute constant.

2.4.

The theorem of E. Wirsing

Lemma 4 ([5]). Let F be a multiplicative function satisfying the following
conditions: F (n) ≥ 0 (n ∈ N); F (pα) ≤ c1c

α
2 , c2 < 2 for every prime p and

α = 2, 3, . . .. Assume that

(2.3)
∑

p≤x

F (p) = (τ + o(1))
x

log x
(x →∞)

where τ > 0 is a constant. Then, for x →∞,

(2.4)
∑

n≤x

F (n) =
(

e−γτ

Γ(τ)
+ o(1)

)
x

log x

∏

p≤x

(
1 +

F (p)
p

+
F (p2)

p2
+ · · ·

)
.

Here Γ is the Euler’s gamma function, and γ is the Euler’s constant.

Analyzing the proof, one can see that the following variant of Wirsing’s
theorem remains true.

Lemma 5. Let Fλ be a family of multiplicative functions, satisfying the
following conditions: Fλ(n) ≥ 0 (n ∈ N); Fλ(pα) ≤ c1c

α
2 , c2 < 2 for every

prime p and α = 2, 3, . . ..
Let ε(x) → 0 (x →∞). Assume that

(2.5)

∣∣∣∣∣∣
∑

p≤x

Fλ(p)− τλ
x

log x

∣∣∣∣∣∣
≤ ε(x)

x

log x
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where 0 < c3 < τλ < c4, with c3, c4 suitable positive constants. Then there
exists a function ε1(x) → 0 (x →∞) such that

(2.6)

∣∣∣∣∣∣
∑

n≤x

Fλ(n)− e−γτλ

Γ(τ)
x

log x

∏

p≤x

(
1 +

Fλ(p)
p

+
Fλ(p2)

p2
+ · · ·

)∣∣∣∣∣∣
≤

≤ ε1(x)
x

log x

∏

p≤x

(
1 +

Fλ(p)
p

+
Fλ(p2)

p2
+ · · ·

)
.

2.5.

Let P be an infinite sequence of primes, N be the multiplicative semigroup
generated by P. Let

πP(x) = #{p ≤ x | p ∈ P}; NP(x) = #{n ≤ x | n ∈ N}.

Assume that

(2.7) πP(x) = τ
x

log x
+ o

(
x

log x

)
(x →∞)

where 0 < τ ≤ 1. Then, from the theorem of Wirsing we obtain that

(2.8) NP(x) =
(

e−γτ

Γ(τ)
+ o(1)

)
x

log x

∏
p≤x
p∈P

1
1− 1/p

(x →∞).

Let

(2.9) Rx :=
∑
p≤x
p∈P

1
p
.

Then

(2.10) Rx = (τ + o(1)) log log x (x →∞).

Lemma 6. Let P satisfy the condition (2.7). Then, there is a suitable
sequence δx → 0 (x →∞) such that

(2.11)
1

N(x)Rx

∑
|ω(n)−Rx|>δxRx

n≤x,n∈N

ω(n) → 0 (x →∞).
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Proof. Let Fκ be a family of multiplicative functions, defined on prime
powers pα as follows:

Fκ(pα) =

{
eκ, if p ∈ P,

0, if p 6∈ P.

First we assume that κ is a small positive, later that it is a small negative
number. Since

∑

p≤x

Fκ(p) = (eκτ + o(1))
x

log x
(x →∞)

holds uniformly as κ varies in a bounded interval, furthermore

Fκ(n)ω(n) ≤ 2
∑

mp=n

p∈P,p<
√

x

Fκ(m)eκ,

by Lemma 5 we obtain that

(2.12)

∑
n≤x
n∈N

eκω(n)ω(n) ≤2
∑

p≤√x
p∈P

eκ
∑

n≤x/p

eκω(n) ≤

≤ 2eκ e−γeκτ

Γ(eκτ)
x

log x
Rx

∏
p≤x
p∈P

(
1 +

eκ

p− 1

)
=

=
e−γeκτ

Γ(eκτ)
x

log x
Rx exp(eκRx + bx),

where bx is bounded uniformly as 0 ≤ κ ≤ 1/10, say. Since

(2.13)
∑

ω(n)>(1+δx)Rx
n≤x, n∈N

ω(n) ≤ e−κδxRx

∑
n≤x
n∈N

eκ(ω(n)−Rx)ω(n),

and

(2.14) N(x) = (1 + o(1))
e−γτ

Γ(τ)
x

log x
exp(Rx +O(1)) (x →∞),

from (2.12), (2.13) we have that

(2.14)
1

N(x)Rx

∑
ω(n)>(1+δx)Rx

n≤x, n∈N

ω(n) ≤ c exp((−κδx − κ + eκ − 1)Rx).
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c may depend on τ . Choose κ = x−1
4 , δx = 2κ. We obtain, that (2.14) tends

to zero.

Instead of proving that

(2.15)
1

N(x)Rx

∑
ω(n)<(1−δx)Rx

n∈N , n≤x

ω(n) → 0 (x →∞)

we shall show that

1
N(x)

#{n ≤ x | ω(n) < (1− δx)Rx, n ∈ N} → 0 (x →∞).

To prove this we choose F−κ instead of Fκ, and argue as earlier. We have
(2.16)

∑
n≤x
n∈N

F−κ(n) =
∑
n≤x
n∈N

e−κω(n) =

(
e−γτe−κ

Γ(τe−κ)
+ o(1)

)
x

log x

∏
p≤x
p∈P

(
1 +

e−κ

p− 1

)
.

Since e−κ(ω(n)−(1−δx)Rx) ≥ 1 if ω(n) < (1− δx)Rx, therefore
∑
n≤x
n∈N

ω(n)<(1−δx)Rx

1 ≤ e(1−δx)Rxκ
∑
n≤x
n∈N

F−κ(n).

Arguing as earlier, by using (2.16) we can get the relation (2.15).

2.6.

Lemma 7. Let P, N be as in Section 2.5. For every K let p1 < . . . < pT

be a finite sequence of primes from P. Let PK = {p1, . . . , pT }, and let

ωPK (n) =
∑
p|n

p∈PK

1, AK =
T∑

j=1

1
pj

, AK > K.

Then

(2.17) lim sup
x→∞

1
N(x)

∑
n≤x
n∈N

|ωPK
(n)−AK | ≤

√
AK .

Proof. Since

N

(
x

p

)
= #{n ≤ x | n ∈ N , p|n}
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and from the theorem of E. Wirsing (Lemma 4) one can get easily that

N

(
x

p

)
=

1
p
N(x) + o(N(x)) (x →∞),

we obtain that
∑
n≤x
n∈N

ωPK
(n) = AKN(x) + o(N(x)) (x →∞),

∑
n≤x
n∈N

ω2
PK

(n) =


A2

K + AK −
∑

p∈PK

1
p2


 N(x) + o(N(x)) (x →∞).

Thus

∑
n≤x
n∈N

(ωPK
(n)−AK)2 =


A2

K + AK −
∑

p∈PK

1
p2
− 2A2

K + A2
K


 N(x)+

+ o(N(x)) (x →∞),

whence

1
N(x)

∑
n≤x
n∈N

|ωPK (n)−AK | ≤ 1√
N(x)





∑
n≤x
n∈N

|ωPK (n)−AK |2




1/2

≤

≤
√

AK + o(1) (x →∞),

and so our assertion holds.

2.7.

Let N be as in 2.5. From the theorem of Wirsing (see Lemma 4) we obtain
that

N

(
x

y

)
≤ cN(x)

y

holds for 1 ≤ y ≤ √
x. Let

(2.18) ω1(n) :=
∑
p|n

p∈P
p<exp((log x)εx )

1
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where εx → 0 as x →∞. Hence we obtain that

∑
n≤x
n∈N

ω1(n) < cεxRxN(x).

For some n ∈ N consider all possible representations n = pm, where p ∈ P.
Let

ω2(n) =
∑

n=pm
m≤xεx

1.

Then ∑
n≤x
n∈N

ω2(n) ≤
∑

m≤xεx
m∈N

πP

( x

m

)
≤ cτx

log x

∑
m≤xεx
m∈N

1
m
≤

≤ cτx

log x

∏
p≤xεx

p∈P

1
1− 1/p

≤ cτx

log x
exp




∑
p<xεx

p∈P

1
p


 .

Hence we have that

(2.19)
1

N(x)

∑
n≤x
n∈N

ω2(n) → 0 (x →∞).

3. Formulation and proof of Theorem 2

3.1.

Theorem 2. Let N be as in 2.5. Assume that f ∈ Aq, f(bqj) =
= O(1) (b ∈ E, j = 0, 1, . . .). Assume furthermore that there is a constant
λ > 0 for which D(x)/ logλ x →∞ (x →∞). Let

Fx(y) =
1

N(x)
#{ν(n) < y, n ∈ N , n ≤ x}.

Then
lim

x→∞
Fx(y) = Φ(y).

3.2.
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Proof of Theorem 2

Let y ∈ R be fixed. Let n1 < . . . < ns (≤ x) be the set all of the integers
in N up to x, for which ν(n) < y. Thus Fx(y) = s/N(x). Let

Hx = H = #{{m, p}, p ∈ P, m ∈ N , m > xεx , p > e(log x)εx
, mp < x}.

Let Z be the number of those {m, p} ∈ H for which ν(mp) < y. It is clear that

Z ≤ ω(n1) + · · ·+ ω(ns) ≤ (1 + δx)Rxs +
∑
n≤x
n∈N

ω(n)>(1+δx)Rx

ω(n).

From Lemma 6 we obtain that

Z

Rx
≤ (1 + δx)s + o(N(x)) (x →∞).

Similarly
Z ≥ (1− δx)Rxs−

∑

ω(n)<(1−δx)Rx

ω(n)− Σ1 − Σ2,

where in Σ1 we sum over those {m, p} for which m < xεx , m ∈ N , p ∈ P and
in Σ2 over those for which p < e(log x)εx

, p ∈ P and m ∈ N . As we have seen
in 2.7.

Σ1 + Σ2 = o(RxN(x)) (x →∞)

and Lemma 6 implies that
∑

ω(n)<(1−δx)Rx
n≤x
n∈N

ω(n) = o(RxN(x)) (x →∞).

Thus we have
Z

Rx
≥ s(1− δx) + ox(N(x)) (x →∞).

Let H(x) = #Hx. Let (1 ≤) l1 < . . . < lh ≤ N, b1, . . . , bh ∈ E and

H

(
x

∣∣∣∣
l1, . . . , lh
b1, . . . , bh

)
:= #{{m, p} ∈ Hx, εlj (mp) = bj , j = 1, . . . , h}.

We can prove that for every fixed h, and every α > 0

(3.1) max
Nα≤l1<...<lh<N−Nα

b1,...,bh∈E

∣∣∣∣qhH

(
x

∣∣∣∣
l1, . . . , lh
b1, . . . , bh

)
−H(x)

∣∣∣∣ ≤ c(h, λ)H(x)N−λ
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holds for every fixed λ.

The proof is very similar to that of the theorem in [1]. Let

U := [1−∆, 1] ∪ q−1∪
b=1

[
b

q
−∆,

b

q
+ ∆

]
∪ [0, ∆],

Ej := #
{
{m, p} ∈ Hx,

{
mp

qj+1

}
∈ U

}
,

further
F (x1, . . . , xh) := φb1(x1) · · ·φbh

(xh),

t(y) := F

(
y

ql1+1
, . . . ,

y

qlh+1

)
.

Let

V =
[

1
ql1+1

, . . . ,
1

qlh+1

]
,

M the whole set of vectors

M = [m1, . . . , mh]

with integer entries. Let

V M =
AM

HM
, (AM , HM ) = 1.

It is clear that
t(y) =

∑

M∈M
TMe(MV y),

where |TM | = |cm1 | · · · |cmh
|, T [0, . . . , 0] = 1

qh .

We have

(3.2)

∣∣∣∣H
(

x

∣∣∣∣
l1, . . . , lh
b1, . . . , bh

)
− 1

qh
H(x)

∣∣∣∣ ≤

≤
∑

M 6=0

|TM |
∣∣∣∣∣∣

∑

{m,p}∈Hx

e

(
AM

HM
mp

)∣∣∣∣∣∣
+ El1 + · · ·+ Elh .

If M is such a vector for which q|mj for some j, then TM = 0. Let M =
= [m1, . . . , mh], q|/mh. Then

HM (mh + qlh−lh−1mh−1 + · · ·+ m1q
lh−l1) = AMqlh+1.
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Let q = pe1
1 · · · pes

s be the prime decomposition of q. Since q|/mh, there exists
a pt for which pet

t |/mh. Thus there exists an η > 0 depending only on q such
that HM ≥ qηlh ≥ qηNα

. On the other hand HM ≤ qlh+1 < cxq−Nα

.

By using the Davenport theorem (Lemma 4) we obtain that

∑

{m,p}∈Hx

e

(
AM

HM
mp

)
¿ H(x) log−B x

holds for every fixed B. The constant implied by ¿ on the right hand side
does not depend on M . One can observe also that (see [1])

∑
|TM | ≤

(
2 + 2 log

1
∆

)h

.

Finally we can estimate Ej by using the Erdős-Turán inequality (Lemma 3) for
the discrepancy. Let

ψk :=
∑

{m,p}∈Hx

e

(
kmp

1
qlj+1

)
.

Then

|Ej | ≤ (2q∆)H(x) + c

T∑

k=1

|ψk|
k

+
cH(x)

T
,

where c is an absolute constant, T is arbitrary. Let K be an arbitrary large
constant,

T = [logK x], ∆ =
1
T

.

By the theorem of Davenport we obtain that max
1≤k≤T

|ψk| ≤ H(x) log−K x say.

Hence we obtain (3.2). Our sequence Hx is q-ary smooth of type α for every
α > 0, therefore Theorem 1 can be applied for every α. The proof of Theorem
2 is complete.

4. A remark to a theorem of H. Daboussi

4.1.
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The famous theorem of H. Daboussi [7, 8] asserts that if α is an irrational
number, M1 be the set of complex valued multiplicative functions f satisfying
the condition |f(n)| ≤ 1 (n ∈ N), then

sup
f∈M1

1
x

∣∣∣∣∣∣
∑

n≤x

f(n)e(nα)

∣∣∣∣∣∣
→ 0 as x →∞.

There are a lot of generalizations of this theorem, see e.g. [9, 11].

Theorem 3. Let P,N be as in 2.5. Let α be an irrational number for
which

min
1≤k≤logB x

||kα|| > logB x

x

holds for every B and x > x0(B). Then

(4.1) sup
f∈M1

1
N(x)

∣∣∣∣∣
∑
n≤x
n∈N

f(n)e(nα)

∣∣∣∣∣→ 0 as x →∞.

4.2.

Proof of Theorem 3

We shall prove only that

(4.2) lim
x→∞

1
N(x)

∣∣∣∣∣
∑
n≤x
n∈N

e(αnk)

∣∣∣∣∣= 0

for every k ∈ N, k 6= 0. The deduction of (4.1) from (4.2) can be done in the
same way as which was used in [10].

Let τ = x
logB x

. Then there is an integer Q such that Q ≤ τ , and ||Qα|| < 1
τ .

Due to the the condition of the theorem Q ≥ log2B x, consequently for a suitable
integer A, ∣∣∣∣α−

A

Q

∣∣∣∣ <
1

Qτ
≤ 1

x logB x
,

(A,Q) = 1 and so

∑
n≤x
n∈N

e(αnk) =
∑
n≤x
n∈N

e

(
Ak

Q
n

)
+O

(
kN(x)
logB x

)
.
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To prove (4.2) we shall estimate

S =
∑
n≤x
n∈N

e

(
Akn

Q

)
.

By using Lemma 6, it is enough to prove that

1
RxN(x)

∑
n≤x
n∈N

e

(
Akn

Q

)
ω(n) → 0 (x →∞)

and by repeating the argument used in 2.7 that

(4.3)
1

#Hx

∑

{m,p}∈Hx

e

(
Akmp

Q

)
→ 0 (x →∞).

(4.3) follows from the theorem of Davenport.

We note that Lemma 7 is a tool to deduce the theorem from (4.3).
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