DISTRIBUTION OF THE VALUES OF q-ADDITIVE FUNCTIONS ON SOME MULTIPLICATIVE SEMIGROUPS

L. Germán (Paderborn, Germany)
I. Kátai (Budapest, Hungary)

Dedicated to Dr. Bui Minh Phong on his sixtieth birthday

Communicated by K.-H. Indlekofer
(Received November 25, 2012)

Abstract

Let \mathcal{P} be an infinite subset of primes, $$
\#\{p \leq x \mid p \in \mathcal{P}\}=(\tau+o(1)) \frac{x}{\log x} \quad(x \rightarrow \infty)
$$ \mathcal{N} be the multiplicative semigroup generated by \mathcal{P}. Distribution of the values of q-additive functions defined on \mathcal{N} is investigated.

1. Introduction

1.1. Let $\mathbb{N}, \mathbb{R}, \mathbb{C}$ be the set of natural, real, complex numbers respectively, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Let $e(x)=e^{2 \pi i x}, \omega(n)=$ number of distinct prime divisors of

[^0]$n, \Omega(n)=$ number of prime power divisors of n. If x is a positive real number then let $x_{1}=\log x, x_{k}=\log x_{k-1}, k=2,3, \ldots$. Let $\{x\}=$ fractional part of $x,\|x\|=\min (\{x\}, 1-\{x\})$. Let $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u$.
1.2. Let $q \geq 2$ be a fixed integer, $E=\{0,1, \ldots, q-1\}$ be the set of digits. Then every $n \in \mathbb{N}_{0}$ has a unique (q-ary) expansion, defined by
\[

$$
\begin{equation*}
n=\sum_{j=1}^{\infty} a_{j}(n) q^{j}, \quad a_{j}(n) \in E \tag{1.1}
\end{equation*}
$$

\]

The right hand side of (1.1) is clearly a finite sum, since $a_{j}(n)=0$ if $q^{j}>n$. A function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is said to be q-additive, if $f(0)=0$ and

$$
\begin{equation*}
f(n)=\sum_{j=0}^{\infty} f\left(a_{j}(n) q^{j}\right) \tag{1.2}
\end{equation*}
$$

holds for every $n \in \mathbb{N}_{0}$. The whole set of q-additive functions will be denoted by \mathcal{H}.
1.3. Let

$$
\begin{equation*}
M(x)=\sum_{k=0}^{N} m_{k}, \quad D^{2}(x)=\sum_{k=0}^{N} \sigma_{k}^{2} . \tag{1.5}
\end{equation*}
$$

1.4. Let $\mathcal{B}=\mathcal{B}_{x}$ be a set of positive integers up to x. The multiple occurrence of some numbers is allowed. Furthermore, let $B(x)$ be the number of elements in \mathcal{B}. For an arbitrary sequence of integers $(0 \leq) l_{1}<\ldots<l_{h}$ and $b_{1}, \ldots, b_{h} \in E$, let

$$
B\left(\begin{array}{l|l}
x & \begin{array}{l}
l_{1}, \ldots, l_{h} \\
b_{1}, \ldots, b_{h}
\end{array} \tag{1.6}
\end{array}\right)=\#\left\{n \leq x \mid n \in \mathcal{B}, a_{l_{j}}(n)=b_{j}, j=1, \ldots, h\right\} .
$$

1.5. Let

$$
\begin{align*}
\nu(n) & :=\frac{f(n)-M(x)}{D(x)}, \tag{1.7}\\
F_{x}(y) & :=\frac{1}{B(x)} \#\{n \in \mathcal{B}, \nu(n) \leq y\} . \tag{1.8}
\end{align*}
$$

Definition 1. We say that $\mathcal{B}=\mathcal{B}_{x}$ is a sequence of q-ary smooth sets of type α if $B(x) \gg \frac{x}{\log x}$, and

$$
\sup _{\substack{N^{\alpha} \leq l_{1}<\ldots<l_{h}<N-N^{\alpha} \tag{1.9}\\
b_{1}, \ldots, b_{h} \in E}}\left|q^{h} B\left(x \left\lvert\, \begin{array}{l}
l_{1}, \ldots, l_{h} \\
b_{1}, \ldots, b_{h}
\end{array}\right.\right)-B(x)\right| \leq c(h, \lambda) B(x) N^{-\lambda}
$$

holds for every fixed $\lambda>0, x \geq 2$.
Theorem 1. Let $f \in \mathcal{A}_{q}, f\left(b q^{j}\right)=\mathcal{O}(1)$ as $b \in E, j=0,1, \ldots$ Assume that $\frac{D(x)}{\log ^{\delta} x} \rightarrow \infty$ as x tends to infinity is satisfied for some $\delta>0$. Let \mathcal{B}_{x} be a q-ary smooth sequence of type $\alpha<\delta / 2$. Then

$$
\lim _{x \rightarrow \infty} F_{x}(y)=\Phi(y)
$$

holds for every y. Here

$$
\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-u^{2} / 2} d u
$$

Proof. Let $n \leq x$

$$
f_{\alpha}(n):=\sum_{N^{\alpha} \leq j \leq N-N^{\alpha}} f\left(a_{j}(n) q^{j}\right) .
$$

Since $f\left(b q^{j}\right)$ is bounded,

$$
\left|f_{\alpha}(n)-f(n)\right| \leq c N^{\alpha}
$$

holds. Let

$$
M_{\alpha}(x)=\sum_{N^{\alpha} \leq j \leq N-N^{\alpha}} m_{j}, \quad D_{\alpha}^{2}(x)=\sum_{N^{\alpha} \leq j \leq N-N^{\alpha}} \sigma_{j}^{2} .
$$

We have $\left|M(x)-M_{\alpha}(x)\right| \leq c N^{\alpha}, \quad\left|D_{\alpha}^{2}(x)-D^{2}(x)\right| \leq c N^{\alpha}$. Let

$$
\nu_{\alpha}(n)=\frac{f_{\alpha}(n)-M_{\alpha}(x)}{D_{\alpha}(x)} .
$$

We already defined $\nu(n)$ in (1.7). From the assumption we obtain that

$$
\max _{n \leq x}\left|\nu_{\alpha}(n)-\nu(n)\right| \rightarrow 0
$$

as $x \rightarrow \infty$. From the assumption (1.9) we deduce easily that

$$
\frac{1}{B(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}_{x}}} \nu_{\alpha}(n)^{k}-\frac{1}{x} \sum_{n \leq x} \nu_{\alpha}(n)^{k} \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty,
$$

and so

$$
\begin{equation*}
\frac{1}{B(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}_{x}}} \nu(n)^{k}-\frac{1}{x} \sum_{n \leq x} \nu(n)^{k} \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{1.10}
\end{equation*}
$$

for each $k \in \mathbb{N}_{0}$. One can prove easily that for $k \in \mathbb{N}_{0}$

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \nu(n)^{k}=\int_{-\infty}^{\infty} x^{k} d \Phi .
$$

(1.10) implies that

$$
\lim _{x \rightarrow \infty} \frac{1}{B(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}}} \nu(n)^{k}=\int_{-\infty}^{\infty} x^{k} d \Phi
$$

holds for every k. Therefore, our theorem directly follows from the FrechetShohat theorem. A more detailed argument can be found in [1].

2. Some auxiliary results

2.1.

Lemma 1 (Theorem of Davenport [2]). Let x be a positive integer, $1<$ $<U_{0}<U_{1}<x, 1 \leq Q \leq x,(a, Q)=1$. Let $\Theta_{1}(n, x), \Theta_{2}(r, x)$ be arbitrary functions, each of which is absolutely bounded. Then

$$
\begin{aligned}
& \sum_{U_{0}<n \leq U_{1}} \Theta_{1}(n, x) \sum_{1 \leq r \leq x / n} \Theta_{2}(r, n) e\left(\frac{a x r}{Q}\right)= \\
& \quad=\mathcal{O}\left(x \log ^{2} x \sqrt{\frac{1}{U_{0}}+\frac{U_{1}}{x}+\frac{1}{Q}+\frac{Q}{x}}\right) .
\end{aligned}
$$

2.2.

Lemma 2. Let $0<\Delta<\frac{1}{2 q}, \chi_{0}(x)=\sum_{m=-\infty}^{\infty} c_{m} e(m x)$ be a mod 1 periodic function such that $0 \leq \chi_{0}(x) \leq 1$,

$$
\chi_{0}(x)= \begin{cases}1, & \text { if } \Delta<\{x\}<\frac{1}{q}-\Delta \\ 0, & \text { if } \frac{1}{q}+\Delta<\{x\}<1-\Delta\end{cases}
$$

$c_{0}=\frac{1}{q}, c_{j q}=0$ when $j= \pm 1, \pm 2, \ldots$,

$$
\left|c_{m}\right| \leq \min \left(\frac{1}{q}, \frac{1}{\pi|m|}, \frac{1}{\Delta \pi^{2} m^{2}}\right)
$$

Let $\chi_{b}(x)=\chi_{0}\left(x-\frac{b}{q}\right)=\sum c_{m}^{(b)} e(m x)$. Then $\chi_{m}^{(b)}=c_{m} e\left(-\frac{m b}{q}\right)$, thus $\left|c_{m}^{(b)}\right|=$ $=\left|c_{m}\right|$.

This lemma is proved in [3].

2.3.

The Erdős-Turán inequality for the discrepancy of sequences $\bmod 1$

The discrepancy D_{M} of the real numbers $x_{1}, \ldots, x_{M} \bmod 1$ is defined by

$$
\begin{equation*}
\sup \left|\frac{1}{M} \#\left\{n \leq M \mid\left\{x_{n}\right\} \in[\alpha, \beta)\right\}-(\beta-\alpha)\right| \tag{2.1}
\end{equation*}
$$

where the supremum is taken for all intervals $[\alpha, \beta) \subset[0,1]$.

Lemma 3 ([4]). Let $\psi_{m}:=\sum_{e=1}^{M} e\left(m x_{l}\right)$. We have

$$
\begin{equation*}
D_{M} \leq c\left(\sum_{0<h \leq K} \frac{\left|\psi_{h}\right|}{h}+\frac{M}{K}\right) \tag{2.2}
\end{equation*}
$$

for any positive integer K. c is an absolute constant.

2.4.

The theorem of E. Wirsing

Lemma 4 ([5]). Let F be a multiplicative function satisfying the following conditions: $F(n) \geq 0(n \in \mathbb{N}) ; F\left(p^{\alpha}\right) \leq c_{1} c_{2}^{\alpha}, c_{2}<2$ for every prime p and $\alpha=2,3, \ldots$ Assume that

$$
\begin{equation*}
\sum_{p \leq x} F(p)=(\tau+o(1)) \frac{x}{\log x} \quad(x \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

where $\tau>0$ is a constant. Then, for $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{n \leq x} F(n)=\left(\frac{e^{-\gamma \tau}}{\Gamma(\tau)}+o(1)\right) \frac{x}{\log x} \prod_{p \leq x}\left(1+\frac{F(p)}{p}+\frac{F\left(p^{2}\right)}{p^{2}}+\cdots\right) \tag{2.4}
\end{equation*}
$$

Here Γ is the Euler's gamma function, and γ is the Euler's constant.
Analyzing the proof, one can see that the following variant of Wirsing's theorem remains true.

Lemma 5. Let F_{λ} be a family of multiplicative functions, satisfying the following conditions: $F_{\lambda}(n) \geq 0(n \in \mathbb{N}) ; F_{\lambda}\left(p^{\alpha}\right) \leq c_{1} c_{2}^{\alpha}, c_{2}<2$ for every prime p and $\alpha=2,3, \ldots$.

Let $\epsilon(x) \rightarrow 0(x \rightarrow \infty)$. Assume that

$$
\begin{equation*}
\left|\sum_{p \leq x} F_{\lambda}(p)-\tau_{\lambda} \frac{x}{\log x}\right| \leq \epsilon(x) \frac{x}{\log x} \tag{2.5}
\end{equation*}
$$

where $0<c_{3}<\tau_{\lambda}<c_{4}$, with c_{3}, c_{4} suitable positive constants. Then there exists a function $\epsilon_{1}(x) \rightarrow 0(x \rightarrow \infty)$ such that

$$
\begin{align*}
& \left|\sum_{n \leq x} F_{\lambda}(n)-\frac{e^{-\gamma \tau_{\lambda}}}{\Gamma(\tau)} \frac{x}{\log x} \prod_{p \leq x}\left(1+\frac{F_{\lambda}(p)}{p}+\frac{F_{\lambda}\left(p^{2}\right)}{p^{2}}+\cdots\right)\right| \leq \tag{2.6}\\
& \leq \epsilon_{1}(x) \frac{x}{\log x} \prod_{p \leq x}\left(1+\frac{F_{\lambda}(p)}{p}+\frac{F_{\lambda}\left(p^{2}\right)}{p^{2}}+\cdots\right) .
\end{align*}
$$

2.5.

Let \mathcal{P} be an infinite sequence of primes, \mathcal{N} be the multiplicative semigroup generated by \mathcal{P}. Let

$$
\pi_{\mathcal{P}}(x)=\#\{p \leq x \mid p \in \mathcal{P}\} ; \quad N_{\mathcal{P}}(x)=\#\{n \leq x \mid n \in \mathcal{N}\}
$$

Assume that

$$
\begin{equation*}
\pi_{\mathcal{P}}(x)=\tau \frac{x}{\log x}+o\left(\frac{x}{\log x}\right) \quad(x \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

where $0<\tau \leq 1$. Then, from the theorem of Wirsing we obtain that

$$
\begin{equation*}
N_{\mathcal{P}}(x)=\left(\frac{e^{-\gamma \tau}}{\Gamma(\tau)}+o(1)\right) \frac{x}{\log x} \prod_{\substack{p \leq x \\ p \in \mathcal{P}}} \frac{1}{1-1 / p} \quad(x \rightarrow \infty) \tag{2.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
R_{x}:=\sum_{\substack{p \leq x \\ p \in \mathcal{P}}} \frac{1}{p} . \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
R_{x}=(\tau+o(1)) \log \log x \quad(x \rightarrow \infty) \tag{2.10}
\end{equation*}
$$

Lemma 6. Let \mathcal{P} satisfy the condition (2.7). Then, there is a suitable sequence $\delta_{x} \rightarrow 0 \quad(x \rightarrow \infty)$ such that

$$
\begin{equation*}
\frac{1}{N(x) R_{x}} \sum_{\substack{\left|\omega(n)-R_{x}\right|>\delta_{x} R_{x} \\ n \leq x, n \in \mathcal{N}}} \omega(n) \rightarrow 0 \quad(x \rightarrow \infty) . \tag{2.11}
\end{equation*}
$$

Proof. Let F_{κ} be a family of multiplicative functions, defined on prime powers p^{α} as follows:

$$
F_{\kappa}\left(p^{\alpha}\right)= \begin{cases}e^{\kappa}, & \text { if } p \in \mathcal{P} \\ 0, & \text { if } p \notin \mathcal{P} .\end{cases}
$$

First we assume that κ is a small positive, later that it is a small negative number. Since

$$
\sum_{p \leq x} F_{\kappa}(p)=\left(e^{\kappa} \tau+o(1)\right) \frac{x}{\log x} \quad(x \rightarrow \infty)
$$

holds uniformly as κ varies in a bounded interval, furthermore

$$
F_{\kappa}(n) \omega(n) \leq 2 \sum_{\substack{m p=n \\ p \in \mathcal{P}, p<\sqrt{x}}} F_{\kappa}(m) e^{\kappa},
$$

by Lemma 5 we obtain that

$$
\begin{align*}
\sum_{\substack{n \leq x \\
n \in \mathcal{N}}} e^{\kappa \omega(n)} \omega(n) \leq & \sum_{\substack{p \leq \sqrt{x} \\
p \in \mathcal{P}}} e^{\kappa} \sum_{n \leq x / p} e^{\kappa \omega(n)} \leq \\
& \leq 2 e^{\kappa} \frac{e^{-\gamma e^{\kappa} \tau}}{\Gamma\left(e^{\kappa} \tau\right)} \frac{x}{\log x} R_{x} \prod_{\substack{p \leq x \\
p \in \mathcal{P}}}\left(1+\frac{e^{\kappa}}{p-1}\right)= \tag{2.12}\\
& =\frac{e^{-\gamma e^{\kappa} \tau}}{\Gamma\left(e^{\kappa} \tau\right)} \frac{x}{\log x} R_{x} \exp \left(e^{\kappa} R_{x}+b_{x}\right)
\end{align*}
$$

where b_{x} is bounded uniformly as $0 \leq \kappa \leq 1 / 10$, say. Since

$$
\begin{equation*}
\sum_{\substack{\omega(n)>\left(1+\delta_{x}\right) R_{x} \\ n \leq x, n \in \mathcal{N}}} \omega(n) \leq e^{-\kappa \delta_{x} R_{x}} \sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e^{\kappa\left(\omega(n)-R_{x}\right)} \omega(n), \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
N(x)=(1+o(1)) \frac{e^{-\gamma \tau}}{\Gamma(\tau)} \frac{x}{\log x} \exp \left(R_{x}+\mathcal{O}(1)\right) \quad(x \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

from (2.12), (2.13) we have that

$$
\begin{equation*}
\frac{1}{N(x) R_{x}} \sum_{\substack{\omega(n)>\left(1+\delta_{x}\right) R_{x} \\ n \leq x, n \in \mathcal{N}}} \omega(n) \leq c \exp \left(\left(-\kappa \delta_{x}-\kappa+e^{\kappa}-1\right) R_{x}\right) . \tag{2.14}
\end{equation*}
$$

c may depend on τ. Choose $\kappa=x_{4}^{-1}, \delta_{x}=2 \kappa$. We obtain, that (2.14) tends to zero.

Instead of proving that

$$
\begin{equation*}
\frac{1}{N(x) R_{x}} \sum_{\substack{\omega(n)<\left(1-\delta_{x}\right) R_{x} \\ n \in \mathcal{N}, n \leq x}} \omega(n) \rightarrow 0 \quad(x \rightarrow \infty) \tag{2.15}
\end{equation*}
$$

we shall show that

$$
\frac{1}{N(x)} \#\left\{n \leq x \mid \omega(n)<\left(1-\delta_{x}\right) R_{x}, n \in \mathcal{N}\right\} \rightarrow 0 \quad(x \rightarrow \infty)
$$

To prove this we choose $F_{-\kappa}$ instead of F_{κ}, and argue as earlier. We have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} F_{-\kappa}(n)=\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e^{-\kappa \omega(n)}=\left(\frac{e^{-\gamma \tau e^{-\kappa}}}{\Gamma\left(\tau e^{-\kappa}\right)}+o(1)\right) \frac{x}{\log x} \prod_{\substack{p \leq x \\ p \in \mathcal{P}}}\left(1+\frac{e^{-\kappa}}{p-1}\right) . \tag{2.16}
\end{equation*}
$$

Since $e^{-\kappa\left(\omega(n)-\left(1-\delta_{x}\right) R_{x}\right)} \geq 1$ if $\omega(n)<\left(1-\delta_{x}\right) R_{x}$, therefore

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{N} \\ \omega(n)<\left(1-\delta_{x}\right) R_{x}}} 1 \leq e^{\left(1-\delta_{x}\right) R_{x} \kappa} \sum_{\substack{n \leq x \\ n \in \mathcal{N}}} F_{-\kappa}(n) .
$$

Arguing as earlier, by using (2.16) we can get the relation (2.15).
2.6.

Lemma 7. Let \mathcal{P}, \mathcal{N} be as in Section 2.5. For every K let $p_{1}<\ldots<p_{T}$ be a finite sequence of primes from \mathcal{P}. Let $\mathcal{P}_{K}=\left\{p_{1}, \ldots, p_{T}\right\}$, and let

$$
\omega_{\mathcal{P}_{K}}(n)=\sum_{\substack{p \mid n \\ p \in \mathcal{P}_{K}}} 1, \quad A_{K}=\sum_{j=1}^{T} \frac{1}{p_{j}}, \quad A_{K}>K .
$$

Then

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{1}{N(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}}}\left|\omega_{\mathcal{P}_{K}}(n)-A_{K}\right| \leq \sqrt{A_{K}} \tag{2.17}
\end{equation*}
$$

Proof. Since

$$
N\left(\frac{x}{p}\right)=\#\{n \leq x|n \in \mathcal{N}, p| n\}
$$

and from the theorem of E. Wirsing (Lemma 4) one can get easily that

$$
N\left(\frac{x}{p}\right)=\frac{1}{p} N(x)+o(N(x)) \quad(x \rightarrow \infty)
$$

we obtain that

$$
\begin{aligned}
& \sum_{\substack{n \leq x \\
n \in \mathcal{N}}} \omega_{\mathcal{P}_{K}}(n)=A_{K} N(x)+o(N(x)) \quad(x \rightarrow \infty) \\
& \sum_{\substack{n \leq x \\
n \in \mathcal{N}}} \omega_{\mathcal{P}_{K}}^{2}(n)=\left(A_{K}^{2}+A_{K}-\sum_{p \in \mathcal{P}_{K}} \frac{1}{p^{2}}\right) N(x)+o(N(x)) \quad(x \rightarrow \infty)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
n \in \mathcal{N}}}\left(\omega_{\mathcal{P}_{K}}(n)-A_{K}\right)^{2}= & \left(A_{K}^{2}+A_{K}-\sum_{p \in \mathcal{P}_{K}} \frac{1}{p^{2}}-2 A_{K}^{2}+A_{K}^{2}\right) N(x)+ \\
& +o(N(x)) \quad(x \rightarrow \infty)
\end{aligned}
$$

whence

$$
\begin{aligned}
\frac{1}{N(x)} \sum_{\substack{n \leq x \\
n \in \mathcal{N}}}\left|\omega_{\mathcal{P}_{K}}(n)-A_{K}\right| & \leq \frac{1}{\sqrt{N(x)}}\left\{\sum_{\substack{n \leq x \\
n \in \mathcal{N}}}\left|\omega_{\mathcal{P}_{K}}(n)-A_{K}\right|^{2}\right\}^{1 / 2} \leq \\
& \leq \sqrt{A_{K}}+o(1) \quad(x \rightarrow \infty),
\end{aligned}
$$

and so our assertion holds.

2.7.

Let \mathcal{N} be as in 2.5. From the theorem of Wirsing (see Lemma 4) we obtain that

$$
N\left(\frac{x}{y}\right) \leq \frac{c N(x)}{y}
$$

holds for $1 \leq y \leq \sqrt{x}$. Let

$$
\begin{equation*}
\omega_{1}(n):=\sum_{\substack{p \mid n \\ p \in \mathcal{P} \\ p<\exp \left((\log x)^{\epsilon x}\right)}} 1 \tag{2.18}
\end{equation*}
$$

where $\epsilon_{x} \rightarrow 0$ as $x \rightarrow \infty$. Hence we obtain that

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} \omega_{1}(n)<c \epsilon_{x} R_{x} N(x)
$$

For some $n \in \mathcal{N}$ consider all possible representations $n=p m$, where $p \in \mathcal{P}$. Let

$$
\omega_{2}(n)=\sum_{\substack{n=p m \\ m \leq x \in x}} 1 .
$$

Then

$$
\begin{aligned}
& \sum_{\substack{n \leq x \\
n \in \mathcal{N}}} \omega_{2}(n) \leq \sum_{\substack{m \leq x \in x \\
m \in \mathcal{N}}} \pi_{P}\left(\frac{x}{m}\right) \leq \frac{c \tau x}{\log x} \sum_{\substack{m \leq \epsilon^{\prime} x_{x} \\
m \in \mathcal{N}}} \frac{1}{m} \leq \\
\leq & \frac{c \tau x}{\log x} \prod_{\substack{p \leq \leq \epsilon_{x} \\
p \in \mathcal{P}}} \frac{1}{1-1 / p} \leq \frac{c \tau x}{\log x} \exp \left(\sum_{\substack{p<\epsilon_{x} \epsilon_{x} \\
p \in \mathcal{P}}} \frac{1}{p}\right) .
\end{aligned}
$$

Hence we have that

$$
\begin{equation*}
\frac{1}{N(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}}} \omega_{2}(n) \rightarrow 0 \quad(x \rightarrow \infty) . \tag{2.19}
\end{equation*}
$$

3. Formulation and proof of Theorem 2

3.1.

Theorem 2. Let \mathcal{N} be as in 2.5. Assume that $f \in \mathcal{A}_{q}, f\left(b q^{j}\right)=$ $=\mathcal{O}(1) \quad(b \in E, j=0,1, \ldots)$. Assume furthermore that there is a constant $\lambda>0$ for which $D(x) / \log ^{\lambda} x \rightarrow \infty(x \rightarrow \infty)$. Let

$$
F_{x}(y)=\frac{1}{N(x)} \#\{\nu(n)<y, n \in \mathcal{N}, n \leq x\}
$$

Then

$$
\lim _{x \rightarrow \infty} F_{x}(y)=\Phi(y)
$$

3.2.

Proof of Theorem 2

Let $y \in \mathbb{R}$ be fixed. Let $n_{1}<\ldots<n_{s}(\leq x)$ be the set all of the integers in \mathcal{N} up to x, for which $\nu(n)<y$. Thus $F_{x}(y)=s / N(x)$. Let

$$
\mathcal{H}_{x}=\mathcal{H}=\#\left\{\{m, p\}, p \in \mathcal{P}, m \in \mathcal{N}, m>x^{\epsilon_{x}}, p>e^{(\log x)^{\epsilon_{x}}}, m p<x\right\}
$$

Let Z be the number of those $\{m, p\} \in \mathcal{H}$ for which $\nu(m p)<y$. It is clear that

$$
Z \leq \omega\left(n_{1}\right)+\cdots+\omega\left(n_{s}\right) \leq\left(1+\delta_{x}\right) R_{x} s+\sum_{\substack{n \leq x \\ n \in \mathcal{N} \\ \omega(n)>\left(1+\delta_{x}\right) R_{x}}} \omega(n) .
$$

From Lemma 6 we obtain that

$$
\frac{Z}{R_{x}} \leq\left(1+\delta_{x}\right) s+o(N(x)) \quad(x \rightarrow \infty)
$$

Similarly

$$
Z \geq\left(1-\delta_{x}\right) R_{x} s-\sum_{\omega(n)<\left(1-\delta_{x}\right) R_{x}} \omega(n)-\Sigma_{1}-\Sigma_{2},
$$

where in Σ_{1} we sum over those $\{m, p\}$ for which $m<x^{\epsilon_{x}}, m \in \mathcal{N}, p \in \mathcal{P}$ and in Σ_{2} over those for which $p<e^{(\log x)^{\epsilon x}}, p \in \mathcal{P}$ and $m \in \mathcal{N}$. As we have seen in 2.7.

$$
\Sigma_{1}+\Sigma_{2}=o\left(R_{x} N(x)\right) \quad(x \rightarrow \infty)
$$

and Lemma 6 implies that

$$
\sum_{\substack{\omega(n)<\left(1-\delta_{x}\right) R_{x} \\ n \leq x \\ n \in \mathcal{N}}} \omega(n)=o\left(R_{x} N(x)\right) \quad(x \rightarrow \infty) .
$$

Thus we have

$$
\frac{Z}{R_{x}} \geq s\left(1-\delta_{x}\right)+o_{x}(N(x)) \quad(x \rightarrow \infty)
$$

Let $H(x)=\# \mathcal{H}_{x}$. Let $(1 \leq) l_{1}<\ldots<l_{h} \leq N, \quad b_{1}, \ldots, b_{h} \in E$ and

$$
H\left(\begin{array}{l|c}
x & \begin{array}{c}
l_{1}, \ldots, l_{h} \\
b_{1}, \ldots, b_{h}
\end{array}
\end{array}\right):=\#\left\{\{m, p\} \in \mathcal{H}_{x}, \varepsilon_{l_{j}}(m p)=b_{j}, j=1, \ldots, h\right\} .
$$

We can prove that for every fixed h, and every $\alpha>0$

$$
\max _{\substack{N^{\alpha} \leq l_{1}<\ldots<l_{h}<N-N^{\alpha} \tag{3.1}\\
b_{1}, \ldots, b_{h} \in E}}\left|q^{h} H\left(x \left\lvert\, \begin{array}{c}
l_{1}, \ldots, l_{h} \\
b_{1}, \ldots, b_{h}
\end{array}\right.\right)-H(x)\right| \leq c(h, \lambda) H(x) N^{-\lambda}
$$

holds for every fixed λ.
The proof is very similar to that of the theorem in [1]. Let

$$
\begin{aligned}
U & :=[1-\Delta, 1] \cup \stackrel{q-1}{\cup}\left[\frac{b}{q}-\Delta, \frac{b}{q}+\Delta\right] \cup[0, \Delta] \\
E_{j} & :=\#\left\{\{m, p\} \in \mathcal{H}_{x}, \quad\left\{\frac{m p}{q^{j+1}}\right\} \in U\right\},
\end{aligned}
$$

further

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{h}\right) & :=\phi_{b_{1}}\left(x_{1}\right) \cdots \phi_{b_{h}}\left(x_{h}\right), \\
t(y) & :=F\left(\frac{y}{q^{l_{1}+1}}, \ldots, \frac{y}{q^{l_{h}+1}}\right) .
\end{aligned}
$$

Let

$$
V=\left[\frac{1}{q^{l_{1}+1}}, \ldots, \frac{1}{q^{l_{h}+1}}\right],
$$

\mathcal{M} the whole set of vectors

$$
M=\left[m_{1}, \ldots, m_{h}\right]
$$

with integer entries. Let

$$
V M=\frac{A_{M}}{H_{M}}, \quad\left(A_{M}, H_{M}\right)=1
$$

It is clear that

$$
t(y)=\sum_{M \in \mathcal{M}} T_{M} e(M V y)
$$

where $\left|T_{M}\right|=\left|c_{m_{1}}\right| \cdots\left|c_{m_{h}}\right|, \quad T[0, \ldots, 0]=\frac{1}{q^{h}}$.
We have

$$
\begin{align*}
& \left|H\left(x \left\lvert\, \begin{array}{c}
l_{1}, \ldots, l_{h} \\
b_{1}, \ldots, b_{h}
\end{array}\right.\right)-\frac{1}{q^{h}} H(x)\right| \leq \\
\leq & \sum_{M \neq 0}\left|T_{M}\right|\left|\sum_{\{m, p\} \in \mathcal{H}_{x}} e\left(\frac{A_{M}}{H_{M}} m p\right)\right|+E_{l_{1}}+\cdots+E_{l_{h}} . \tag{3.2}
\end{align*}
$$

If M is such a vector for which $q \mid m_{j}$ for some j, then $T_{M}=0$. Let $M=$ $=\left[m_{1}, \ldots, m_{h}\right], q \nmid m_{h}$. Then

$$
H_{M}\left(m_{h}+q^{l_{h}-l_{h-1}} m_{h-1}+\cdots+m_{1} q^{l_{h}-l_{1}}\right)=A_{M} q^{l_{h}+1}
$$

Let $q=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}$ be the prime decomposition of q. Since $\left.q\right\rangle m_{h}$, there exists a p_{t} for which $p_{t}^{e_{t}} \gamma m_{h}$. Thus there exists an $\eta>0$ depending only on q such that $H_{M} \geq q^{\eta l_{h}} \geq q^{\eta N^{\alpha}}$. On the other hand $H_{M} \leq q^{l_{h}+1}<c x q^{-N^{\alpha}}$.

By using the Davenport theorem (Lemma 4) we obtain that

$$
\sum_{\{m, p\} \in \mathcal{H}_{x}} e\left(\frac{A_{M}}{H_{M}} m p\right) \ll H(x) \log ^{-B} x
$$

holds for every fixed B. The constant implied by \ll on the right hand side does not depend on M. One can observe also that (see [1])

$$
\sum\left|T_{M}\right| \leq\left(2+2 \log \frac{1}{\Delta}\right)^{h}
$$

Finally we can estimate E_{j} by using the Erdős-Turán inequality (Lemma 3) for the discrepancy. Let

$$
\psi_{k}:=\sum_{\{m, p\} \in \mathcal{H}_{x}} e\left(k m p \frac{1}{q^{l_{j}+1}}\right) .
$$

Then

$$
\left|E_{j}\right| \leq(2 q \Delta) H(x)+c \sum_{k=1}^{T} \frac{\left|\psi_{k}\right|}{k}+\frac{c H(x)}{T}
$$

where c is an absolute constant, T is arbitrary. Let K be an arbitrary large constant,

$$
T=\left[\log ^{K} x\right], \quad \Delta=\frac{1}{T}
$$

By the theorem of Davenport we obtain that $\max _{1 \leq k \leq T}\left|\psi_{k}\right| \leq H(x) \log ^{-K} x$ say.
Hence we obtain (3.2). Our sequence \mathcal{H}_{x} is q-ary smooth of type α for every $\alpha>0$, therefore Theorem 1 can be applied for every α. The proof of Theorem 2 is complete.

4. A remark to a theorem of H. Daboussi

4.1.

The famous theorem of H . Daboussi [7, 8] asserts that if α is an irrational number, \mathcal{M}_{1} be the set of complex valued multiplicative functions f satisfying the condition $|f(n)| \leq 1(n \in \mathbb{N})$, then

$$
\sup _{f \in \mathcal{M}_{1}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e(n \alpha)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

There are a lot of generalizations of this theorem, see e.g. [9, 11].
Theorem 3. Let \mathcal{P}, \mathcal{N} be as in 2.5. Let α be an irrational number for which

$$
\min _{1 \leq k \leq \log ^{B} x}\|k \alpha\|>\frac{\log ^{B} x}{x}
$$

holds for every B and $x>x_{0}(B)$. Then

$$
\begin{equation*}
\sup _{f \in M_{1}} \frac{1}{N(x)}\left|\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} f(n) e(n \alpha)\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty . \tag{4.1}
\end{equation*}
$$

4.2.

Proof of Theorem 3

We shall prove only that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N(x)}\left|\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e(\alpha n k)\right|=0 \tag{4.2}
\end{equation*}
$$

for every $k \in \mathbb{N}, k \neq 0$. The deduction of (4.1) from (4.2) can be done in the same way as which was used in [10].

Let $\tau=\frac{x}{\log ^{B} x}$. Then there is an integer Q such that $Q \leq \tau$, and $\|Q \alpha\|<\frac{1}{\tau}$. Due to the the condition of the theorem $Q \geq \log ^{2 B} x$, consequently for a suitable integer A,

$$
\left|\alpha-\frac{A}{Q}\right|<\frac{1}{Q \tau} \leq \frac{1}{x \log ^{B} x},
$$

$(A, Q)=1$ and so

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e(\alpha n k)=\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e\left(\frac{A k}{Q} n\right)+\mathcal{O}\left(\frac{k N(x)}{\log ^{B} x}\right) .
$$

To prove (4.2) we shall estimate

$$
S=\sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e\left(\frac{A k n}{Q}\right)
$$

By using Lemma 6, it is enough to prove that

$$
\frac{1}{R_{x} N(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{N}}} e\left(\frac{A k n}{Q}\right) \omega(n) \rightarrow 0 \quad(x \rightarrow \infty)
$$

and by repeating the argument used in 2.7 that

$$
\begin{equation*}
\frac{1}{\# \mathcal{H}_{x}} \sum_{\{m, p\} \in \mathcal{H}_{x}} e\left(\frac{A k m p}{Q}\right) \rightarrow 0 \quad(x \rightarrow \infty) . \tag{4.3}
\end{equation*}
$$

(4.3) follows from the theorem of Davenport.

We note that Lemma 7 is a tool to deduce the theorem from (4.3).

References

[1] Kátai, I., Distribution of digits of primes in q-ary canonical form, Acta Math. Hungar., 47 (1986), 341-359.
[2] Davenport, H., On some infinite series involving arithmetical functions II., Quart. J. Math., 8 (1937), 313-320.
[3] Bassily, N.L. and Kátai, I., Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar., 68 (1995), 353361.
[4] Erdős, P. and Turán, P., On a problem in the theory of uniform distributions I, II., Indagationes Math., 10 (1948), 370-378, 406-413.
[5] Wirsing, E., Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann., 143 (1) (1961), 75-102.
[6] Frechet, M., and Shohat, A., A proof of the generalized second limit theorem in the theory of probability, Trans. Amer. Math. Soc., 33 (1931), 533-544.
[7] Daboussi, H. and Delange, H., Quelques proprietés des fonctions multiplicatives de module au plus égal à 1, C.R. Acad. Sci. Paris, Serie $A, 178$ (1974), 657-660.
[8] Daboussi, H. and Delange, H., On multiplicative arithmetical functions whose module does not exceed one, J. London Math. Soc., 26 (1982), 245-264.
[9] Kátai, I., A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), 223-225.
[10] Kátai, I., On the distribution $\bmod 1$ of $\alpha \sigma(n)$, Publ. Math. Debrecen, 77 (1-2) (2010), 1-14.
[11] Kátai, I., Some remarks on a theorem of H. Daboussi, Mathematica Pannonica, 19 (2008), 71-80.

I. Kátai

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary katai@compalg.inf.elte.hu

L. Germán

Faculty of Computer Science,
Electrical Engineering and Mathematics
University of Paderborn
Warburger Straße 100
D-33098 Paderborn, Germany
laszlo@math.uni-paderborn.de

[^0]: The project is supported by the European Union and co-financed by the European Social Fund (grant agreement TAMOP 4.2.1/B/09/1/KMR/2010/ 0003) and the second author is partly supported by the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

 Mathematics Subject Classification: 11L07, 11A63

