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Abstract. In this paper we discuss the uniqueness problem for p-adic

meromorphic functions, and prove a version of the Hayman conjecture for

p-adic meromorphic functions.

1. Introduction

The problem of determining a meromorphic (or entire) function on C by
its single pre-images (counting or ignoring multiplicities) of finite sets is an
important one and it has been studied by many mathematicians. For instance,
in 1921 G. Polya showed that an entire function on C is determined by the
inverse images, counting multiplicities, of three distinct non-omitted values.
In 1926, R. Nevanlinna showed that a meromorphic function on the complex
plane is uniquely determined by the inverse images, ignoring multiplicities, of
5 distinct values.
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In [15] Hayman proved the following well-known result:

Theorem A. Let f be a meromorphic function on C. If f(z) 6= 0 and
f (k)(z) 6= 1 for some fixed positive integer k and for all z ∈ C, then f is
constant.

Hayman also proposed the following conjecture (see [15]).

Hayman Conjecture. If an entire function f satisfies fn(z)f
′
(z) 6= 1

for a positive integer n and all z ∈ C, then f is a constant.

It has been verified for transcendental entire functions by Hayman himself
for n > 1 ([15]), and by Clunie for n ≥ 1 ([6]). These results and some
related problems caused increasing attention to the value sharing problem of
meromorphic functions and their derivatives (see [2], [5], [17], [18]).

In 1997 Yang and Hua [24] studied the unicity problem for meromorphic
functions and differential monomials of the form fnf

′
, when they share only

one value, and obtained the following theorem.

Theorem B. Let f and g be two non-constant meromorphic functions, let
n ≥ 11 be an integer, and a ∈ C be a non-zero finite value. If fnf

′
and gng

′

share the value a CM, then either f ≡ dg for some (n + 1)-th root of unity d,
or f = c1e

cz and g = c2e
−cz for three non-zero constants c1, c2 and c such that

(c1c2)n+1c2 = −a2.

Recently, there has been an increasing interest in studying value sharing
and uniqueness for meromorphic functions in a non-Archimedean field (see, for
example, [4], [11-12], [19-22]). In [19] J. Ojeda proved that for a transcendental
meromorphic function f in an algebraically closed field of characteristic zero,
complete for a non-Archimedean absolute value K, the function f

′
fn − 1 has

infinitely many zeros, if n ≥ 2. In [11] Ha Huy Khoai and Vu Hoai An estab-
lished a similar result for a differential monomial of the form fn(f (k))

m
, where

f is a meromorphic function in Cp. K. Boussaf, A. Escassut, J. Ojeda ([4])
studied the unicity problem for p-adic meromorphic functions f

′
P
′
(f), g

′
P
′
(g)

sharing a small function.

Now let K be an algebraically closed field of characteristic zero, complete
for a non-Archimedean absolute value. We denote by A(K) the ring of entire
functions in K, by M(K) the field of meromorphic functions, i.e., the field of
fractions of A(K), and K̂ = K∪ {∞}. In recent years, many interesting results
on the value sharing problem for meromorphic functions in K were obtained
(see, for example, [12], [16]).
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Let us first recall some basic definitions. For f ∈ M(K) and S ⊂ K̂, we
define

Ef (S) =
⋃

a∈S

{(z, m) | f(z) = a with multiplicity m}.

Let F be a nonempty subset of M(K). Two functions f, g of F are said to
share S, counting multiplicity (share S CM), if Ef (S) = Eg(S). In this paper
we prove a version of the Hayman conjecture for p-adic meromorphic functions
of the form (fn)(k), and discuss the uniqueness problem for p-adic meromorphic
functions (fn)(k), (gn)(k).

Namely, we prove the following theorems.

Theorem 1.1. (A version of the Hayman conjecture for p-adic meromor-
phic functions of the form (fn)(k).) Let f be a meromorphic function on K,
satisfying the condition (fn)(k)(z) 6= 1 for all z ∈ K and for some positive
integers n, k. Then f is a constant function if one of the following conditions
holds:

1. f is an entire function, and n ≥ k + 1.

2. n ≥ k + 2.

From Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let f be a meromorphic function on K, satisfying the
condition (fn)

′
(z) 6= 1 for all z ∈ K and for some positive integers n. Then f

is a constant function if one of the following conditions holds:
1. f is an entire function, and n ≥ 2.

2. n ≥ 3.

Remark. Indeed, in [19], Theorem 3 shows that f
′
+ f4 has at least one

zero that is not a zero of f , where f is a non-constant function. Hence setting
g(x) = 1

f(x) , we can check that g2g
′

takes the value 1 at least one time. By

g2g
′
= 1

3 (g3)
′
, we see that (g3)

′
takes the value 1 at least one time. So the case

n = 3, k = 1 of Theorem 1.1 has been established in [19].

Theorem 1.3. (A version of Yang and Hua’s Theorem B for p-adic
meromorphic functions of the form (fn)(k).) Let f, g be two transcendental
meromorphic functions on K, n, k be positive integers, n ≥ 3k + 8, and let
E(fn)(k)(1) = E(gn)(k)(1). Then f = cg with cn = 1, c ∈ K.

The main tool of the proof is the p-adic Nevanlinna theory (see [8-13],
[16]). Therefore, in the next section we first establish some properties of the
characteristic functions of non-Achimedean meromorphic functions.
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2. Value distribution of non-Archimedean meromorphic functions

Throughout this paper, K will denote an algebraically closed field of
characteristic zero, complete for a non-trivial non-Archimedean absolute value
denoted by | . |, and log be a real logarithm function of base ρ > 1, and ln be
a real logarithm function of base e.

1. Counting functions of a non-Archimedean entire function (see
[16, pp.21-23], [3], [7-13])

Let f be a non-constant entire function on K and b ∈ K. Then we can
write f in the form

f =
∞∑

n=q

bn(z − b)n

with bq 6= 0 and we put ω0
f (b) = q.

For a point a ∈ K we define the function ωa
f : K→ N by ωa

f (b) = ω0
f−a(b).

Fix a real number ρ0 with 0 < ρ0 ≤ r. Take a ∈ K and we denote the
counting function of zeroes of f−a counting multiplicity in the disk Dr = {z ∈
∈ K : |z| ≤ r}, i.e. we set

Nf (a, r) =
1

ln ρ

r∫

ρ0

nf (a, x)
x

dx,

where nf (a, x) is the number of the solutions of the equation f(z) = a (counting
multiplicity), in the disk Dx = {z ∈ K : |z| ≤ x}. If a = 0, then set Nf (r) =
= Nf (0, r).

For l a positive integer, set

Nl,f (a, r) =
1

ln ρ

r∫

ρ0

nl,f (a, x)
x

dx, where nl,f (a, r) =
∑

|z|≤r

min
{
ωa

f (z), l
}
.

Let k be a positive integer. Define the function ω≤k
f from K into N by

ω≤k
f (z) =





0 if ω0
f (z) > k,

ω0
f (z) if ω0

f (z) ≤ k,
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and
n≤k

f (r) =
∑

|z|≤r

ω≤k
f (z), n≤k

f (a, r) = n≤k
f−a(r).

Define

N≤k
f (a, r) =

1
ln p

r∫

ρ

n≤k
f (a, x)

x
dx.

If a = 0, then set N≤k
f (r) = N≤k

f (0, r).
Set

N≤k
l,f (a, r) =

1
ln p

r∫

ρ

n≤k
l,f (a, x)

x
dx,

where
n≤k

l,f (a, r) =
∑

|z|≤r

min
{
v≤k

f−a(z), l
}
.

In a like manner to used, for non-constant entire function on K we define

N<k
f (a, r), N<k

l,f (a, r), N>k
f (a, r), N≥k

f (a, r), N≥k
l,f (a, r), N>k

l,f (a, r).

2. Characteristic functions of a non-Achimedean meromorphic
function (see [16, pp.33-46],[ 3], [7-13])

Recall that for a non-constant entire function f(z) on K, represented by
the power series

f(z) =
∞∑

n=0

anzn,

for each r > 0, we define |f |r = max{|an|rn, 0 ≤ n < ∞}.

Now let f =
f1

f2
be a non-constant meromorphic function on K, where

f1, f2 are entire functions on K having no common zeros, we set |f |r = |f1|r
|f2|r .

For a point a ∈ K ∪ {∞} we define the function ωa
f : K→ N by ωa

f (b) =
= ω0

f1−af2
(b) with a 6= ∞ and ω∞f (b) = ω0

f2
(b).

Take a ∈ K. We denote the counting function of zeroes of f − a, counting
multiplicity, in the disk Dr = {z ∈ K : |z| ≤ r}, i.e. we set

Nf (a, r) = Nf1−af2(r), and set Nf (∞, r) = Nf2(r).
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In a like manner to used, for non-constant meromorphic function on K we
define

Nl,f (a, r), N≤k
f (a, r), N<k

f (a, r), N<k
l,f (a, r),

N>k
f (a, r), N≥k

f (a, r), N≥k
l,f (a, r), N>k

l,f (a, r).

Define the compensation function of f, by

mf (∞, r) = max
{
0, log |f |r

}
,

and set
mf (a, r) = m 1

f−a
(∞, r),

and the characteristic function of f, by

Tf (r) = mf (∞, r) + Nf (∞, r).

Then we have

Nf (a, r) + mf (a, r) = Tf (r) + O(1) with a ∈ K ∪ {∞},

Tf (r) = T 1
f
(r) + O(1),

Tf (r) = max
1≤i≤2

log |fi|r + O(1), |f (k)|r ≤ |f |r
rk

, m f(k)
f

(∞, r) = O(1).

The following lemmas were proved in [16, pp.21] (see also [10], [13]).

Lemma 2.1. Let f be a non-constant entire function on K. Then

Tf (r)− Tf (ρ0) = Nf (0, r),

where 0 < ρ0 ≤ r.

Notice that Nf (r) depends on fixed ρ0.

Lemma 2.2. Let f be a non-constant meromorphic function on K and let
a1, a2, ..., aq be distinct points of K. Then

(q − 1)Tf (r) ≤ N1,f (∞, r) +
q∑

i=1

N1,f (ai, r)− log r + O(1).
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Let f be a meromorphic function on K. By Sf (r) we denote an arbitrary
term of the form o(Tf (r)) for r →∞. A meromorphic function f on K is called
a transcendental meromorphic function if

lim
r→∞

Tf (r)
log r

= ∞.

For two non-constant meromorphic functions f, g onK we denote by Nf (0, r; g 6=
6= 0) the counting function of those zeros of f which are not the zeros of g,
where a zero of f is counted according to its multiplicity.

3. The Hayman-conjecture and the uniqueness problem for p-adic
meromorphic functions of the form (fn)(k)

We are going to prove Theorem 1.1, Theorem 1.3. We need the following
lemmas.

Lemma 3.1. Let f be a non-constant meromorphic function on K, n, k be
positive integers, n > k, and let a be a pole of f . Then

(fn)(k)(z) =
ϕk(z)

(z − a)np+k
,

where ϕk(z) is a holomorphic function in a neighborhood of a,

p = ω∞f (a), ϕk(a) 6= 0.

Proof. Since a is a pole of f we obtain

fn(z) =
ϕ(z)

(z − a)np
, p = ω∞f (a), ϕ(a) 6= 0.

Now we prove by induction. With k = 1 we have

(fn)(1)(z) =
(

ϕ(z)
(z − a)np

)′
=

ϕ′(z − a)− npϕ

(z − a)np+1
.
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Set ϕ1(z) = ϕ
′
(z − a)− npϕ. Then

(fn)(1)(z) =
ϕ1(z)

(z − a)np+1
, ϕ1(a) 6= 0.

Assume

(fn)(k)(z) =
ϕk(z)

(z − a)np+k
, ϕk(a) 6= 0.

We have

(fn)(k+1)(z) = ((fn)(k))′(z) =
(

ϕk(z)
(z − a)np+k

)′
=

ϕ
′
k(z − a)− (np + k)ϕk(z)

(z − a)np+k+1
.

Set
ϕk+1(z) = ϕ

′
k(z − a)− (np + k)ϕk(z).

Then

(fn)(k+1)(z) =
ϕk+1(z)

(z − a)np+k+1
, ϕk+1(a) 6= 0.

Lemma 3.1 is proved.

Lemma 3.2. Let f be a non-constant meromorphic function on K, n, k
be positive integers, n > k, and let a, b be a pole and a zero of f, respectively.
Then

1.
(fn)(k)(z)
fn−k(z)

=
hk(z)

(z − a)pk+k
, where p = ω∞f (a), hk(a) 6= 0;

2.
(fn)(k)(z)
fn−k(z)

= (z − b)(m−1)kSk(z), where m = ω0
f (b), Sk(b) 6= 0.

Proof. 1. Since a is a pole of f we obtain

f(z) =
h(z)

(z − a)p
, h(a) 6= 0, (fn)(k)(z) =

ϕk(z)
(z − a)np+k

, ϕk(a) 6= 0,

fn−k(z) =
hn−k(z)

(z − a)p(n−k)
.

Thus
(fn)(k)(z)
fn−k(z)

=
hk(z)

(z − a)pk+k
, hk(z) =

ϕk(z)
hn−k(z)

, hk(a) 6= 0.

2. Since b is a zero of f we obtain

f(z) = (z − b)ml(z), l(b) 6= 0, fn(z) = (z − b)mnln(z),
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(fn)(k)(z) = (z − b)mn−klk(z), lk(b) 6= 0, fn−k(z) = (z − b)m(n−k)ln−k(z).

So

(fn)(k)(z)
fn−k(z)

= (z − b)(m−1).kSk(z), Sk(z) =
lk(z)

ln−k(z)
, Sk(b) 6= 0.

Lemma 3.2 is proved.

Lemma 3.3. Let f be a non-constant meromorphic function on K and
n, k be positive integers, n ≥ k + 1. Then

Tf (r) ≤ T(fn)(k)(r) + O(1),

in particular, (fn)(k) is non-constant.

Proof. Set A = (fn)(k) − 1. Then we have

A + 1 = (fn)(k) = fn−kP,

Nf (0, r) ≤ NA+1(0, r),
1
fn

=
1

fn−k

1
fk

=
1

A + 1
P

fk
.

Moreover,

m P

fk
(∞, r) = m fn−kP

fn
(∞, r) = m (fn)(k)

fn

(∞, r) = O(1).

Therefore,
mf (0, r) ≤ nmf (0, r) = mfn(0, r) =

= m 1
fn

(∞, r) ≤ m 1
A+1

(∞, r) + O(1) = mA+1(0, r) + O(1).

Thus,

Tf (r) = Nf (0, r) + mf (0, r) ≤ NA+1(0, r) + mA+1(0, r) = T(fn)(k) + O(1).

From this, and because f is non-constant, it follows that (fn)(k) is non-
constant. Lemma 3.3 is proved.

Lemma 3.4. Let f be a non-constant meromorphic function on K and
n, k be positive integers, n ≥ k + 2, a ∈ K, a 6= 0. Then

n− k − 2
n + k

Tf (r) ≤ N1,(fn)(k)(a, r)− log r + O(1).
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Proof. Since n ≥ k + 2 we have n−k−2
n+k ≥ 0. Because n ≥ k + 2, from

Lemma 3.3 it follows that (fn)(k) is not constant.

Applying Lemma 2.2 to (fn)(k) with the values ∞, 0 and a, we obtain

T(fn)(k)(r) ≤ N1,(fn)(k)(∞, r) + N1,(fn)(k)(0, r) + N1,(fn)(k)(a, r)− log r + O(1).

Denote by Nf(k)(0, r; f 6= 0) the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to
its multiplicity. Write (fn)(k) = fn−kP. Then

P

fk
=

(fn)(k)

fn
.

We see that any pole of P
fk can occur only at poles of (fn)(k)

fn , and if z0 is a pole

of (fn)(k)

fn , then z0 is either a pole of f or a zero of f. By Lemma 3.1, Lemma 3.2

we see that if a, b are a pole and a zero of f, respectively, then (fn)(k)

fn = B
(z−a)k

and (fn)(k)

fn = C
(z−b)k . From this it follows that

NP (0, r; f 6= 0) = N P

fk
(0, r) ≤ T P

fk
+ O(1) ≤

≤ N P

fk
(∞, r) + m P

fk
(∞, r) + O(1) ≤

≤ kN1,f (∞, r) + kN1,f (0, r) + O(1).

Therefore,

NP (0, r; f 6= 0) ≤ kN1,f (∞, r) + kN1,f (0, r) + O(1).

From this it follows

(3.1) N1,(fn)(k)(0, r) = N1,fn−kP (0, r) ≤

≤ N1,f (0, r) + NP (0, r; f 6= 0) ≤
≤ N1,f (0, r) + kN1,f (∞, r) + kN1,f (0, r) + O(1) ≤
≤ (k + 1)N1,f (0, r) + kN1,f (∞, r) + O(1).

By Lemma 3.1, Lemma 3.2 , if a, b are a pole and a zero of f, respectively,
then

(fn)(k) =
Bk

(z − a)np+k
, Bk(a) 6= 0 and
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(fn)(k) = Ck(z − b)mn−k, Ck(b) 6= 0.

Therefore we see that

(3.2) N(fn)(k)(0, r)−N1,(fn)(k)(0, r) ≥

≥ (
(n− 1)(k + 1)

)
N
≥(k+1)
1,f (0, r) + (n− k − 1)N≤k

1,f (0, r).

On the other hand,

N1,f (0, r) = N≤k
1,f (0, r) + N

≥(k+1)
1,f (0, r).

From this and (3.1), (3.2) we obtain

N≤k
1,f (0, r) ≤

≤ 1
n− k − 1

(
N(fn)(k)(0, r)−N1,(fn)(k)(0, r)− (n− 1)(k + 1)N≥(k+1)

1,f (0, r)
)
,

N1,(fn)(k)(0, r) ≤

≤ (k + 1)N1,f (0, r) + kN1,f (∞, r) + O(1) ≤
≤ (k + 1)N≤k

1,f (0, r) + (k + 1)N≥(k+1)
1,f (0, r) + kN1,f (∞, r) ≤

≤ (k + 1)N≥(k+1)
1,f (0, r) + kN1,f (∞, r) +

k + 1
n− k − 1

(
N(fn)(k)(0, r) ≤

≤ −N1,(fn)(k)(0, r)− (n− 1)(k + 1)N≥(k+1)
1,f (0, r)

)
+ O(1).

Thus

n

n− k − 1
N1,(fn)(k)(0, r) ≤ k + 1

n− k − 1
N(fn)(k)(0, r) + kN1,f (∞, r)+

+
(

k + 1− (k + 1)2(n− 1)
n− k − 1

)
N
≥(k+1)
1,f (0, r) + O(1).

Note that

k + 1− (k + 1)2(n− 1)
n− k − 1

< 0,

we have

N1,(fn)(k)(0, r) ≤ k + 1
n

N(fn)(k)(0, r) +
k(n− k − 1)

n
N1,f (∞, r) + O(1).
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Moreover, if a is a pole of f with multiplicity p, then a is a pole of (fn)(k)

with multiplicity np + k ≥ n + k. Thus

1
n + k

N(fn)(k)(∞, r) ≥ N1,f (∞, r), N1,(fn)(k)(∞, r) = N1,f (∞, r).

Therefore,

T(fn)(k)(r) ≤k + 1
n

N(fn)(k)(0, r) +
(

1 +
k(n− k − 1)

n

)
N1,(fn)(k)(∞, r)+

+ N1,(fn)(k)(a, r)− log r + O(1),

T(fn)(k)(r) ≤k + 1
n

N(fn)(k)(0, r) +
n + k(n− k − 1)

(n + k)n
N(fn)(k)(∞, r)+

+ N1,(fn)(k)(a, r)− log r + O(1).

From this and by Lemma 2.1, we have

T(fn)(k)(r) ≤

≤
(

k + 1
n

+
n + k(n− k − 1)

(n + k)n

)
T(fn)(k)(r) + N1,(fn)(k)(a, r)− log r + O(1),

(
1− n + (n + k)(k + 1) + k(n− k − 1)

n(n + k)

)
T(fn)(k)(r) ≤

≤ N1,(fn)(k)(a, r)− log r + O(1),
(

1− 2(k + 1)
n + k

)
T(fn)(k)(r) ≤ N1,(fn)(k)(a, r)− log r + O(1),

n− k − 2
n + k

Tf (r) ≤ N1,(fn)(k)(a, r)− log r + O(1).

Lemma 3.4 is proved.

Lemma 3.5. Let f and g be non-constant meromorphic functions on K.
If Ef (1) = Eg(1), then one of the following three cases holds:

1) Tf (r) ≤N1,f (∞, r) + N≥2
1,f (∞, r) + N1,f (0, r) + N≥2

1,f (0, r)+

+ N1,g(∞, r) + N≥2
1,g (∞, r) + N1,g(0, r) + N≥2

1,g (0, r)−
− log r + O(1),

and the same inequality holds for Tg(r);
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2) f ≡ g;
3) fg ≡ 1.

Proof. Set
F =

1
f − 1

, G =
1

g − 1
,

(3.3) L =
f”

f ′
− 2

f
′

f − 1
− g”

g′
+ 2

g
′

g − 1
.

Then

(3.4) L =
F ”

F ′ −
G”

G′ .

Next we consider the following two cases:

Case 1. L 6≡ 0. Since Ef (1) = Eg(1), if f(a) = 1, g(a) = 1 and ω1
f (a) =

= ω1
g(a), then L(a) = 0. We now consider the poles of L. It is clear that all

poles of L are of order 1. We can easily see from (3.3) that any simple pole of
f and g is not a pole of L and the poles of L only occur at the zeros of f

′
and

g
′
, and the multiple poles of f and g.

From (3.3) we have
mL(∞, r) = O(1),

and

(3.5) N≤1
f (1, r) = N≤1

g (1, r) ≤ NL(0, r) ≤ TL(r) + O(1) ≤ NL(∞, r) + O(1).

On the other hand, by Lemma 2.2,

Tf (r) ≤ N1,f (∞, r) + N1,f (0, r) + N1,f (1, r)−N0,f ′ (r)− log r + O(1),

where N0,f ′ (r) denotes the counting function of those zeros of f
′
but not that

of f(f−1). Also, N1,0,f ′ (r) is defined similarly, where each zero of f
′
is counted

with multiplicity 1. From (3.3), (3.4) and (3.5) we deduce that

(3.6)
N≤1

f (1, r) ≤N≥2
1,f (∞, r) + N≥2

1,g (∞, r)+

+ N1,0,f ′ (r) + N1,0,g′ (r) + N≥2
1,f (0, r) + N≥2

1,g (0, r) + O(1).

Since Ef (1) = Eg(1),

N1,f (1, r) = N≤1
f (1, r) + N≥2

1,g (1, r).
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Then
(3.7)
Tf (r) ≤ N1,f (∞, r)+N1,f (0, r)+N≤1

f (1, r)+N≥2
1,g (1, r)−N0,f ′ (r)−log r+O(1).

Now we consider N≥2
1,g (1, r).

By Lemma 2.1,

Ng′ (0, r)−Ng(0, r) + N1,g(0, r) = N g
′

g

(0, r) ≤ T g
′

g

(r) + O(1) =

= N g
′

g

(∞, r) + m g
′

g

(∞, r) + O(1) =

= N1,g(∞, r) + N1,g(0, r) + O(1).

Therefore

Ng′ (0, r) ≤ N1,g(∞, r) + Ng(0, r) + O(1).

Moreover

N0,g′ (r) + N≥2
1,g (1, r) + N≥2

g (0, r)−N≥2
1,g (0, r) ≤ Ng′ (0, r).

The above two inequalities yield

N0,g′ (r) + N≥2
1,g (1, r) ≤ N1,g(∞, r) + N1,g(0, r) + O(1).

Combining this inequality and (3.6) and (3.7), we obtain 1).

Case 2. L ≡ 0. Then

(3.8)
f”

f ′
− 2

f
′

f − 1
≡ g”

g′
− 2

g
′

g − 1
.

By (3.8) we have
F”
F ′

≡ G”
G′

.

Thus

f ≡ ag + b

cg + d
,

where a, b, c, d ∈ K satisfying ad− bc 6= 0. Then Tf (r) = Tg(r)+O(1). Next we
consider the following subcases:
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Subcase 1. ac 6= 0. Then

f − a

c
≡ b− ad

c

cg + d
.

By Lemma 2.3

Tf (r) ≤ N1,f (∞, r) + N1,f− a
c
(0, r) + N1,f (0, r) + O(1) =

= N1,f (∞, r) + N1,g(∞, r) + N1,f (0, r) + O(1).

We get 1).

Subcase 2. a 6= 0, c = 0. Then f ≡ ag+b
d . If b 6= 0, by Lemma 2.2,

Tf (r) ≤ N1,f (∞, r) + N1,f− b
d
(0, r) + N1,f (0, r) + O(1) =

= N1,f (∞, r) + N1,g(0, r) + N1,f (0, r) + O(1).

We get 1).

If b = 0, then f ≡ ag
d . If a

d = 1, then f ≡ g. We obtain 2). If a
d 6= 1, then

by Ef (1) = Eg(1) and Lemma 2.2

f 6= 1, f 6= a

d
,

Tf (r) ≤ N1,f (∞, r) + N1,f

(a

d
, r

)
+ N1,f (1, r) + O(1) =

= N1,f (∞, r) + O(1).

We get 1).

Subcase 3. a = 0, c 6= 0. Then f ≡ b
cg+d . If d 6= 0 , by Lemma 2.2,

Tf (r) ≤ N1,f (∞, r) + N1,f− b
d
(0, r) + N1,f (0, r) + O(1) =

= N1,f (∞, r) + N1,g(0, r) + N1,f (0, r) + O(1).

We obtain 1).

If d = 0, then f ≡ b
cg . If b

c = 1, then fg ≡ 1. We obtain 3).

If b
c 6= 1, then by Ef (1) = Eg(1) and Lemma 2.2,

f 6= 1, f 6= b

c
,
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Tf (r) ≤ N1,f (∞, r) + N1,f

(
b

c
, r

)
+ N1,f (1, r) + O(1) =

= N1,f (∞, r) + O(1).

We get 1).

The proof of Lemma 3.5 is complete.

Lemma 3.6. Let f be a non-constant meromorphic function on K and
n, k be positive integers, n > 2k. Then

1. (n− 2k)Tf (r) + kNf (∞, r) + N (fn)(k)

fn−k

(0, r) ≤ T(fn)(k)(r) + O(1);

2. N (fn)(k)

fn−k

(0, r) ≤ kTf (r) + kN1,f (∞, r) + O(1).

Proof. 1. Set A = (fn)(k). Then A = fn−kP. By Lemma 3.1 we have

(3.9)
NA(∞, r) = nNf (∞, r) + kN1,f (∞, r),

nNf (∞, r) = NA(∞, r)− kN1,f (∞, r)

From this and by Lemma 3.2 we see that
(3.10)

(n− k)mf (∞, r) = mfn−k(∞, r) + O(1) = mA

P

(∞, r) + O(1) ≤

≤mA(∞, r) + m 1
P

(∞, r) + O(1) =

=mA(∞, r) + mP (0, r) + O(1) = mA(∞, r) + TP (r)−NP (0, r) + O(1) =

=mA(∞, r) + NP (∞, r) + m P

fk
fk

(∞, r)−NP (0, r) + O(1) ≤

≤mA(∞, r) + kNf (∞, r) + kmf (∞, r) + kN1,f (∞, r)−NP (0, r) + O(1) =

=mA(∞, r) + kTf (r) + kN1,f (∞, r)−NP (0, r) + O(1).

From (3.9) and (3.10) we obtain

nNf (∞, r) + (n− k)mf (∞, r) =

=(n− k)(Nf (∞, r) + mf (∞, r)) + kNf (∞, r) =

=(n− k)Tf (r) + kNf (∞, r) + O(1) ≤
=NA(∞, r) + mA(∞, r)− kN1,f (∞, r) + kTf (r) + kN1,f (∞, r)−
−NP (0, r) + O(1) =

=T(fn)(k)(r)−NP (0, r) + kTf (r) + O(1).
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Thus

(n− 2k)Tf (r) + kNf (∞, r) + NP (0, r) ≤ T(fn)(k)(r) + O(1).

2. By Lemma 2.2, Lemma 3.1, Lemma 3.2, we get

NP (0, r) ≤ TP (r) + O(1) =

=mP (∞, r) + NP (∞, r) + O(1) =

=m P

fk
fk

(∞, r) + NP (∞, r) + O(1) ≤

≤m P

fk

(∞, r) + mfk(∞, r) + N
P
(∞, r) + O(1) ≤

≤kmf (∞, r) + NP (∞, r) + O(1) =

=k(Tf (r)−Nf (∞, r)) + kN1,f (∞, r) + kNf (∞, r) + O(1) =

=kTf (r) + kN1,f (∞, r) + O(1).

So
N (fn)(k)

fn−k

(0, r) ≤ kTf (r) + kN1,f (∞, r) + O(1).

Now we use the above Lemmas to prove the main results of the paper.

Proof of Theorem 1.1. 1. Let f be an entire function, and n ≥ k + 1.
Assume that f is non-constant. Then Tf (r) → ∞ when r → ∞. By Lemma
3.3 we see that T(fn)(k)−1(r) →∞ when r →∞. By Lemma 2.1 we obtain

T(fn)(k)−1(r)− T(fn)(k)−1(ρ0) = N(fn)(k)−1(0, r), where 0 < ρ0 ≤ r.

Therefore N(fn)(k)−1(0, r) → ∞ when r → ∞, and (fn)(k) − 1 must have a
zero, a contradiction. So f is constant.

2. Let f be a meromorphic function, n ≥ k + 2. Assume that f is non-
constant. Applying Lemma 3.4 to (fn)(k) with the value 1, we conclude that

n− k − 2
n + k

Tf (r) + log r + O(1) ≤ N1,(fn)(k)(1, r).

Since f is non-constant, we see that Tf (r) → ∞ when r → ∞. From this

and n ≥ k + 2, we have
n− k − 2

n + k
Tf (r) + log r → ∞ when r → ∞. Thus
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N1,(fn)(k)(1, r) → ∞ when r → ∞. Therefore, (fn)(k) − 1 must have a zero, a
contradiction. So f is constant.

Proof of Theorem 1.2. Set

A = (fn)(k), B = (gn)(k), P =
A

fn−k
, Q =

B

gn−k
.

Next we are applying Lemma 3.5 to (fn)(k), (gn)(k) with the following
cases:

Case 1.

TA(r) ≤ N1,A(∞, r) + N≥2
1,A(∞, r) + N1,A(0, r) + N≥2

1,A(0, r) + N1,B(∞, r)+

+N≥2
1,B(∞, r) + N1,B(0, r) + N≥2

1,B(0, r)− log r + O(1),

TB(r) ≤ N1,B(∞, r) + N≥2
1,B(∞, r) + N1,B(0, r) + N≥2

1,B(0, r) + N1,A(∞, r)+

(3.11) +N≥2
1,A(∞, r) + N1,A(0, r) + N≥2

1,B(0, r)− log r + O(1).

Note that
N1,A(∞, r) = N1,f (∞, r) = N≥2

1,A(∞, r),

N1,B(∞, r) = N1,g(∞, r) = N≥2
1,B(∞, r);

N1,A(0, r) + N≥2
1,A(0, r) ≤ 2N1,f (0, r) + NP (0, r),

N1,B(0, r) + N≥2
1,B(0, r) ≤ 2N1,g(0, r) + NQ(0, r).

From this and (3.11) we get

(n− 2k)Tf (r)+ kNf (∞, r)+NP (0, r) ≤ 2N1,f (∞, r)+2N1,f (0, r)+NP (0, r)+

+2N1,g(∞, r) + 2N1,g(0, r) + NQ(0, r)− log r + O(1),

(n−2k)Tg(r)+kNg(∞, r)+NQ(0, r)) ≤ 2N1,g(∞, r)+2N1,g(0, r)+NP (0, r)+

+2N1,f (∞, r) + 2N1,f (0, r) + NQ(0, r)− log r + O(1).

Combining the above inequalities we have

(n− 2k)(Tf (r) + Tg(r)) + k(Nf (∞, r) + Ng(∞, r)) ≤ 4(N1,f (∞, r)+

+N1,f (0, r) + N1,g(∞, r) + N1,g(0, r)) + NP (0, r) + NQ(0, r)− 2 log r + O(1).
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Note that
NP (0, r) ≤ kTf (r) + kN1,f (∞, r) + O(1),

NQ(0, r) ≤ kTg(r) + kN1,g(∞, r) + O(1),

N1,f (∞, r) ≤ Nf (∞, r) ≤ Tf (r) + O(1),

N1,g(∞, r) ≤ Ng(∞, r) ≤ Tg(r) + O(1),

N1,f (0, r) ≤ Nf (0, r) ≤ Tf (r) + O(1),

N1,g(0, r) ≤ Ng(0, r) ≤ Tg(r) + O(1).

So

(n− 2k)(Tf (r) + Tg(r)) + k(Nf (∞, r) + Ng(∞, r)) ≤
≤4(N1,f (∞, r) + N1,f (0, r) + N1,g(∞, r) + N1,g(0, r))+

+ k(Tf (r) + Tg(r)) + k(N1,f (∞, r) + N1,g(∞, r))− 2 log r + O(1),

(n− 2k)(Tf (r) + Tg(r) ≤
≤k(Tf (r) + Tg(r)) + 4(N1,f (∞, r) + N1,g(∞, r)) + 4(N1,f (0, r)+

+ N1,g(0, r))− 2 log r + O(1)) ≤
≤(k + 4)(Tf (r) + Tg(r)) + 4(Tf (r) + Tg(r))− 2 log r + O(1) ≤
≤(k + 8)(Tf (r) + Tg(r))− 2 log r + O(1).

Therefore
(n− 3k − 8)(Tf (r) + Tg(r)) + 2 log r + O(1) ≤ 0.

As n ≥ 3k + 8, we obtain a contradiction.

Case 2. (fn)(k)(gn)(k) = 1. We prove f 6= 0, f 6= ∞, g 6= 0, g 6= ∞.
Assume f has zeros. Let a be a zero of f with ω0

f (a) = p, p ≥ 1. Then a is a
pole of g with ω∞g (a) = q, q ≥ 1, such that np− k = nq + k and n(p− q) = 2k.
From this and by n ≥ 3k+8 we have a contradiction. By a similar argument we
have g 6= 0, f 6= ∞, g 6= ∞. As f, g are non-constant we obtain a contradiction.

Case 3. (fn)(k) = (gn)(k). Then fn = gn + p, where p is a polynomial of
degree < k. We prove p ≡ 0. Assume p 6≡ 0. Set F = fn

p , G = gn

p . Since f, g

are transcendental, and p is a polynomial, we have

TF (r) = Tfn(r) + Sf (r), TG(r) = Tgn(r) + Sg(r),

N1,F (0, r) = N1,fn(0, r) + Sf (r);

N1,G(0, r) = N1,gn(0, r) + Sg(r), N1,F (∞, r) = N1,fn(∞, r) + Sf (r),
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N1,G(∞, r) = N1,gn(∞, r) + Sg(r).

Then F − 1 = G. Note that by fn = gn + p we have

Tf (r) = Tg(r) + Sg(r), Tg(r) = Tf (r) + Sf (r), Sf (r) = Sg(r).

By Lemma 2.2

TF (r) ≤ N1,F (0, r) + N1,F (∞, r) + N1,F (1, r)− log r + O(1),

Tfn(r) =

=nTf (r) + O(1) ≤
≤N1,fn(0, r) + N1,fn(∞, r) + N1,fn(1, r) + Sf (r) =

=N1,f (0, r) + N1,f (∞, r) + N1,g(0, r) + Sf (r) ≤
≤2Tf (r) + Tg(r) + Sf (r).

Thus nTf (r) ≤ 3Tf (r)+Sf (r), (n−3)Tf (r) ≤ Sf (r). From this and n ≥ 3k+8
we obtain a contradiction. So p = 0. Therefore fn = gn and f = cg with
cn = 1.
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