
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 275–292

A STUDY OF STORING LARGE AMOUNT

OF INHOMOGENEOUS DATA

IN WORKFLOW MANAGEMENT SYSTEMS

Zsigmond Máriás, Tibor Nikovits,

Tamás Takács and Roberto Giachetta

(Budapest, Hungary)

Communicated by András Benczúr

(Received January 15, 2012; revised February 8, 2012;
accepted February 24, 2012)

Abstract. In workflow-driven Enterprise Resource Planning (ERP) sys-
tems a large variety of documents requires handling and storing of various
descriptive data in a single storage facility. The number and type of at-
tributes can vary among different kinds of documents. Storing such inho-
mogeneous data in a single database is difficult, as querying requires fast
retrieval of data based on any present attribute.
In this paper the authors introduce three different approaches to this prob-
lem based on relational and document-oriented database systems. All the
three solutions are compared by implementing and testing them with mas-
sive inhomogeneous data and by using a sophisticated cost model.
This problem is typical in ERP systems. Moreover, the solution can be gen-
erally applied to any domain using inhomogeneous data, like e-commerce
systems, document warehouses and GIS systems.

Key words and phrases: Workflow management systems, object-oriented databases, inhomo-
geneous data, cost analysis.
2010 Mathematics Subject Classification: 68P20, 68U35.
1998 CR Categories and Descriptors: H.2.4, H.2.5, H.3.3.
The research is supported by KMOP-1.1.2-08/1-2008-0002 and European Regional Develop-
ment Fund (ERDF).



276 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

1. Introduction

Business processes and data representation is an essential issue in the de-
sign of ERP systems [1]. Therefore, workflow based ERP systems have been
an active field of research in the last few years. ELTE Soft Ltd. has been de-
veloping a system called AMNIS for two years, where the workflow model for
a business process is defined by the documents created during the process. In
the development process the most important issue was to create the application
layer that makes it possible to perform queries based on any descriptive data
of the documents.

Hence, the aim is to provide a database storage and retrieval system that
has the highest performance to execute database filtering operations on a large
amount of objects, including the possibility to modify the data and structural
information. For this reason, several implementations have been concerned
and tested, and the most promising three have undergone an extensive per-
formance measurement procedure. Their results are presented in this paper.
Furthermore, we will give a short literature review on the new approaches for
document handling in databases, focusing especially on XML documents.

The rest of the paper is arranged as follows. In Section 2, the problem
and the abstract solutions are introduced. In Section 3, the implementations
are presented, with the performance measurement procedure and results in
Sections 4. Section 5 concludes the paper.

2. The database structure

In the AMNIS system the documents belong to different document types.
Every type category has different set of descriptive data called document at-
tributes. For example, vehicle tracking workflows may use trucks and destina-
tions as documents. Truck documents contain information about truck driver,
current fuel level, average fuel consumption and license plate number, while
destinations contain an address and GPS coordinates.

Each document type category may have several subcategories, for example
cars, vans and trucks, and among trucks there are also different subcategories
for light, medium and heavy trucks and so on. Each subcategory inherits all
the descriptive data of its parent category and extends it with several addi-
tional attributes. This structure is similar to the concept of object-oriented
programming, where categories correspond to classes, subcategories are pro-
vided through inheritance, and each record is an instance of the class.



Storing large amount of inhomogeneous data 277

Beyond the maintenance of this category taxonomy, document instances
have to be stored and retrieved for all categories, with all the descriptive data
of a certain category. Since the database stores a huge amount of documents,
functionality is needed to retrieve not just single objects but a set of documents
based on different filter conditions. These filter queries contain conditions based
on the descriptive data, such as retrieving documents with a specific attribute
value, or class conditions, such as retrieving all the objects in a specific category
and its subcategories.

This kind of hierarchy of classes and objects is very useful in different kinds
of applications. If e-commerce systems are considered, classes are product
categories, objects are products, and attributes are product features. Various
data can also be found in geospatial data storage systems, for example the
currently developed EDIT mapping system [2]. Searching facilities are very
important in both cases.

The goal is to design a database structure in which class inheritance tax-
onomy can be defined and objects can be stored that belong to the defined
classes. Name and type information have to be stored for every attribute in
the database. This information is called attribute schema. It may also contain
additional properties such as default values and measurement units, but since
this information does not affect the way objects are stored or filtered, they are
not considered further on.

Every class holds a number of attributes, which can be modified any time,
so the ability is needed to add and remove attributes. Each class – except the
base class – must have a parent class, and all attributes of the parent class are
inherited by their descendant classes.

A large amount of objects have to be stored for each class and different kinds
of filter queries have to be performed. The ability to reference and retrieve a
single object or set of objects – based on different conditions – is needed.
Therefore, the following operations are introduced for queries and filters:

• getAttributeOfObject (attrId, objId): Retrieves one attribute value of a
single object, based on the object identifier and attribute identifier.

• getAllAttributesOfObject (objId): Retrieves every attribute of a single
object based on the object identifier.

• getObjectsOfClass (classId, descendants = true/false): Collects all ob-
jects for a class based on the class identifier with or without the objects
of descendant classes.

• getObjectsByAttributeValue (classId, attrId ⇒ value, operation, descen-
dants = true/false): Collects all objects of a class with a specific attribute
value or one attribute constraint with or without the objects of descen-
dant classes.



278 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

• getObjectsByAttributeValues (classId, filters[], descendants = true/false)
where filters = array(attr id1 ⇒ value, attr id2 ⇒ value, ...): Collects
all objects of a class with specific attribute values or several attribute
constraints, with or without the objects of descendant classes.

Due to the large number of objects and operations, performance properties
are crucial in finding an adequate solution [3]. In the AMNIS system, the filters
and object queries are used much more often than class and object operations.
Therefore, the solution must provide fast queries with these operations.

3. Implemented solutions

In previous research, several kinds of relational database structures have
been studied [4], from which the two highest performing have been chosen.
The main difference between the two solutions is the way they store objects.
The attribute and class schema definitions and the inheritance are described
the same way. They are compared with a third, document-oriented database
solution, which is a rather natural implementation of the structure.

In the relational solutions, the class hierarchy is stored in three tables:

• attributeSchema table defines the schema information of each attribute
in the system. This table stores the attribute id, the type of a certain
attribute and its name.

• class table defines classes and inheritance relations. This table stores the
class id, the name of the class and the parent class id.

• classHasAttributes table defines the attributes belonging to a class. Each
row of this table stores a class id and an attribute id.

Creating, removing or modifying functions of classes are quite simple and
can be implemented in straightforward way. However, when retrieving the
attributes of a class, the attributes of a given class and also its ancestors have
to be collected, which require multiple queries. As this has to be performed
frequently – even when retrieving a single object from the database –, some
improvements should be done by denormalization.

This improvement is done by adding a new field into the classHasAttributes
table that indicates whether an attribute is inherited or it is among the exten-
sion attributes of the given class. This results in storing the inherited attributes
multiple times, causing redundancy in the database.



Storing large amount of inhomogeneous data 279

3.1. Storing classes in on-the-fly created tables

In case of a fixed attribute schema and fixed number of classes the standard
solution is to create tables for each class and store objects as records of the
table. The first solution is similar to this method, but the frequent change
of classes and attribute schema needs to be considered. Objects are stored as
records, but a separate table is generated automatically for each class when
new classes are added.

The name of the tables are objectsOfClass {class id}, and these tables con-
tain an object id and the attribute fields, as shown in Figure 1. For each
attribute a separate column is created in the table. The name and type of
the column is calculated after the attribute table’s attr id and type values:
attr {attr id}: baseTypeOf(attr id).

Figure 1. Objects in tables created on-the-fly

When a class is altered by adding or deleting attributes, not only the class
hierarchy needs to be changed. The tables of the class and its descendants are
also affected, which needs to be considered for the altering functions. When a
class is removed, the tables of the descendants have to be dropped as well.

Although the class operations are quite complex, retrieving and filtering
objects remain simple in this approach. If a single object has to be retrieved
from the database, a simple select query has to be performed in the proper data
table. To achieve that, an additional lookup table called objects is maintained
which stores pairs of object and class identifiers.

Filtering objects by class is simple in this case. Retrieving a set of objects in
a specific class or several specific classes can be done by simple “select” queries.
If the class identifiers are given, the tables are determined in which the queries
have to be performed. The queries are generated by string operations.



280 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

Filtering the objects by specific attribute value conditions can be done in
two steps. These conditions are given by an attribute identifier, a relation and
a value. First, the classes are determined that have the attribute with a query
on the classHasAttributes table, and then a simple selection is performed in all
class tables that contain the attribute. The “where” conditions are generated by
string operations based on the attribute schemas. If several attribute conditions
are given, then several sets of classes are calculated, and the intersection of these
sets is used.

Filtering the object of a class with a specific attribute value is pretty simple;
the select query has to be performed only on one table. This query is generated
based on the class attribute schema and the given attribute conditions.

Algorithm 1 getAttributeOfObject(attrId, objId):

classId ← getClassByObject(objId)
R ← Query(SELECT attr {attrId}

FROM objectsOfClass {classId}
WHERE object id = objId)

return R

Algorithm 2 getAllAttributesOfObject(objId):

classId ← getClassByObject(objId)
R ← Query(SELECT ∗ FROM objectsOfClass {classId}

WHERE object id = objId)
return R

Algorithm 3a getObjectsOfClass(classId, descendants= false):

R ← Query(SELECT ∗ FROM objectsOfClass {classId})
return R

Algorithm 3b getObjectsOfClass(classId, descendants= true):

Push(R,Query(SELECT ∗ FROM objectsOfClass {classId})
descList ← descOfClass(classId)
for all descId in descList do
Push(R,Query(SELECT ∗ FROM objectsOfClass {descId})

end for
return R

Algorithm 4 getObjectsByAttributeValue(classId, attrId ⇒ value,
descendants = false):

R ← Query(SELECT ∗ FROM objectsOfClass {classId}
WHERE attr {attrId} = value)

return R



Storing large amount of inhomogeneous data 281

Algorithm 5 getObjectsByAttributeValues(classId, filters[],
descendants = false):

constraintList ← buildConstraintList(filters[])
R ← Query(SELECT ∗ FROM objectsOfClass {classId}

WHERE constraintList)
return R

In this solution creating and modifying a class are quite complex, because
these operations can have consequences (the corresponding data need to be
transformed), but the filtering algorithms are quite simple, and are generated
by the attribute schema of a class and the filter conditions. The expectation
was that this solution would work well in searching and filtering, which is the
most expensive part of usage in most applications.

3.2. Storing objects and attribute instances in separate tables

In the second approach, instead of generating tables for each class, attribute
instances are stored in separate tables, according to two guidelines.

• Each attribute type has its own table, named {basetype}AttributeInstances
in which attribute instances are stored. For example if integer, text and
double attributes are allowed in a system, three tables are created. These
tables store an object identifier of the object the instance belongs to, an
attribute identifier and the attribute value, as illustrated in Figure 2.

• The objects table stores the object and class identifiers as in the previous
solution.

Figure 2. Multiple attributeInstances tables with the object table



282 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

The following modifications of this structure enhance the overall perfor-
mance.

• The attribute instances tables can be contracted into one single attribute-
Instances table that has a separate column for each attribute type as can
be seen in Figure 3. This table stores columns for each attribute type.
Only the used column is filled in each record, other fields contain null
values.

• The filters that contain both class and attribute conditions can be sim-
plified, if the class information is stored in this table as well. With this
caching, these conditions can be calculated by using only the attribute
instance table. This technique creates redundancy in the database, so it
is very important to maintain the new class id field properly.

Figure 3. A single attributeInstances table with the object table

In this implementation, no new tables are created, so adding a class needs
no further operations. When inserting an object, the attribute values are placed
into the attribute instance table in multiple records. Objects can be retrieved
by first determining their attribute schema, then by queries in the attribute
instance table and after that the result is processed using the attribute schema.

Filtering objects is a more complex operation. Class filter performs one
query in the objects table, searching the objects with specific class identifier(s).
If the attributes of objects are needed as well, they have to be collected from
the attribute instance table as discussed above. The table structure can be
seen in Figure 3.

Filtering the objects by a specific attribute value condition can be done in
two steps. First, the value instances are collected from the attribute instance
table to obtain all object identifiers with the specific value. The object at-
tributes are collected if needed. If multiple filter conditions are given, several
sets of object identifiers are calculated and the intersection of these sets is the
result.



Storing large amount of inhomogeneous data 283

Filtering the object of a class with attribute values is done by joining the
attribute instance table and the object table on the object identifier with the
specific class and attribute conditions. This way the object identifiers are ob-
tained, so attributes can be collected if needed. If multiple attribute conditions
are given, the set of objects is calculated via multiple joins and the result will
be the intersection of these sets. This can be done with several quite complex
queries.

Algorithm 6 getAttributeOfObject(attrId, objId):

R ← Query(SELECT ∗ FROM attributeInstances

WHERE object id = objId AND attr id = attrId)
return R

Algorithm 7 getAllAttributesOfObject(objId):

R ← Query(SELECT ∗ FROM attributeInstances

WHERE object id = objId)
return R

Algorithm 8 getObjectsOfClass(classId, descendants= false):

R ← Query(SELECT ∗ FROM objects

WHERE class id = classId)
for all obj in R do

Push(Q,Query(SELECT ∗ FROM attributeInstance

WHERE object id = obj.objId))
end for
return Q

Algorithm 9 getObjectsByAttributeValue(classId,
filterAttrId ⇒ filterAttrV alue, descendants= false):

R ← Query(SELECT ∗ FROM attributeInstances

WHERE class id = classId

AND attr id = filterAttrId

AND attr value = filterAttrV alue)
for all attrInstance in R do

Push(Q,Query(SELECT ∗ FROM objects

WHERE object id = attrInstance.object id)
end for
return Q



284 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

Algorithm 10 getObjectsByAttributeValues(classId, filters[],
descendants = false):

filter1 ← Pop(filters)
R ← Query(SELECT object id FROM attributeInstances

WHERE class id = classId

AND attr id = filter1.attr id

AND attr value = filter1.value)
for all filterArrId ⇒ filterAttrV alue in filter do
R1 ← newList
for all objectId in R do

Q ← Query(SELECT object id FROM attributeInstances

WHERE object id = objectId

AND attr id = filterAttrId

AND attr value = filterAttrV alue)
if numRows(Q) > 0 then

Push(R1, objectId)
end if

end for
R ← R1

end for
return R

3.3. Document-oriented database

In the third solution a document oriented database is used instead of a
relational database system. An open source system, called MongoDB is chosen
for this purpose [5]. As MongoDB is a schema-free database system, only
two collections are needed, one for the classes, and one for the objects. In
these collections, objects and classes are represented by documents that can be
produced by transforming the data into JSON style arrays.

A class document consists of two parts. The header part contains the Mon-
goDB identifier that is used as the class identifier, the name and the MongoDB
identifier of the parent class. The body is a subarray that contains the list of
attribute schemata for the class as a fieldname ⇒ type pair.

The documents that represent objects are quite similar to class documents.
An object document consists of two parts. The header part contains the object
identifier and the identifier of the object’s class. The body is an embedded
subarray that contains the list of attribute values as a fieldname ⇒ value
pair.



Storing large amount of inhomogeneous data 285

Class:

array(
id ⇒ mongoDBObjectId
classname ⇒ “classname”,
parent ⇒ mongoDBObjectId
attributes ⇒ array(

field1name ⇒ type,
field2name ⇒ type,
...

)
);

Objects of Class:

array(
id ⇒ mongoDBObjectId
class ⇒ mongoDBobjectId,
attribute values ⇒ array(

field1name ⇒ value,
field2name ⇒ value,
...

)
);

One advantage of this solution is that most of the filter queries can be
simply transformed into MongoDB queries.

Algorithm 11 getAttributeOfObject(attrId, objId):

return db.objectofclass.find({ id : objId},
{attribute values.field{attrID}name})

Algorithm 12 getAllAttributesOfObject(objId):

return db.objectofclass.find({ id : objId})

Algorithm 13a getObjectsOfClass(classId, descendants= false):

return db.objectofclass.find({class id : classId})

Algorithm 13b getObjectsOfClass(classId, descendants= true):

Push(R, db.objectofclass.find({class id : classId}))
descList := descOfClass(classId)
for all descId in descList do
Push(R, db.objectofclass.find({class id : descId}))

end for
return R

Algorithm 14 getObjectsByAttributeValue (classId,
filterAttrId ⇒ filterAttrV alue, descendants= false):

return db.objectofclass.find(

{attribute values.field{filterAttrId}name :

filterAttrV alue})

Algorithm 15 getObjectsByAttributeValues (classId, filters[],
descendants = false):

constraintList ← buildConstraintList(filters[], classId)
return db.objectofclass.find({constraintList})



286 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

4. Performance measurement

In this section we compare the efficiency of queries on the presented three
storage models. We use the two most common performance measurement meth-
ods: the cost model and the Benchmark test. In the first one we make some
simplifications and concentrate only on queries omitting all kinds of modifica-
tions.

To predict the performance of our solutions, a cost model is introduced
that gives a detailed picture on the advantages of each solution. Based on this
model, several performance measurement cases are presented.

4.1. Cost model

In a database environment the dominant part of the cost of a query is
usually the cost of the I/O operations expressed in the number of data blocks
read or written. Data block is the smallest amount of data a DBMS can read or
write. In our model the concept of data block is not applicable, that’s why the
number of I/O operations is used instead. The data element length is assumed
to be not significantly different, therefore, the content type of the field is not
considered and there is only one read operation. In the following, the I/O costs
of the most frequent operations are presented.

If the data is indexed, the read operation is performed after the search in
the index. Normally the cost of the index search depends on the structure and
size of the index. Our cost model assumes that each index search costs the
same and only the number of index searches is counted.

Abbreviations:

nc: number of classes

na: average number of attributes per class

no: average number of objects per class

nf : number of filters

nmo: number of matching objects

is: index search operation

re: read operation

The cost calculations for the following six test cases are presented:

• Retrieving an attribute by object id. Table 1.

• Retrieving a single object with all atributes by object id. Table 2.

• Retrieving all objects of a class without descendants. Table 3.

• Retrieving all objects of a class and descendant classes. First, all descen-
dant class ids need to be retrieved, which is independent of the storage
model, then the objects of every class are collected. See Table 3.



Storing large amount of inhomogeneous data 287

• Retrieving all the objects of a class having a special value in a given
attribute. If there are no indices on the attributes, then the cost is the
same as in Table 3. If indexing values differ, see Table 4. If there are
indices on the attributes, then the cost is the same as in Table 3. If
we have more than one filter conditions, then the number of matching
objects is much smaller. See Table 5.

getAttributeOfObject(attrId, objId) Cost

Algorithm 1 Search is performed for the class id in
the object table, then for the object id
in the objectsOfClass classid table.

(no · nc+ no) · re

Algorithm 1
with index-
ing

With indices on both tables, the costs
are two index searches and two read op-
erations.

2 · is+ 2 · re

Algorithm 6 A single row has to be searched in the
attributeInstances table.

no · nc · na · re

Algorithm 6
with index-
ing

With an index on the attributeIn-
stances table.

is+ re

Algorithm 11 A single record has to be searched in
the objectsOfClasses collection.

no · nc · na · re

Algorithm 11
with index-
ing

With an index on the collection ele-
ments.

is+ re

Table 1. Retrieving an attribute by object id, attribute id

getAllAttributesOfObject(objId) Cost

Algorithm 2 There is no difference in this storage
model, retrieving 1 attribute or all at-
tributes of an object.

(no · nc+ no) · re

Algorithm 2
with index-
ing

Same as in Algorithm 1 with indexing. 2 · is+ 2 · re

Algorithm 7 Same as in Algorithm 6. no · nc · no · re
Algorithm 7
with index-
ing

A separate search is performed for ev-
ery attribute.

na · is+ na · re

Algorithm 12 The whole record has to be found in
the objectsOfClasses collection.

no · nc · no · re

Algorithm 12
with index-
ing

Same as in Algorithm 11 with indexing. is+ re

Table 2. Retrieving a single object by object id



288 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

getObjectsOfClass(classId, descendants = false) Cost

Algorithm 3a In this case, there is no meaning of
using indexes, because all rows of the
class table have to be retrieved.

no · re

Algorithm 3a
with indexing

Same as in Algorithm 3a. no · re

Algorithm 8 Same as in Algorithm 6. no · nc · no · re
Algorithm 8
with indexing

A separate search is needed for every
attribute of every object.

no · na · (is+ re)

Algorithm 13a Same as in Algorithm 11. no · nc · no · re
Algorithm 13a
with indexing

A separate search is needed for every
object.

no · is+ no · re

Table 3. Retrieving all objects of a class (without descendants)

getObjectsByAttributeValue(classId, attrId ⇒ value,
descendants = false)

Cost

Algorithm 4 Same as Algorithm 3a. no · re
Algorithm 4
with indexing

The cost strongly depends on the num-
ber of matching objects.

is+ nmo · re

Algorithm 9 Same as Algorithm 8. no · nc · no · re
Algorithm 9
with indexing

The index size is much larger (nc · na
times larger) than in the first model, so
the index search is slower.

is+ nmo · re

Algorithm 14 Same as Algorithm 13a. no · nc · no · re
Algorithm 14
with indexing

With an index on the collection ele-
ment values.

is+ nmo · re

Table 4. Retrieving all objects of a class by attribute value

4.2. Experimental performance measurement

To measure the performance of each approach, a testing environment has
been developed to implement all three solutions using the Microsoft .NET
Framework and the C# programming language. MySQL has been chosen as
our relational database engine.

The test environment realises the abstract object and class concepts, and
provides three classes for the different database types. Each filter operation’s
time is measured, including the transformation of the object or class from and
to the solution, but not including any other environmental delays. Operations
can be performed multiple times; data can be imported from any of the imple-
mented database structure into the other. Also the database size is constantly
monitored.

It must be noted that the testing method relies on the performance of the
.NET Framework. The results can vary between implementations, but the ratio



Storing large amount of inhomogeneous data 289

getObjectsByAttributeValues(classId, filters[], de-
scendants = true/false)

Cost

Algorithm 5 Same as Algorithm 3a. no · re
Algorithm 5
with index-
ing

If the number of filters increases, the
number of matching objects decreases.

nf · is+ nmo · re

Algorithm 10 Same as Algorithm 8. no · nc · no · re
Algorithm 10
with index-
ing

The index size is much larger (nc · na
times larger) than in the first model, so
the index search is slower.

nf · is+ nmo · re

Algorithm 15 Same as Algorithm 13a. no · nc · no · re
Algorithm 15
with index-
ing

If we have more filters we get less
matching elements.

nf · is+ nmo · re

Table 5. Retrieving all the objects of a class having special values
in given attributes

of the values should not change too much, since all used application program-
ming interfaces (the MySQL Connector and the MongoDB Driver) use the same
network connection protocols, data structures, and therefore, the same .NET
facilities for retrieving and modifying information in the database. Therefore,
the comparison should be accurate. Results for performance measurement have
been gained by performing all operations several thousand times and summing
runtimes. The test configuration is an Intel Core i3 2.33GHz CPU with 4GB
of RAM and a 5400 rpm SATAII hard disk.

4.2.1. Class queries

Quickly querying an entire class is the main promise of the first solution,
as it only needs to fetch an entire table. This results between 1.2 and 4 times
the speed of the third solution. The difference lies in the number of objects
stored in the database. The second solution’s query times linearly grow with
the number of objects, the total number of attributes, and the number of classes
as well (as seen in Figure 4).

4.2.2. Attribute queries

Somewhat unexpectedly, the second solution is an order of magnitude better
than the first one with attribute queries. In the case of few (1-2) filter condi-
tions, it is twice as fast as the document-oriented implementation. However,
the number of attributes influences it in linear time, while the third solution is
not affected by this number. Also, the first solution is pretty much resistant to
the number of objects, but can be influenced by the number of total attributes.



290 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

Figure 4. Class query time with fixed number of total attributes (50)
and classes (5)

The advantage of the third solution is even better when raising the number
of filter conditions (due to fewer documents to be returned). This is shown in
Figure 5.

When filtering for attributes of a certain class, the first solution proves to
be the best again, but with less advantage in the case of simple class queries.

Figure 5. Attribute query time with variable (1 to 10)
and fixed filter count (2)

5. Conclusion and future work

In the previous sections three solutions were presented for a database struc-
ture that implements class inheritance taxonomy. A testing environment has
been developed to study the performance of these solutions using the MySQL



Storing large amount of inhomogeneous data 291

and MongoDB database engines. The intention was not to generally give an
opinion on which solution is better on any software and hardware platforms,
but to gain results which we can work with in research projects, and to have
an idea of how the solutions perform against each other.

As expected, none of the solutions has been proven to be the absolute
winner, but in terms of the general usage in AMNIS, the document-oriented
solution seems to outperform relational solutions. This may be due to the
rather natural compliance with our object-oriented model. In terms of the re-
lational imple- mentation, using on-the-fly generated tables provides faster class
queries, creation and removal time and less disk space, while the distributed
object model provides fast attribute based filtering, class alternations. Still, in
overall performance one may favor the first solution, but in some situations the
advantage of the second implementation can also come in handy. Ultimately, it
can only be said that much relies on the nature of the project being worked on.

Besides the discussed techniques, most of the modern database engines pro-
vide document handling and querying capabilities through XML documents [6]
and XQuery [7] query language. Hence, another implementation option is to
use this model to represent the classes, objects and attributes. Similar EAV
implementation techniques are often used in bioinformatics [8] and geoinfor-
matics [9].

In the future we will work further on the development of these solutions
for inheritance based database structures. This effort refers also to one of our
running projects, the open-source geoinformational system AEGIS.

References

[1] Cardoso, J, R.P. Bostrom and A. Sheth, Workflow management
systems and ERP systems: Differences, commonalities and application,
in: Laudon, K. C., Turner, J. (eds.): Information Technology and Man-
agement, 5(3-4), 2004, 319–338.

[2] Giachetta, R. and I. Elek, Developing an advanced document based
map server, in: A. Egri-Nagy, E. Kovács, G. Kovásznai, G. Kusper and T.
Tómács (eds.), Proceedings of the 8th International Conference on Applied
Informatics, Eger, Hungary, 2010.

[3] Ambler, S.W., Process Patterns - Building Large-Scale Systems Using
Object Technology, Cambridge University Press, 1998.

[4] Máriás, Zs., Design and performance analysis of hierarchical large-scale
inhomogeneous databases. Lecture at: 8th International Conference on
Applied Informatics, Eger, Hungary, 2010.



292 Zs. Máriás, T. Nikovits, T. Takács and R. Giachetta

[5] Padhy, R.P., M.R. Patra and S.C. Satapathy, RDBMS to NoSQL:
Reviewing some next-generation non-relational database’s, in: R.P. Padhy
(ed.), International Journal of Advanced Engineering Sciences and Tech-
nology, 11(1) 2011, 15–30.

[6] Lee, G., Oracle Database 11g XML DB Technical Overview - An Oracle
White Paper, 36 pages, 2007.
http://www.oracle.com/technetwork/database/features/xmldb/

xmldb-11g-twp-132368.pdf

[7] Boag, S. et al. (eds.), XQuery 1.0: an XML query language, 2005.
http://www.w3.org/TR/xquery/

[8] Foping, F.S., I.M. Dokas, J. Feehan and S. Imran, A new hybrid
schema-sharing technique for multitenant applications, in: Proceedings of
the Fourth International Conference on Digital Information Management,
2009, 1–6.

[9] Räsinmaki, J., XQuery as a retrieval mechanism for longitudinal multi-
scale forest resource data, in: Jakeman, A.J. (ed.), Environmental Mod-
elling and Software, 24(10), 2009, 1153–1162.

Zs. Máriás, T. Nikovits and R. Giachetta
Faculty of Informatics
Eötvös Loránd Universtity
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
zmarias@inf.elte.hu

nikovits@inf.elte.hu

groberto@inf.elte.hu

T. Takács
Amnis Laboris Ltd.
Budapest
Hungary
tamas.takacs@gmail.com


