ABOUT A CONDITION FOR STARLIKENESS

Pál A. Kupán and Róbert Szász
(Tg. Mureș/Marosvásárhely, Romania)

Communicated by Ferenc Schipp
(Received January 15, 2012; revised March 10, 2012; accepted March 14, 2012)

Abstract. In this paper a result concerning the starlikeness of the image of the Alexander operator is improved. The techniques of differential subordinations and extreme points are used.

1. Introduction

Let $U(z_0, r)$ be the disc centered at the point z_0 and of radius r defined by $U(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| < r \}$. U denotes the open unit disc in \mathbb{C}, $U = \{ z \in \mathbb{C} : |z| < 1 \}$. Let \mathcal{A} be the class of analytic functions f, which are defined on the unit disc U and have the form: $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$. The subclass of \mathcal{A} consisting of functions for which the range $f(U)$ is starlike with respect to 0, is denoted by S^*. An analytic characterization of S^* is given by:

$$S^* = \left\{ f \in \mathcal{A} : \text{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}.$$

Another subclass of \mathcal{A} we deal with is the class of close-to-convex functions denoted by C. A function $f \in \mathcal{A}$ belongs to the class C if and only if there is

Key words and phrases: Alexander operator, starlike functions, close-to-convex functions.

2010 Mathematics Subject Classification: 30C45.

The Project is supported by the Sapientia Foundation - Institute for Scientific Research.
a starlike function $g \in S^*$, so that $\text{Re} \frac{zf'(z)}{g(z)} > 0$, $z \in U$. We note that C and S^* contain univalent functions. The Alexander integral operator is defined by the equality:

$$A(f)(z) = \int_0^z \frac{f(t)}{t} \, dt.$$

The authors of [2] (pp. 310 – 311) proved the following result:

Theorem 1.1. Let A be the Alexander operator and let $g \in A$ satisfy

\[(1.1) \quad \text{Re} \frac{zg'(z)}{g(z)} \geq \left| \text{Im} \frac{zg'(z)}{g(z)} \right|, \quad z \in U.\]

If $f \in A$ and

$$\text{Re} \frac{zf'(z)}{g(z)} > 0, \quad z \in U,$$

then $F = A(f) \in S^*$.

This theorem states that a subclass of C is mapped by the Alexander operator to S^*. On the other hand we know that $A(C) \not\subset S^*$. In [3] and [4] several improvements of this result are proved, simplifying condition (1.1). Investigating this question, the following theorems have been deduced in [3]:

Theorem 1.2. Let $g \in A$ be a function which satisfies the condition:

\[(1.2) \quad \text{Re} \frac{zg'(z)}{g(z)} > 2.273 \left| \text{Im} \frac{zg'(z)}{g(z)} \right|, \quad z \in U.\]

If $f \in A$ satisfies

$$\text{Re} \frac{zf'(z)}{g(z)} > 0, \quad z \in U,$$

then $F = A(f) \in S^*$.

Theorem 1.3. If $f, g \in A$ and

\[(1.3) \quad \text{Re} \frac{g(z)}{z} > \frac{100}{83} \left| \text{Im} \frac{g(z)}{z} \right|, \quad z \in U,$

then the condition

$$\text{Re} \frac{zf'(z)}{g(z)} > 0, \quad z \in U$$

implies that $F = A(f) \in S^*$.
The implications-chain is deduced in [3]: (1.1) ⇒ (1.2) ⇒ (1.3). Thus Theorem 1.2 and Theorem 1.3 are improvements of Theorem 1.1. Consequently, the question to determine the smallest \(c \in [0, \infty) \) for which the following statement holds arises naturally:

If \(f, g \in A \) and

\[
\text{Re} \frac{g(z)}{z} > c \left| \text{Im} \frac{g(z)}{z} \right|, \quad z \in U,
\]

then the condition

\[
\text{Re} \left(\frac{zf''(z)}{g(z)} \right) > 0, \quad z \in U
\]

implies that \(F = A(f) \in S^* \).

We are not able to answer this question completely at the moment, but we will prove that the statement holds for \(c = 1 \). This is an improvement of Theorem 1.3. In order to do this, we need the following lemmas.

2. Preliminaries

Lemma 2.1. ([2]) Let \(p(z) = a + \sum_{k=n}^\infty a_k z^k \) be analytic in \(U \) with \(p(z) \not\equiv a \), \(n \geq 1 \) and let \(q : U(0,1) \to \mathbb{C} \) be a univalent function with \(q(0) = a \). If there are two points \(z_0 \in U(0,1) \) and \(\zeta_0 \in \partial U(0,1) \) so that \(q \) is defined in \(\zeta_0 \), \(p(z_0) = q(\zeta_0) \) and \(p(U(0,r_0)) \subset q(U) \), where \(r_0 = |z_0| \), then there is an \(m \in [n, +\infty) \) so that

(i) \(z_0 p'(z_0) = m \zeta_0 q'(\zeta_0) \) and

(ii) \(\text{Re} \left(1 + \frac{z_0 p''(z_0)}{p'(z_0)} \right) \geq m \text{Re} \left(1 + \frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)} \right) \).

Lemma 2.2. ([2]) Let \(p(z) = a + \sum_{k=n}^\infty a_k z^k, p(z) \not\equiv a \) and \(n \geq 1 \). If \(z_0 \in U \) and

\[
\text{Re} p(z_0) = \min \{ \text{Re} p(z) : |z| \leq |z_0| \},
\]

then

(i) \(z_0 p'(z_0) \leq -\frac{n}{2} \frac{|p(z_0) - a|^2}{\text{Re} (a - p(z_0))} \) and

(ii) \(\text{Re} \left[\frac{z_0^2 p''(z_0)}{2} \right] + z_0 p'(z_0) \leq 0. \)

Recall that if \(f \) and \(g \) are analytic functions in \(U \) and there is a function \(w \) also analytic, satisfying \(w(0) = 0, |w(z)| \leq |z|, \quad z \in U \) and \(f(z) = g(w(z)) \),
z ∈ U, then the function f is said to be subordinate to g, written \(f \prec g \). If g is univalent then \(f(0) = g(0) \) and \(f(U) \subset g(U) \) implies that \(f \prec g \).

Lemma 2.3. ([1]) Let \(F_\alpha(z) = \left(\frac{1+z}{1-z} \right)^\alpha \), \(|c| \leq 1, \ c \neq -1 \). In case of \(\alpha \geq 1 \), the subordination \(f \prec F_\alpha \) holds if and only if there exists a probability measure \(\mu \) on \([0, 2\pi]\) having the property

\[
f(z) = \int_0^{2\pi} \left(\frac{1+z e^{-it}}{1-z e^{-it}} \right)^\alpha \, d\mu(t), \quad z \in U.
\]

The set of extreme points of the class \(\{ f \in A | f \prec F_\alpha \} \) is

\[
\left\{ f_t(z) = \left(\frac{1+z e^{-it}}{1-z e^{-it}} \right)^\alpha, \ t \in [0, 2\pi] \right\}.
\]

Let \(P \) denote the class of analytic functions of the form

\[
p(z) = 1 + c_1 z + c_2 z^2 + \ldots,
\]

and having the property \(\text{Re} \, p(z) > 0, \ z \in U \). We note that this property is equivalent to \(p(z) \prec \frac{1+z}{1-z} \) and Lemma 2.3 implies that there is a probability measure \(\mu \) on the interval \([0, 2\pi]\) such that \(p(z) = \int_0^{2\pi} \frac{1+z e^{-it}}{1-z e^{-it}} \, d\mu(t) \). This equality actually is the Herglotz formula.

Lemma 2.4. ([1, Corollary 3.7]) \(p \in P \) if and only if there exist a sequence of functions \((p_n)_{n \geq 1} \) so that \(p_n \) has the form

\[
q(z) = \sum_{k=1}^m t_k \frac{1+zx_k}{1-zx_k},
\]

where \(|x_k| = 1, \ t_k \geq 0 \) and \(\sum_{k=1}^m t_k = 1 \) and \(p_n \to p \) uniformly on compact subsets of \(U \).

Lemma 2.5. If \(f, g \in A \) and

(2.1) \[\text{Re} \, \frac{g(z)}{z} > \left| \text{Im} \, \frac{g(z)}{z} \right|, \quad z \in U, \]

and \(F = A(f) \), then the condition

(2.2) \[\text{Re} \, \frac{zf'(z)}{g(z)} > 0, \quad z \in U \]

implies that there is a probability measure \(\mu \) on \([0, 2\pi]\), such that

\[
\frac{F(z)}{z} = \int_0^{2\pi} \int_0^1 \ln \left(\frac{1+x z e^{-it}}{1-x z e^{-it}} \right) \, dx \, d\mu(t), \quad z \in U.
\]
Proof. Inequality (2.1) is equivalent to

\[\left| \arg \frac{g(z)}{z} \right| \leq \frac{\pi}{4}, \ z \in U. \]

Applying Lemma 2.3 in case of \(c = 1, \alpha = 1 \) and \(F_1(z) = \frac{1+z}{1-z} \) it follows that:

\[f'(z) = \frac{g(z)}{z} 2\pi \int_0^1 \frac{1 + z e^{-it}}{1 - z e^{-it}} d\nu(t), \]

where \(\nu \) is a probability measure on \([0, 2\pi]\). Thus we get:

\[\left| \arg f'(z) \right| \leq \left| \arg \frac{g(z)}{z} \right| + \left| \arg \int_0^{2\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\nu(t) \right| < \frac{3\pi}{4}, \ z \in U. \]

We introduce the notation \(D = \{ z \in \mathbb{C} : |\arg(z)| \leq \frac{3\pi}{4} \} \). The function

\[q(z) = \left(\frac{1 + z}{1 - z} \right)^\tau, \ \tau = \frac{3}{2}, \]

is the Riemann mapping from \(U \) to \(D \). (The principal branch of \(\left(\frac{1 + z}{1 - z} \right)^\tau \) is chosen.) The inequality (2.4) implies

\[f'(z) \prec q(z), \]

and according to Lemma 2.3, this subordination is equivalent to

\[f'(z) = 2\pi \int_0^{2\pi} \left(\frac{1 + z e^{-it}}{1 - z e^{-it}} \right)^{\frac{3}{2}} d\mu(t), \ z \in U, \]

where \(\mu \) denotes a probability measure on \([0, 2\pi]\). On the other hand, if

\[q(z) = 1 + \sum_{n=1}^{\infty} a_n z^n, \]

then

\[f'(z) = 1 + \sum_{n=1}^{\infty} a_n z^n \int_0^{2\pi} e^{-int} d\mu(t), \]

and

\[\frac{F(z)}{z} = 1 + \sum_{n=1}^{\infty} a_n \frac{z^n}{n} \int_0^{2\pi} e^{-int} d\mu(t). \]
The equalities \(\int_0^1 x^n \ln \frac{1}{x} \, dx = \frac{1}{(n+1)^2}, \quad n \in \mathbb{N} \) imply

\[
F(z) = \frac{1}{z} \int_0^1 \ln \frac{1}{x} \left(1 + \sum_{n=1}^{\infty} a_n x^n z^n \right) e^{-int} d\mu(t) \, dx.
\]

Lemma 2.4 implies that the second integration can be interchanged with the summation and the first integration and finally we get

\[
F(z) = \frac{1}{z} \int_0^1 \ln \frac{1}{x} \left(1 + \sum_{n=1}^{\infty} a_n x^n z^n \right) e^{-int} d\mu(t) \, dx = \int_0^1 \int_0^1 \ln \frac{1}{x} \left(1 + \sum_{n=1}^{\infty} a_n x^n z^n \right) e^{-int} d\mu(t) \, dx,
\]

where \(z \in U \).

Lemma 2.6. The function \(A : [0, \frac{3\pi}{4}] \to \mathbb{R} \),

\[
A(\theta) = (\pi - \theta)(\sin \theta - \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^{\frac{3}{2}} \frac{1}{e^x} \, dx - (\sin \theta + \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^{\frac{3}{2}} x \frac{1}{e^x} \, dx
\]

is increasing and the function \(B : [\frac{\pi}{6}, \frac{3\pi}{4}] \to \mathbb{R} \) defined by

\[
B(\theta) = \sqrt{2} \int_0^{\frac{\pi}{2}} x \left(\cot \frac{\theta + x}{2} \right)^{\frac{3}{2}} \cos x \, dx
\]

is decreasing.

Proof. Notice that

\[
I_1 = \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^{\frac{3}{2}} \frac{1}{e^x} \, dx = 0.28..., \quad I_2 = \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^{\frac{3}{2}} x \frac{1}{e^x} \, dx = 0.51...
\]

and \(I_1 < I_2 < 2I_1 \). Thus it follows that in case \(\theta \in [\frac{\pi}{4}, \frac{3\pi}{4}] \) we have

\[
A'(\theta) = (\pi - \theta)(\sin \theta + \cos \theta) I_1 + (\sin \theta - \cos \theta)(I_2 - I_1) > 0
\]
About a condition for starlikeness

and if \(\theta \in [0, \frac{\pi}{4}] \), then

\[A'(\theta) > [(\pi - \theta)(\sin \theta + \cos \theta) + \sin \theta - \cos \theta] I_1 > 0. \]

Consequently the first part of the assertion is proved.

In the following we will prove that: \(B'(\theta) \leq 0, \theta \in [\frac{\pi}{6}, \frac{3\pi}{4}] \). We have:

\[
B'(\theta) = -\frac{3\sqrt{2}}{4} \int_0^{\pi/4 - \theta} x \left(\cot \left(\frac{\theta + x}{2} \right) \right)^{1/2} \left(\sin \left(\frac{\theta + x}{2} \right) \right)^{-2} \cos x dx, \theta \in \left[\frac{\pi}{6}, \frac{3\pi}{4} \right].
\]

The claimed inequality holds evidently in case \(\theta \in [\frac{\pi}{2}, \frac{3\pi}{4}] \).

We will use the following equality to prove \(B'(\theta) \leq 0 \) in case \(\theta \in \left[\frac{\pi}{6}, \frac{\pi}{2} \right] \):

\[
B'(\theta) = -\frac{3\sqrt{2}}{4} \int_0^{\pi/6 - \theta} x \left(\cot \left(\frac{\pi}{4} + \theta + x \right) \right)^{1/2} \left(\sin \left(\frac{\pi}{4} + \theta + x \right) \right)^{-2} \sin x dx - \frac{3\sqrt{2}}{4} \int_0^{\pi/6 - \theta} \left(\frac{\theta + x}{2} \right)^{1/2} \left(\sin \frac{\theta + x}{2} \right)^{-2} \cos x dx.
\]

Some elementary calculations lead to the following inequalities:

\[
\left(\cot \left(\frac{\theta + x}{2} \right) \right)^{1/2} \geq (1 + \sqrt{2}) \left(\cot \left(\frac{\pi}{4} + \theta + x \right) \right)^{1/2}, \quad x \in [0, \frac{\pi}{2} - \theta]
\]

\[
\left(\sin \left(\frac{\theta + x}{2} \right) \right)^{-2} \geq 2 \left(\sin \left(\frac{\pi}{4} + \theta + x \right) \right)^{-2}, \quad x \in [0, \frac{\pi}{2} - \theta]
\]

\[
x \cos x \geq \frac{\pi}{6} \tan \left(\frac{\pi}{2} \right) \sin x, \quad x \in [0, \frac{\pi}{2} - \theta].
\]

These inequalities imply that in case \(x \in [0, \frac{\pi}{2} - \theta] \) we have:

\[
x \left(\cot \left(\frac{\theta + x}{2} \right) \right)^{1/2} \left(\sin \left(\frac{\theta + x}{2} \right) \right)^{-2} \cos x \geq \frac{4(1 + \sqrt{2})}{5\sqrt{3}} \left(\frac{\pi}{4} + \theta + x \right)^{1/2} \left(\sin \left(\frac{\pi}{4} + \theta + x \right) \right)^{-2} \sin x \geq \left(\frac{\pi}{4} + \theta + x \right)^{1/2} \left(\sin \left(\frac{\pi}{4} + \theta + x \right) \right)^{-2} \sin x,
\]

and finally we get:

\[
\int_0^{\pi/6 - \theta} x \left(\cot \left(\frac{\pi}{4} + \theta + x \right) \right)^{1/2} \left(\sin \left(\frac{\pi}{4} + \theta + x \right) \right)^{-2} \cos x dx \geq \int_0^{\pi/6 - \theta} \left(\frac{\theta + x}{2} \right)^{1/2} \left(\sin \frac{\theta + x}{2} \right)^{-2} \sin x dx.
\]
The inequality $B' (\theta) \leq 0, \ \theta \in \left[\frac{\pi}{6}, \frac{\pi}{2} \right]$ follows from (2.5) and (2.6).

Lemma 2.7. If

$$F(z) = \int_0^1 \left(\frac{1 + xz}{1 - xz} \right)^{\frac{3}{2}} \ln \frac{1}{x} \, dx,$$

then

$$\text{Re} F(e^{i\theta}) \geq \text{Im} F(e^{i\theta}), \ \theta \in [0, \pi].$$

Proof. We begin with the observation that the change of variable $x = e^{-t}$

leads to

$$F(e^{i\theta}) = \lim_{R \to \infty} \int_{\gamma_1} f(z) \, dz = - \lim_{R \to \infty} \left[\int_{\gamma_2} f(z) \, dz + \int_{\gamma_3} f(z) \, dz + \int_{\gamma_4} f(z) \, dz \right].$$

Now consider the function:

$$f(z) = \left(\frac{e^z + e^{i\theta}}{e^z - e^{i\theta}} \right)^{\frac{3}{2}} z.$$

We integrate it on $\Gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, where $\gamma_1(t) = t, \ t \in [0, R], \ \gamma_2(t) = R - it, \ t \in [0, \pi - \theta], \ \gamma_3(t) = R - t + i(\theta - \pi), \ t \in [0, R]$ and $\gamma_4(t) = i(\theta - \pi + t), \ t \in [0, \pi - \theta]$. Because f is analytic in the interior of Γ we have,

$$\int_{\Gamma} f(z) \, dz = 0$$

which leads to

$$F(e^{i\theta}) = \lim_{R \to \infty} \int_{\gamma_1} f(z) \, dz = - \lim_{R \to \infty} \left[\int_{\gamma_2} f(z) \, dz + \int_{\gamma_3} f(z) \, dz + \int_{\gamma_4} f(z) \, dz \right].$$

The change of variable $\theta - \pi + t = -x$ in the second integral implies the equality

$$F(e^{i\theta}) = \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^{\frac{3}{2}} (x + i(\theta - \pi))(- \cos \theta + i \sin \theta) \, dx -$$

$$- \int_0^{\pi - \theta} x \left(\cot \frac{\theta + x}{2} \right)^{\frac{3}{2}} e^{i(x + \frac{\pi}{2})} \, dx.$$
Thus it follows that

\[\text{Re } F(e^{i\theta}) - \text{Im } F(e^{i\theta}) = (\pi - \theta)(\sin \theta - \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{1}{e^x} \, dx - \\
- (\sin \theta + \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{x}{e^x} \, dx + \sqrt{2} \int_0^{\pi - \theta} x \left(\cot \frac{\theta + x}{2} \right)^2 \cos x \, dx = \\
\int_0^{\pi} \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{1}{e^x} \, dx - \\
- (\sin \theta + \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{x}{e^x} \, dx + \sqrt{2} \int_0^{\pi - \theta} x \left(\cot \frac{\theta + x}{2} \right)^2 \cos x \, dx = \]

(2.7) \[\text{ } A(\theta) + B(\theta). \]

According to the monotonicity of \(A \) and \(B \), the inequalities hold

\[B(\theta) + A(\theta) \geq B(\theta_k) + A(\theta_{k-1}), \quad \theta \in [\theta_{k-1}, \theta_k], \quad k = 21, 90. \]

Now, if we check that

(2.8) \[B(\theta_k) + A(\theta_{k-1}) > 0, \quad \theta_k = \frac{k\pi}{120}, \quad k = 21, 90 \]

we obtain

\[B(\theta) + A(\theta) > 0, \quad \theta \in [\theta_{k-1}, \theta_k], \quad k = 21, 90 \]

and the proof is done in case of \(\theta \in \left[\frac{\pi}{6}, \frac{3\pi}{4} \right] \). Inequalities (2.8) can be checked easily by using a computer program. The inequality \(\text{Re } F(e^{i\theta}) \geq \text{Im } F(e^{i\theta}) \), \(\theta \in \left[\frac{3\pi}{4}, \pi \right] \) follows from (2.7). It remains to prove the assertion in case \(\theta \in \left[0, \frac{\pi}{6} \right] \).

We put in the integral \(\int_0^{\pi - \theta} x \left(\cot \frac{\theta + x}{2} \right)^2 \cos x \, dx \) the change of variable \(x + \theta = u \) and we obtain

\[\text{Re } F(e^{i\theta}) - \text{Im } F(e^{i\theta}) = (\pi - \theta)(\sin \theta - \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{1}{e^x} \, dx - \\
- (\sin \theta + \cos \theta) \int_0^\infty \left(\frac{e^x - 1}{e^x + 1} \right)^2 \frac{x}{e^x} \, dx + \sqrt{2} \int_0^{\pi} \left(\cot \frac{u}{2} \right)^2 \cos (u - \theta) \, du. \]

This can be rewritten as follows

\[\text{Re } F(e^{i\theta}) - \text{Im } F(e^{i\theta}) = \\
= \sin \theta \left((\pi - \theta)I_1 - I_2 + \sqrt{2} \int_0^{\pi} (u - \theta) \left(\cot \frac{u}{2} \right)^2 \sin u \, du \right) + \\
+ \cos \theta \left(-(\pi - \theta)I_1 - I_2 + \sqrt{2} \int_0^{\pi} (u - \theta) \left(\cot \frac{u}{2} \right)^2 \cos u \, du \right). \]
(1 and 2 are defined in the proof of the previous lemma.) We observe that the mapping \(C : [0, \pi/6] \) defined by

\[
C(\theta) = (\pi - \theta)I_1 - I_2 + \sqrt{2} \int_0^\pi (u - \theta)(\cot u/2)^2 \sin u \, du
\]

is strictly decreasing. This implies the inequality: \(C(\theta) \geq C(\pi/6) \geq 6.8... \) Thus it follows that

\[
\text{Re } F(e^{i\theta}) - \text{Im } F(e^{i\theta}) \geq \\
\geq \cos \left(6.8 \tan \theta - (\pi - \theta)I_1 - I_2 + \sqrt{2} \int_0^\pi (u - \theta)(\cot u/2)^2 \cos u \, du \right).
\]

Let the functions \(D \) and \(E \) be defined by the equalities

\[
D(\theta) = 6.8 \tan \theta - (\pi - \theta)I_1 - I_2
\]

and

\[
E(\theta) = \sqrt{2} \int_0^\pi (u - \theta)(\cot u/2)^2 \cos u \, du.
\]

It is simple to show that \(D \) is strictly increasing and \(E \) is strictly decreasing. The monotonicity of these functions imply

\[
D(\theta) + E(\theta) > D(\theta_{k-1}) + E(\theta_k), \quad \theta_k = k\pi/120, \quad k = 1, 20.
\]

If we prove that \(D(\theta_{k-1}) + E(\theta_k) > 0, \quad \theta_k = k\pi/120, \quad k = 1, 20 \), then it follows that \(\text{Re } F(e^{i\theta}) \geq \text{Im } F(e^{i\theta}) \), \(\theta \in [0, \pi/6] \) and the proof is done. The inequalities \(D(\theta_{k-1}) + E(\theta_k) > 0, \quad k = 1, 20 \) can be checked easily by using a computer program.

3. The main result

Theorem 3.1. If \(f, g \in \mathcal{A} \) and

\[
\text{Re } \frac{g(z)}{z} > \left| \text{Im } \frac{g(z)}{z} \right|, \quad z \in U,
\]
then the condition
\[\text{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U \]
implies that
\[(3.1) \quad \text{Re} \frac{F(z)}{z} > \left| \text{Im} \frac{F(z)}{z} \right|, \ z \in U, \]
where \(F = A(f) \).

Proof. Let \(\Lambda \) be the set of probability measures on \([0, 2\pi]\). We introduce the notation
\[B = \left\{ \int_0^{2\pi} \int_0^1 \ln \left(\frac{1 + xze^{-it}}{1 - xze^{-it}} \right)^{1/2} dx d\mu(t) \mid \mu \in \Lambda \right\}. \]

According to Lemma 2.5 we have \(F \in B \). Let \(z_0 \in U \) be an arbitrarily fixed point, and let \(p_{z_0} \) be the functional defined by
\[p_{z_0} : B \to \mathbb{R}, \quad p_{z_0}(F) = \text{Re} F(z_0) - \left| \text{Im} F(z_0) \right|. \]

If we prove that \(p_{z_0}(F) \geq 0 \) for every \(F \in B \) in case of an arbitrarily fixed point \(z_0 \in U \), then inequality (3.1) follows. Since the functional \(p_{z_0} \) is concave, according to Lemma 2.5, we have to verify \(p_{z_0}(F) \geq 0 \) only for the extreme points of the class \(B \). It follows from Lemma 2.5 that the extreme points of this class are
\[F_t(z) = \int_0^1 \ln \left(\frac{1 + xze^{-it}}{1 - xze^{-it}} \right)^{1/2} dx, \ t \in [0, 2\pi]. \]

For \(z_0 = r_0e^{i\theta_0} \), the inequality \(p_{z_0}(F_t) \geq 0 \) is equivalent to
\[\int_0^1 \ln \left(\frac{1 + x^2r_0^2 + 2xr_0 \cos(\theta_0 - t)}{1 + x^2r_0^2 - 2xr_0 \cos(\theta_0 - t)} \right)^{1/2} \cos \left(\frac{3}{2} \arctan \frac{2xr_0 \sin(\theta_0 - t)}{1 - x^2r_0^2} \right) dx \geq \left| \int_0^1 \ln \left(\frac{1 + x^2r_0^2 + 2xr_0 \cos(\theta_0 - t)}{1 + x^2r_0^2 - 2xr_0 \cos(\theta_0 - t)} \right)^{1/2} \sin \left(\frac{3}{2} \arctan \frac{2xr_0 \sin(\theta_0 - t)}{1 - x^2r_0^2} \right) dx \right|. \]

Denoting \(\theta_0 - t \) by \(\beta \), we obtain
\[\int_0^1 \ln \left(\frac{1 + x^2r_0^2 + 2xr_0 \cos \beta}{1 + x^2r_0^2 - 2xr_0 \cos \beta} \right)^{1/2} \cos \left(\frac{3}{2} \arctan \frac{2xr_0 \sin \beta}{1 - x^2r_0^2} \right) dx \geq \left| \int_0^1 \ln \left(\frac{1 + x^2r_0^2 + 2xr_0 \cos \beta}{1 + x^2r_0^2 - 2xr_0 \cos \beta} \right)^{1/2} \sin \left(\frac{3}{2} \arctan \frac{2xr_0 \sin \beta}{1 - x^2r_0^2} \right) dx \right|. \]
and we have to prove this inequality in case of \(r \in [0, 1], \beta \in [0, 2\pi] \). Replacing \(\beta \) by \(2\pi - \beta \), we get the same inequality. This shows that we have to prove (3.2) only in the case \(\beta \in [0, \pi] \) and \(r_0 \in [0, 1) \). Since

\[
\int_0^1 \ln \frac{1}{x} \left(\frac{1 + x^2 r_0^2 + 2xr_0 \cos \beta}{1 + x^2 r_0^2 - 2xr_0 \cos \beta} \right)^{\frac{3}{2}} \sin \left(\frac{3}{2} \arctan \frac{2xr_0 \sin \beta}{1 - x^2 r_0^2} \right) dx \geq 0, \quad \beta \in [0, \pi],
\]

inequality (3.2) is equivalent to

\[
\int_0^1 \ln \frac{1}{x} \left(\frac{1 + x^2 r_0^2 + 2xr_0 \cos \beta}{1 + x^2 r_0^2 - 2xr_0 \cos \beta} \right)^{\frac{3}{2}} \cos \left(\frac{3}{2} \arctan \frac{2xr_0 \sin \beta}{1 - x^2 r_0^2} \right) dx \geq \int_0^1 \ln \frac{1}{x} \left(\frac{1 + x^2 r_0^2 + 2xr_0 \cos \beta}{1 + x^2 r_0^2 - 2xr_0 \cos \beta} \right)^{\frac{3}{2}} \sin \left(\frac{3}{2} \arctan \frac{2xr_0 \sin \beta}{1 - x^2 r_0^2} \right) dx,
\]

(3.3)

\(\beta \in [0, \pi], \ r_0 \in [0, 1) \).

Let \(t = 0 \) and

\[
F_0(z) = \int_0^1 \left(\frac{1 + xz}{1 - xz} \right)^{\frac{3}{2}} \ln \frac{1}{x} dx.
\]

The function \(\Phi \) defined by the equality

\[
\Phi(r, \beta) = \text{Re} F_0(re^{i\beta}) - \text{Im} F_0(re^{i\beta})
\]

is harmonic on \(D = \{ z \in \mathbb{C} : |z| < 1, \ \text{Im}z > 0 \} \). Inequality (3.3) is equivalent to

\[
\Phi(r, \beta) = \text{Re} F_0(z) - \text{Im} F_0(z) > 0, \ z = re^{i\beta} \in D.
\]

Thus, according to the maximum principle for harmonic functions we have to check the inequality \(\Phi(r, \beta) > 0 \) only on the frontier of \(D \), namely in case of \(z = e^{i\beta}, \ \beta \in [0, \pi] \), and in case of \(z = u \in (-1, 1) \). Lemma 2.7 implies that the inequality

\[
\Phi(1, \beta) > 0, \ \beta \in [0, \pi]
\]

holds. In case of \(z = u \in (-1, 1) \) we have

\[
\Phi(r, \beta) = \int_0^1 \left(\frac{1 + xu}{1 - xu} \right)^{\frac{3}{2}} \ln \frac{1}{x} dx > 0
\]

and the proof is completed. \(\blacksquare \)

The following theorem is an improvement of Theorem 1.3 and brings us closer to the best possible result.
Theorem 3.2. Suppose \(f, g \in \mathcal{A} \) and
\[
\text{Re} \frac{g(z)}{z} > \left| \text{Im} \frac{g(z)}{z} \right|, \quad z \in U,
\]
then the condition
\[
\text{Re} \frac{zf'(z)}{g(z)} > 0, \quad z \in U
\]
implies that
\[
F \in S^*
\]
where \(F = A(f) \).

Proof. Differentiating the equality \(F = A(f) \) twice, we obtain
\[
F'(z) + zF''(z) = f'(z).
\]
The notations \(p(z) = \frac{RF(z)}{g(z)} \), \(P(z) = \frac{F(z)}{9(z)} \) lead to
\[
P(z)(zp'(z) + p^2(z)) = \frac{zf'(z)}{g(z)}, \quad z \in U.
\]
The conditions of the theorem imply that
\[
\text{Re} P(z)(zp'(z) + p^2(z)) > 0, \quad z \in U.
\]
First, we prove the inequality \(\text{Re} P(z) > 0, z \in U \). According to Theorem 3.1, inequalities (3.4) and (3.5) imply that
\[
\text{Re} \frac{F(z)}{z} > \left| \text{Im} \frac{F(z)}{z} \right|, \quad z \in U.
\]
This inequality and (3.4), imply that \(\text{Re} P(z) = \frac{F(z)}{g(z)} > 0, z \in U \).

We are now in the position of proving \(\text{Re} p(z) > 0, z \in U \).

If \(\text{Re} p(z) > 0, z \in U \) is not true, then, according to Lemma 2.2, there are two real numbers \(s, t \in \mathbb{R} \) and a point \(z_0 \in U \), such that \(p(z_0) = is \) and \(z_0p'(z_0) = t \leq -s^2/2 \). Thus
\[
P(z_0)(z_0p'(z_0) + p^2(z_0)) = P(z_0)(t - s^2)
\]
and \(\text{Re} P(z_0) > 0 \) implies that
\[
\text{Re} \left[P(z_0)(z_0p'(z_0) + p^2(z_0)) \right] < 0.
\]
This inequality contradicts (3.7), so we have \(\text{Re} p(z) = \text{Re} \frac{zF'(z)}{g(z)} > 0, z \in U \).
References

P.A. Kupán and R. Szász
Sapientia - Hungarian University of Transylvania
Tg. Mureş/Marosvásárhely
Romania
kupanp@ms.sapientia.ro
szasz_robert2001@yahoo.com