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Abstract. The main topic of this paper is the relation between the QRS
complexes recorded from different pairs of electrodes of the same ECG
signal. The electrode combinations I, II, III, aVR, aVL, aVF will be con-
sidered. Our aim is to provide a simple mathematical model for explaining
and demonstrating the relation between the records. The model we con-
struct is based on elementary rational functions having a single pole of
second order. The records are then represented in a proper three dimen-
sional function space determined by the pole. We show that the same pole
turns to be optimal for each of the electrode combinations. For finding the
optimal pole we have developed a hyperbolic version of the Nelder–Mead
algorithm. We also show that if we extend the function space by adding
the elementary rational functions with the same pole of order one, three,
and four etc. then a good approximation of QRS complexes can be given
for all of the records. We used the Physionet database [3] for testing our
model.
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1. Introduction

Heart functioning is accompanied by electric activity of the heart over time.
This causes electrical changes on the human skin that is amplified and mea-
sured by an ECG device. For this purpose electrodes are placed over the surface
of the human body according to a prescribed arrangement. Then the electric
voltage between two of them is measured. Each pair is called lead and they
detect the same electric heart activity but from a different angle. The 12-lead
ECG, in which 12 different electrical signals are recorded, are the most widely
used. In this paper the I, II, III, aVR, aVL, aVF leads will be considered. For
these leads the corresponding electrodes are coplanar, therefore we may use a
two dimensional model for representing the relation between the records. We
can view these records as functions that are nearly periodic. A typical period of
an ECG record consists of a P wave, a QRS complex, a T wave. They generate
a natural segmentation of the signal. The lengths of time intervals determined
by the starting and endpoints of the waves contain important medical informa-
tion along with the local extremal values. The QRS complexes are of special
importance in this respect. For details we refer to [2].

2. The mathematical model and the rational functions

The QRS complex is of special diagnostic importance in the analysis of ECG
signals. In our model they will be represented by means of a simple function
that is analytic on the closed unit disc. We have found rational functions of
order two to be adequate for this purpose.

Namely, for an a in the unit disc D = {z ∈ C : |z| < 1} we take the
elementary rational function

ra(z) :=
1

1− az
(|z| ≤ 1) .

where the pole is a/|a|2, a is called the inverse pole of ra. Then we restrict ra
onto the unit circle and decompose it into real and imaginary parts

r2a(e
it) = U1

a (t) + iU2
a (t) (t ∈ R, a ∈ D) .

Then the QRS complexes will be modeled as proper linear combinations of
U1
a (t), U

2
a (t), and the constant function U0

a (t) = 1. In other words the QRS
complexes will be modeled by the elements of the three dimensional subspace

La := span {U i
a : i = 0, 1, 2} .
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The role of the constant function is basically normalization. It has no effect
on the shape of the curve. Therefore, it has no morphological importance.
This means that our model is essentially two dimensional or in other words
a planar one. This modeling of course implies that also the QRS complexes
should be understood as real functions defined on an interval of length 2π. The
preprocessing of the QRS signals is detailed in the Tests and Results section. If
the pole a is fixed, i.e. the subspace La is given, then the approximation will
be Fourier projection of the QRS generated functions onto the subspace. To
this order it is convenient to have an orthonormal basis in La, which is quite
easy to obtain in this case. Namely, if a ∈ D is given in Euler form a = reαi

then by

1

(1− az)2
=

∞∑
n=0

(n+ 1)(az)n =

=
∞∑

n=0

(n+ 1)rn(cos(n(t− α)) + i sin(n(t− α))) (z = eit)

we have

U1
a (t) =

∞∑
n=0

(n+ 1)rn cos(n(t− α)) , U2
a (t) =

∞∑
n=0

(n+ 1)rn sin(n(t− α)) .

Hence it follows immediately that the functions U0
a , U

1
a −U0

a , U
2
a are pairwise

orthogonal with respect to the usual scalar product

〈f, g〉 := 1

2π

∫ π

−π

f(t)g(t) dt (f, g ∈ H)

in the real Hilbert space H = L2[−π, π). Consequently, this triple forms a basis
in La. Taking the norm induced by the scalar product we have

‖U1
a − 1‖2 = ‖U2

a‖2 =
1

2

∞∑
n=1

(n+ 1)2r2n .

We can express it in a closed form by considering

d

dz

z

(1− z)2
=

1 + z

(1− z)3
=

∞∑
n=1

n2zn−1 .

Namely, by substituting z = r2 we obtain

∞∑
n=1

n2r2(n−1) =
1 + r2

(1− r2)3
.
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Hence,

N2(r) := ‖U1
a − 1‖2 = ‖U2

a‖2 =
1

2

( 1 + r2

(1− r2)3
− 1
)
.

Then the orthonormal basis we will use in La is

u0
a := U0

a = 1 , u1
a :=

U1
a − 1

N(r)
, u2

a :=
U2
a

N(r)
,

which can be written in an explicit form as follows

u1
a(t) =

√
2

1+r2

(1−r2)3 − 1

(
1− 2r cos(t− α) + r2 cos(2(t− α))

(1− 2r cos(t− α) + r2)2
− 1

)
,

u2
a(t) =

√
2

1+r2

(1−r2)3 − 1

2r sin(t− α)− r2 sin(2(t− α))

(1− 2r cos(t− α) + r2)2
.

Then by the Bessel formula we have that the best approximation of a prepro-
cessed QRS complex in the Hilbert subspace La is

df (a) = ‖f‖2 −
2∑

j=0

|〈f, uj
a〉|2 .

This is the error for a fixed inverse pole a. Since we may choose a arbitrarily in
the unit disc the process goes on with minimizing the error function df : D → R.
If the point of minima is am ∈ D then the QRS complex will be represented
by the corresponding Fourier-projection

fQRS := Samf =

2∑
j=0

〈f, uj
am

〉uj
am

.

For this step of the process we have used and developed the hyperbolic version
of the Nelder–Mead algorithm.

3. Hyperbolic Nelder–Mead algorithm

The Nelder–Mead simplex algorithm [8] is a fast and widely used direct
search method for multidimensional unconstrained minimization. Despite of
its age it is still a very popular method for practitioners. It is simple and does
not contain differentiation. It is based on concepts and transformations in the
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usual Eucledian geometry. Concerning the use of Nelder–Mead algorithm for
finding the poles of rational functions we refer to [7]. In this section we take the
Poincaré model on D of the hyperbolic geometry. The reason behind taking
the hyperbolic model is that we need to keep the inverse poles within the unit
circle. We note that the hyperbolic model turned to be useful in system and
control theories as well (see e.g. [1]). In the Poincaré model the arcs intersecting
the unit circle perpendicularly and the diameters play the role of straight lines.
These can be described by means of the Blaschke functions

Ba(z) :=
z − a

1− az
(|z| ≤ 1, |a| < 1 , a, z ∈ C) .

It is known that Ba : D → D, and Ba : T → T are bijections for any a ∈ D,
and every hyperbolic line can be given in a parametric form

(−1, 1) � t → Ba(t) := εBa(t) , where a ∈ D, and ε ∈ T .

It can be shown that for any pairs w1, w2 ∈ D, w1 
= w2 there exist a unique
parameter a := (a, ε) ∈ D×T, and a number p ∈ (0, 1) such that Ba(0) = w1,
Ba(p) = w2. Moreover the parametrization of the hyperbolic line connecting
w1, and w2 is Ba, and Ba maps the interval [0, p] onto the hyperbolic segment
connecting w1, and w2. These parameters can be calculated as follows

p = |Bw1
(w2)|, ε =

Bw1
(w2)

|Bw1(w2)|
, a = −εw1 .

The so-called pseudo-hyperbolic metric on D is defined by

ρ(z1, z1) :=
|z1 − z2|
|1− z1z2|

= |Bz1(z2)| (z1, z2 ∈ D) .

Then (D, ρ) is a complete metric space which is invariant with respect to the
Blaschke transforms, i.e.

ρ(Ba(z1), Ba(z2)) = ρ(z1, z2) (z1, z2 ∈ D, a ∈ D× T) .

One can prove that the group of hyperbolic congruences can be identified with
the collection of the transforms {Ba : a ∈ D×T}. In particular, the geometric
operations in the Nelder–Mead algorithm can all be expressed in the hyperbolic
plain by means of the Ba functions. We note that the interval (−1, 1) itself is
a hyperbolic line in which the distance between the points −1 < q < p < 1 is

ρ(p, q) =
p− q

1− pq
.

We take the 0p hyperbolic line segment as a special case. Let the hyperbolic
middle point of it be denoted by pF and let pT be the reflection of 0 with
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respect to the point p. Then the following equations of second degree hold for
them

pF =
p− pF
1− ppF

, p =
pT − p

1− ppT
.

It is easy to see that they both have a unique solution in (0, 1). For any hyper-
bolic line segment w1w2 the middle point wF , and the reflection wT of w1

with respect to w2 can be be given in the form

Ba(pF ) = wF , Ba(pT ) = wT .

The hyperbolic version of the Nelder–Mead algorithm is designed for mini-
mization of functions of type F : D → R. In our problems related to the QRS
complexes we will need the following variant of it. In order to define the main
step of the algorithm let z1, z2, z3 belong to D and be indexed according to
the relation

F (z3) ≤ F (z2) ≤ F (z1) .

Furthermore, let the middle point of the hyperbolic line segment z2z3 be de-
noted by z0, and the hyperbolic reflection of z1 with respect to z0 by ze.
Then a new point z′ that depends on the value F (ze) will be defined. Finally,
we replace z1 by z′ (Case I.), or modify the original triple (Case II.) in order
to get the new triple of points. We note that in Case I. we define z′ so that
the condition

max{F (z2), F (z3), F (z′)} < max{F (z1), F (z2), F (z3)}

holds for it.

Case I.:

a) If F (z3) ≤ F (ze) < F (z2) then let z′ = ze.

b) If F (ze) < F (z3) then let z4 be the hyperbolic reflection of z0 with
respect to ze. This is illustrated in Figure 1. Then by comparing the
values F (z4) and F (ze) the point z′ is defined as follows:
If F (z4) < F (ze) then let z′ = z4, otherwise let z′ = ze.

c) If F (z2) ≤ F (ze) < F (z1) then let us take the middle point of the
hyperbolic line segment z0ze and denote it by z4. In case F (z4) ≤ F (ze)
let z′ = z4, otherwise turn to Case II. below.

d) If F (z1) ≤ F (ze) then let z4 be the middle point of the hyperbolic line
segment z0z1. In case F (z4) < F (z1) let z′ = z4, otherwise turn to Case
II. below.
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Case II.: Let z′1 be the middle point of z1z3. Similarly, let z′2 be the
middle point of z2z3. Then the triangle z1z2z3 will be replaced by z′1z

′
2z3.

This is illustrated in Figure 2.

It is easy to check that by this construction the condition made above for z′

is fulfilled. By repeating the steps the triangle shrinks around the best vertex
and the process can be stopped when the desired accuracy is reached.

Z_1

Z_2

Z_3
Z_0

Z_e

Z_4

Z_1

Z_2

Z_3

Figure 1. Figure 2.

We note that generally the limit of the process may depend on the starting
triangle. So it should be chosen according to the nature of the problem. For
instance, we experienced that if it is applied for the record of an entire heartbeat
rather than for the QRS complex only than there are two local minima, and the
process may converge to any of them. In that case we can ensure the proper
convergence by taking the initial values close to the expected limit. On the
other hand the same experiences showed that in case of QRS complexes and
the linear subspace La defined above the minimum is unique and the process
converges to the point of minimum.

4. Tests and results

We have used signals from the Physionet ([3], http://www.physionet.org)
ECG database to test our model. More precisely, 77 records of the 52 healthy
subjects there, the first 10 heartbeats for each of them, altogether 770 heart-
beats were taken. They can be found in the PTB Diagnostic ECG Database
(http://www.physionet.org/physiobank/database/ptbdb/) of Physionet.

In order to use our model we had to transform the QRS complexes to 2π
periodic functions. This preprocessing of the QRS complex went as follows.
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First we used the segmentation program built in Physionet, called ecg-
puwave (http://www.physionet.org/physiotools/ecgpuwave). For more
information about the program we refer to
http://www.physionet.org/physiotools/wag/ecgpuw-1.htm�sect8.
It is available as part of PhysioToolkit.

After the segmentation the result was a function restricted onto an interval.
The values at the two endpoints were usually not equal. Therefore we extended
the function linearly by taking the slopes at the two endpoints and also used
vertical shift. Then a Tukey window was applied to generate a 2π periodic
signal. The parameters of the window were set so that the constant one part
of the window corresponded to the original segmentation interval, and the
transition part was about 10 percent on each sides. Outside of it the function
was defined to be zero. We performed it for the six leads: I, II, III, aVR,
aVL, aVF. Then we used the hyperbolic Nelder–Mead algorithm for finding the
best pole for the rational approximation detailed above. During the algorithm
the distance between the rational Fourier projection and the QRS function
was calculated only for the interval on which the QRS complex was originally
supported. This included about a hundred sample points.

In our first test we were interested in the dependence of the best poles for
the different leads. For this reason we compared the 6 poles received from the
records of 6 leads of the same heartbeat. We found that the best poles for the
different leads are very close to each other even for real records that contain
noise.

In Figure 3. we show the positions of the inverse poles in the unit circle
for the signal marked as ”s0479” in the ptbdb database. The average of the
six inverse poles is marked by ∗. In Figure 4. we demonstrate the result of the
test performed for all the 770 heartbeats. We calculated the maximum of the
distances of the 6 inverse poles from their average. The test shows that the
inverse poles are within a 0.1 radius circle for about 65% of the records and
within a 0.2 radius circle for more than 95% of them.
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Figure 3. Figure 4.
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On the basis of the test we may consider the pole to be invariant with respect
to the leads, and therefore we may conclude that the pole is characteristic for
the heartbeat itself rather than for the different leads.

After having found the poles the Fourier projection of the QRS complexes
onto the corresponding La can be calculated. Then a simple approximation
for the QRS complexes in the 6 leads will be received. We can not of course
expect a high accuracy from this approximation. All we want to demonstrate
is the surprising result, that even these simple rational functions show the basic
characters of the records. In Figure 5. we took the same records as in Figure 3.
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Figure 5.

The green curves correspond to the QRS complexes, and the black curves are
the rational approximates. Besides the geometric similarity we note that the
PRD’s, the percent root mean square differences, calculated on the support of
the QRS complexes fall between 8.7 and 13 for all of the leads.

Finally we were interested in improving the accuracy of the approximation.
For this reason we kept the optimal pole calculated but instead of just using the
corresponding elementary rational function of degree 2 we added those of degree
1, 3, 4 and higher. In other words we took the linear space spanned by the
real and imaginary parts of the functions rna (e

it) (t ∈ R, n = 0, . . . N, N ∈ N).
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Taking an orthonormal basis in this 2N + 1 dimensional real subspace the
approximation is the Fourier projection of the functions corresponding to the
QRS complexes onto the subspace. The degree of approximation of the Fourier
projection improves by increasing N. At the same time the compression ratio
decreases since more and more coefficients should be stored. This relation is
demonstrated in Figure 6. by taking 5 records, (s0306lre, s0301lre, s0324lre,
s0479−re, s0552−re) from the database. We performed the computation for
N = 12 for the 770 heartbeats, and calculation the error in terms of PRD. The
result is presented in Figure 7. It shows that for more than 80% of the records
the PRD is not greater than 5%.
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Figure 6. Figure 7.

We note that this method is related to the theory of discrete Laguerre sys-
tems, which are special Malmquist–Takenaka systems (see e.g. [5]). Concerning
our latest results in this respect we refer to [4], and [9].

5. Future work

Finally we would like to remark that the model and the results presented
above naturally induce several questions that may initiate further investiga-
tions. Here we only mention two as examples.

a) Our model in this paper is a planar one and therefore can be applied for
6 leads only. We plan to develop a spatial model in order to demonstrate
the relation between all the 12 leads.

b) As it was shown in the paper the best poles for the different leads are
characteristic for the heartbeat itself rather than for the leads. So far we
have only used a database of healthy subjects. We will continue this test
for patients showing various symptoms in order to find out whether the
position of the pole could be an indicator for certain malfunctions of the
heart.
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