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Abstract. We examine the problem of finding sparse, mean reverting
portfolios based on multivariate historical time series. After mapping opti-
mal portfolio selection into a generalized eigenvalue problem, two different
heuristic algorithms are referenced for finding the solution in a subspace
which satisfies the cardinality constraint. Having identified the optimal
portfolio, we outline the known methods for finding the long-term mean
and introduce a novel approach based on pattern matching. Furthermore,
we present a simple convergence trading algorithm with a decision theo-
retic approach, which can be used to compare the economic viability of the
different methods and test the effectiveness of our end-to-end process by
extensive simulations on generated and historical real market data.

1. Introduction

Mean reversion, as a classic indicator of predictability in financial markets,
has received a lot of attention over the last few decades. It has been shown
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that equity excess returns over long horizons are mean-reverting and therefore
contain an element of predictability [9, 13, 17]. Convergence trading, by es-
timating the parameters of mean reverting portfolios has also been proposed
and studied in a number of previous research publications [3, 8].

In a recently published article, d’Aspremont posed the problem of finding
mean-reverting portfolios which are sparse [6]. The Box–Tiao procedure [4] is
used to extract cointegrated vectors by solving a generalized eigenvalue prob-
lem. Imposing a cardinality constraint is desirable for reducing transaction
costs associated with convergence trading and for increasing the interpretabil-
ity of the resulting portfolio. The simple greedy algorithm is introduced which
is used as a benchmark for the more complex semidefinite relaxation method.
In [10] we followed the same approach and proposed a simplified approach to
model identification based on historical data as well as introducing two new
methods for portfolio selection.

In this paper, we outline the above in some more detail and make two im-
portant, new contributions. Firstly, in Section 4.3, we propose a novel method,
based on pattern matching, to estimate the long-term mean of an Ornstein–
Uhlenbeck mean reverting process based on historical observations. We show
that this estimate is more reliable than the mean estimates used in [6] and
other related literature. Secondly, in Section 4.4, we introduce a simple conver-
gence trading algorithm based on a decision theoretic approach, which allows
the comparison, in terms of economic viability, of the different model identifica-
tion, parameter estimation and portfolio selection algorithms. The construction
of this allows an end-to-end process to be developed as shown in Figure 1.

Figure 1. Overall framework for identifying and trading sparse mean reverting
portfolios

The structure of the paper is as follows.

• In Section 2, after giving a formal presentation of the problem, we outline
some previously suggested methods for portfolio selection, following the
treatment of [6] and [10].

• In Section 3, we outline how the VAR(1) model parameters can be iden-
tified based on historical data, following the methods outlined in [10] and
making some minor corrections to them.
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• In Section 4, we present a novel, decision theoretic approach to trading
where an estimate is first obtained for the long-term mean of the process
and the agent makes hypotheses about the state of the process based on
this estimate.

• In Section 5, the methodology on generated VAR(1) data is validated
and significant trading gains are demonstrated. We also analyze the
performance on historical time series of real data: the daily close prices
of eight different maturity U.S. swap rates, and the daily close prices of
stocks comprising the S&P 500 index.

• Finally, in Section 6 some conclusions are drawn and directions for future
research are outlined.

2. Sparse, mean reverting portfolio selection

In this section, the model is described together with the foundations of
identifying mean reverting portfolios. Our approach follows the one published
in [6], and in Section 2.3 we present the methods published in [10].

2.1. Mean reverting portfolios

The problem we examine in this paper is the selection of sparse, mean
reverting portfolios which follow the Ornstein–Uhlenbeck process [15]. Let si,t
denote the price of asset i at time instant t, where i = 1, . . . , n and t = 1, . . . ,m
are positive integers. We form a portfolio, of value pt of these assets with
coefficients xi, and assume that asymptotically, as the size of the time increment
tends to zero, it follows an Ornstein–Uhlenbeck process given by:

(2.1) dpt = λ (μ− pt) dt+ σdWt,

where Wt is a Wiener process and λ > 0 (mean reversion coefficient), μ (long-
term mean), and σ > 0 (portfolio volatility) are constants.

Using the Ito-Doeblin formula [12] to solve this, we get:

(2.2) p(t) = p (0) e−λt + μ
(
1− e−λt

)
+

t∫
0

σe−λ(t−s)dW (s) ,

which implies that

(2.3) E[p(t)] = p (0) e−λt + μ
(
1− e−λt

)
,
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and asymptotically

(2.4) lim
t→∞

p(t) ∼ N

(
μ,

√
σ2

2λ

)
.

For trading, the mean reverting coefficient (λ) is a key parameter, as it
determines how fast the process gets back to the mean, as well as inversely
indicating the level of uncertainty around the mean (via the standard deviation
of the asymptotic Gaussian distribution). Hence, the larger the λ, the more
suitable is the mean reverting portfolio for convergence trading, as it quickly
returns to the mean and it contains a minimum amount of uncertainty around
the mean. Therefore, we will be concerned with finding sparse portfolios which
are optimal in the sense that they maximize λ.

2.2. Mean reverting portfolio as a generalized eigenvalue problem

In this section we view the asset prices as a first order, vector autoregres-
sive VAR(1) process. Let si,t denote the price of asset i at time instant t,
where i = 1, . . . , n and t = 1, . . . ,m are positive integers and assume that sTt =
= (s1,t, . . . , sn,t) is subject to a first order vector autoregressive process, VAR(1),
defined as follows:

(2.5) st = Ast−1 +Wt,

where A is an n × n matrix and Wt ∼ N(0, σW I) are i.i.d. noise terms,
independent of st−1, for some σW > 0.

One can introduce a portfolio vector xT = (x1, . . . , xn), where component
xi denotes the amount of asset i held. In practice, assets are traded in discrete
units, so xi ∈ {0, 1, 2, . . .}, but for the purposes of our analysis we allow xi to
be any real number, including negative ones which denote the ability to short
sell assets. Multiplying both sides by vector x (in the inner product sense), we
obtain

(2.6) xT st = xTAst−1 + xTWt.

Following the treatment in [6] and [4], we define the predictability of the
portfolio as

(2.7) ν(x) :=
var(xTAst−1)

var(xT st)
=

E(xTAst−1s
T
t−1A

Tx)

E
(
xT stsTt x

) ,

provided that E(st) = 0, so the asset prices are normalized. The intuition
behind this portfolio predictability is that the greater this ratio is, the more st−1
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dominates the noise and therefore the more predictable st becomes. Therefore,
we will use this measure as a proxy for the portfolios mean reversion parameter
λ in (2.1). Maximizing this expression will yield the following optimization
problem for finding the best portfolio vector xopt:

(2.8) xopt = argmax
x

ν(x) = argmax
x

xTAGATx

xTGx
,

whereG is the covariance matrix of the stationary process st. Based on (2.8) we
can see that the problem is equivalent to finding the eigenvector corresponding
to the maximum eigenvalue in the following generalized eigenvalue problem [6]:

(2.9) AGATx = αGx.

α can be obtained by solving the following equation:

(2.10) det(AGAT − αG) = 0.

Note that this can be transformed into a traditional eigenvalue problem by
introducing the variable u := G1/2x so that we have

(2.11) G−1/2AGATG−1/2u = αu.

2.3. Sparse portfolio selection

In the previous section we outlined how to select a portfolio which maxi-
mizes predictability by solving a generalized eigenvalue problem. However, we
seek the optimal portfolio vector exhibiting mean reverting property under a
sparseness constraint. Adding this to (2.8), we can formulate our constrained
optimization problem as follows:

(2.12) xopt = argmax
x∈Rn,card(x)≤L

xTAGATx

xTGx

where card denotes the number of non-zero components, and L is a given
positive integer 1 ≤ L ≤ n.

The cardinality constraint poses a serious computational challenge as the
number of subspaces in which optimality must be checked grows exponentially.
In fact, Natarjan shows that this problem is equivalent to the subset selection
problem, which is proven to be NP-hard [14]. However, as a benchmark met-
ric, we can compute the theoretically optimal solution which, depending on
the level of sparsity and the total number of assets, could be computationally
feasible [10]. We also describe two polynomial time heuristic algorithms for an
approximate solution of this problem.
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2.3.1. Exhaustive search method

The brute force approach of constructing all
(

n!
L!(n−L)!

)
L-dimensional sub-

matrices of G and AGAT and then solving all the corresponding eigenvalue
problems to find the theoretical optimum is, in general, computationally in-
feasible. However, for relatively small values of n and L, or as a benchmark
computed off-line, this method can provide a very useful basis of comparison.
Indeed, for the practical applications considered in [6] (selecting sparse port-
folios of n = 8 U.S. swap rates and n = 14 FX rates), this method is fully
applicable and can be used to see the level of sub-optimality of other proposed
methods.

2.3.2. Greedy method

A reasonably fast heuristic algorithm, first presented by d’Aspremont in [6]
is the so-called greedy method which we will briefly explain. Let Ik be the set
of indices belonging to the k non-zero components of x. One can then develop
the following recursion for constructing Ik with respect to k. When k = 1, we

set i1 = argmax
j∈[1,n]

(AGAT )
jj

Gjj
. Suppose now that we have a good approximate

solution with support set Ik given by (x)k = argmax{
x∈Rn:x

IC
k
=0

} xTAGATx
xTGx

, where ICk

is the complement of the set Ik. This can be solved as a generalized eigenvalue
problem of size k. We seek to add one variable with index ik+1 to the set Ik to
produce the largest increase in predictability by scanning each of the remaining
indices in ICk . The index ik+1 is then given by

(2.13) ik+1 = argmax
i∈IC

k

max
{x∈Rn:xJi

=0}
xTAGATx

xTGx
,where Ji = ICk \ {i} ,

which amounts to solving n−k generalized eigenvalue problems of size k+1. We
then define Ik+1 = Ik∪{ik+1}, and repeat the procedure until k = n. Naturally,
the optimal solution of the problem might not have increasing support sets
Ik ⊂ Ik+1, hence the solution found by this recursive algorithm is potentially
far from optimal. However, the cost of this method is relatively low: with each
iteration costing O

(
k2 (n− k)

)
, the complexity of computing solutions for all

target cardinalities k is O
(
n4
)
. This recursive procedure can also be repeated

forward and backward to improve the quality of the solution.
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2.3.3. Truncation method

A simple and very fast heuristic that we can apply is the following. First,
compute xopt, the unconstrained, n-dimensional solution of the optimization
problem in (2.8) by solving the generalized eigenvalue problem in (2.9). Next,
consider the L largest values of xopt and construct L × L dimensional sub-

matrices G′ and (AGAT )′ corresponding to these dimensions. Solving the
generalized eigenvalue problem in this reduced space and padding the resulting
x′
opt with 0’s will yield a feasible solution xtrunc

opt to the original constrained
optimization problem. The big advantage of this method is that with just
two maximum eigenvector computations, we can determine an estimate for the
optimal solution. The intuition behind this heuristic is that the heaviest dimen-
sions in the solution of the unconstrained optimization problem could provide,
in most cases, a reasonable guess for the dimensions of the constrained prob-
lem. This is clearly not the case in general, but nonetheless, the truncation
method has proven to be a very quick and useful benchmark for evaluating
other methods.

3. Estimation of model parameters

As explained in the preceding sections, in the knowledge of the parameters
G and A, we can apply various heuristics to approximate the L-dimensional
optimal sparse mean-reverting portfolio. However, these matrices must be es-
timated from the historical observations of the random process. There is vast
literature on the topic of parameter estimation of VAR(1) processes; recent
research has focused on sparse and regularized covariance estimation [1, 5, 18].
However, our approach will be to gain a dense estimate for G which best de-
scribes the observed historical data and to deal with dimensionality reduction
by the apparatus outlined in Section 2. Another important objective that we
pose for the parameter fitting is to provide a measure of goodness of fit of
the real time series to the VAR(1) model, which we can use in the portfolio
selection and trading parts of our overall algorithm.

3.1. Estimation of matrix A

We recall from our earlier discussion that we assume that st follows a first
order autoregressive process as in equation (2.5). We first observe that if the
number of assets n is greater than or equal tom, the length of the observed time
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series, then A can be estimated by simply solving exactly the linear system of
equations:

(3.1) Âst−1 = st.

Note that if n > m, this system is underdetermined, so there are infinitely
many solutions. In this case, we considered the subsystem consisting of the
first m assets to obtain a unique solution. This gives a perfect VAR(1) fit for
our time series for cases where we have a large portfolio of potential assets in
relation to the amount of data observed (e.g. considering daily close prices over
a 1-month period of all 500 stocks which make up the S&P 500 index), from
which a sparse mean-reverting portfolio is to be chosen.

In most of the applications, however, the length of the available historical
time series is greater than the number of assets considered, so typically m > n
and thus (3.1) is overdetermined, and A is estimated using, for example, least
squares estimation techniques, as in

(3.2) Â = argmin
A

m∑
t=2

‖st −Ast−1‖2

where ‖·‖ denotes the Euclidian norm.

Equating to zero the partial derivatives of the above expression with respect
to each element of the matrix A, we obtain the following system of equations:

(3.3)

n∑
k=1

Âi,k

m∑
t=2

sk,t−1sj,t−1 =

m∑
t=2

si,tsj,t−1 ∀i, j = 1, . . . , n.

Solving for Â and switching back to matrix-vector notation, we obtain

(3.4) Â =

(
m∑
t=2

sts
T
t−1

)(
m∑
t=2

st−1s
T
t−1

)+

,

where M+ denotes the Moore–Penrose pseudoinverse of matrix M. Note that
the Moore-Penrose pseudoinverse is used rather than regular matrix inversion,
due to possible singularity of the sum of outer products in the above expression.

3.2. Estimation of the covariance matrix of W

Assuming that the noise terms in equation (2.5) are i.i.d. with Wt ∼
∼ N(0, σW I) for some σW > 0, we obtain the following estimate for σW using
Â from (3.4):

(3.5) σ̂W =

√√√√ 1

n (m− 1)

m∑
t=2

∥∥∥st − Âst−1

∥∥∥2.
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In the more general case that the terms of Wt are correlated, we can estimate
the covariance matrix K of the noise as follows:

(3.6) K̂ =
1

m− 1

m∑
t=2

(st−Âst−1)(st − Âst−1)
T .

This noise covariance estimate will be used below in the estimation of the
covariance matrix.

3.3. Estimation of covariance matrix G

There are two independent approaches to estimating the covariance of a
VAR(1) process based on a sample time series. On the one hand, the sample
covariance and various maximum likelihood-based regularizations thereof can
provide a simple estimate and have been studied extensively for the more gen-
eral case of multivariate Gaussian distributions [1, 5, 7, 18]. In our treatment,
we take the approach of using the sample covariance matrix directly without
any reguralization or finding structure via maximum likelihood, as sparsify-
ing and structure finding will be left for the apparatus of the sparse portfolio
selection, explained in Section 2. As such, we will define Ĝ1 as the sample
covariance defined as

(3.7) Ĝ1 :=
1

m− 1

m∑
t=1

(st − s̄) (st − s̄)
T
,

where s̄ is the sample mean vector of the assets defined as

(3.8) s̄ :=
1

m

m∑
t=1

st.

On the other hand, starting from the definition of the VAR(1) process in (2.5)
and assuming the more general case that the terms of Wt are correlated with
covariance matrix K, we must have

(3.9) Gt = AGt−1A
T +K,

which implies that in the stationary case

(3.10) G = AGAT +K.

Having estimated A and K, as in the previous sections, this is a Lyapunov
equation with unknown G and can be solved analytically to obtain another
covariance estimate Ĝ2. This estimate exists, and is unique, in case no two
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eigenvalues of A have a product equal to 1. In this case, we note that since
K is symmetric, Ĝ2 is also guaranteed to be symmetric. Furthermore, studies
pertaining to the solution of Lyapunov equations show that if K is positive
definite and A has all its eigenvalues inside the unit disk, the solution of the
equation is also positive definite [2, 16]. However, it is possible that our estimate
of A does not satisfy this condition, in which case Ĝ2 is not necessarily positive
definite and, as such, it may not be a permissible covariance estimate. In order
to overcome this issue, in case the solution of the Lyapunov equation is non-
positive-definite, the following iterative numerical method can be used to obtain
a permissible covariance estimate Ĝ2:

(3.11) G(k + 1) = G(k)− δ(G(k)−AG(k)AT −K),

where δ is a constant between 0 and 1, G(i) is the covariance matrix estimate
on iteration i. Provided that the starting point for the numerical method,
G(0), is positive definite (e.g. the sample covariance matrix) and since our
estimate of K is positive definite, by construction, this iterative method will
produce an estimate which will be positive definite. It can also be seen that
if we select δ to be sufficiently small, this numerical estimate will converge
to the solution of the Lyapunov equation in (3.10), in case that is positive
definite. In Section 4, some numerical results are presented, which show that for
generated VAR(1) data, these two covariance estimates are equivalent, provided
that appropriately sized sample data is available for the given level of noise.
However, for historical financial data, the two estimates can differ significantly.
A large difference between the two estimates indicates a poor fit of the data to
the VAR(1) model, hence we can define the following measure of model fit:

(3.12) β :=
∥∥∥Ĝ1 − Ĝ2

∥∥∥ ,
where ‖M‖ denotes the largest singular value of the matrix M. This goodness
of model fit parameter will be used during trading to set our level of confi-
dence that the resulting portfolio indeed follows a mean reverting process and
therefore our convergence trading strategy will be profitable.

4. Trading as a decision theoretic problem

Having identified the portfolio with maximal mean reversion, satisfying the
cardinality constraint, our task now is to develop a profitable convergence trad-
ing strategy. The immediate decision that we face is whether the current value
of the portfolio is below the mean and is therefore likely to rise so we ought to
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buy, above the mean and therefore likely to fall so we ought to short sell, or
close to the mean in an already stationary state, in which case no profitable
action is available. In order to formulate this as a decision theoretic problem,
we first need to estimate the mean value of the portfolio. We present three dif-
ferent methods of identifying μ from the observations of the optimal portfolios
time series, {pt, t = 1, . . . ,m}.

4.1. Sample mean estimator

The simplest estimate of the mean of the process based on the time series
observation of the historical values of the portfolio is the one given by the
sample mean, defined as follows:

(4.1) μ̂1 :=
1

m

m∑
t=1

pt

This estimate is akin to a measure used by technical traders and gives a poor
estimate of the long-term mean of the mean-reverting process, in case it is in
its transient state, trending towards the true long-term mean. However, it has
served as a very useful benchmark for evaluating other methods.

4.2. Mean estimation via least squares linear regression

Following the treatment of [19], we can perform a linear regression on pair-
wise consecutive samples of p as follows:

(4.2) pt+1 = apt + b+ ε

for t = 1, . . . ,m−1. Then, an estimate of μ can be obtained from the coefficients
of the regression as follows:

(4.3) μ̂2 :=
b

1− a

Note that there is an instability in this estimate for a = 1, in which case
λ̂ = − ln a = 0 and hence the process is deemed not to be mean reverting based
on the observed sample.

4.3. Mean estimation via pattern matching

In our description of this novel mean estimation technique, we start from
the definition of the discrete Orstein–Uhlenbeck process in equation (2.1) and
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consider its continuous solution given in equation (2.2). Disregarding the noise
to consider only the expected value of the process, we can rewrite equation
(2.3) as follows:

(4.4) μ(t) = μ+ (μ(0)− μ) e−λt

where μ (t) = E [p (t)] is a continuous process of the expected value of the
portfolio at time step t with μ (0) = p (0). Intuitively, this describes the value
of the portfolio, without noise, in the knowledge of the long term mean and
the initial portfolio value.
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Figure 2. Some sample patterns of μ(t)

In Figure 2, we show some typical tendencies of μ(t) for various relative
values of μ(0) and μ. The idea behind pattern matching is to observe historical
time series values of pt = (p(t− 1), p(t− 2), . . . , p(0)) and use maximum like-
lihood estimation techniques to determine which of the patterns μ(t) matches
best. We first observe that pt = (p(t− 1), p(t− 2), . . . , p(0)) is subject to a
multivariate Gaussian distribution, the density function of which is given by

(4.5) D(pt) =
1√

(2π)
t
det (U)

e−
1
2 (pt−μt)

TU−1(pt−μt)

where Uij := cov (p (t− i) , p (t− j)) = σ2

2λ

(
e−λ(j−i) − e−λ(2t−i−j)

)
is the time-

covariance matrix of pt for j ≥ i and μt = (μ (t− 1) , . . . , μ (0)). The idea is
now to consider class Φ of all t-length vectors, μt which consist of sequences
satisfying (4.4). The maximum likelihood pattern matching estimate can now
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be formulated as follows:

(4.6) μ̂t = argmax
μt∈Φ

1√
(2π)

t
det (U)

e−
1
2 (pt−μt)

TU−1(pt−μt),

which is equivalent to

(4.7) μ̂t = argmin
μt∈Φ

{
μT
t U

−1μt − 2μT
t U

−1pt

}
.

Using the definition of μt and equation (4.4) to expand (4.7), then taking the
derivative of this quadratic expression with respect to μ, equating to zero and
solving, we obtain the following closed-form estimate for the long term mean:
(4.8)

μ̂3 :=

t∑
i=1

t∑
j=1

(
U−1
)
i,j

[
μ (0)

(
2e−λ(i+j) − e−λi − e−λj

)
− 2pj

(
e−λi − 1

)]
t∑

i=1

t∑
j=1

2 (U−1)i,j
(
e−λ(i+j) − e−λi − e−λj + 1

) .

Having observed the historical portfolio values in pt and μ (0) = p0, we can
substitute λ computed via linear regression [19] and σ = xT K̂x and use this
equation to obtain an estimate for the long term mean.

4.4. A simple convergence trading strategy

Our task is now to define an algorithm which results in a trading strategy
based on buying sparse mean reverting portfolios below the estimated mean,
and selling above the estimated mean. A simple model of trading in which we
restrict ourselves to holding only one portfolio at a time can be perceived as a
walk in a binary state-space, depicted in Figure 3.

Figure 3. Trading as a walk in a binary state-space

As a result, the main task after identifying the mean reverting portfolio and
obtaining an estimate for its long-term mean μ, is to verify whether μ(t) < μ
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or μ(t) ≥ μ based on observing the samples
{
p(t) = xT s(t), t = 1, . . . ,m

}
.

This verification can be perceived as a decision theoretic problem, since di-
rect observations of μ(t) are not available. If process p(t) is in stationary state,
then the samples {p(t), t = 1, . . . ,m} are generated by a Gaussian distribution

N

(
μ,
√

σ2

2λ

)
. As a result, for a given rate of acceptable error ε, we can select

an α for which

(4.9)

μ+α∫
μ−α

1√
2πσ2/2λ

e
− (u−μ)2

σ2/λ du = 1− ε

As such, having observed the sample p(t) ∈ [μ− α, μ+ α], it can be said that
we accept the stationary hypothesis which holds with probability 1 − ε. Thus
our trading strategy can be summarized as follows:

• If the observed sample p(t) < μ− α, then we accept the hypothesis that
μ(t) < μ. The probability of error associated with this hypothesis is
μ−α∫
−∞

1√
2πσ2/2λ

e
− (u−μ)2

σ2/λ du = ε/2. In this case, we buy the portfolio if we

have cash at hand, and we hold the portfolio if we already have one.

• If the observed sample p(t) > μ+ α, then we accept the hypothesis that
μ(t) > μ. The probability of error associated with this hypothesis is
∞∫

μ+α

1√
2πσ2/2λ

e
− (u−μ)2

σ2/λ du = ε/2. In this case, if we have a portfolio, we

sell it, otherwise we perform no action.

• If the observed sample p(t) ∈ [μ− α, μ+ α], then we accept the hypothe-
sis that μ(t) = μ. The probability of error associated with this hypothesis

is 1 −
μ+α∫
μ−α

1√
2πσ2/2λ

e
− (u−μ)2

σ2/λ du = ε. Then sell if a portfolio is held, or

perform no action if only cash is held.

We can now extend Figure 3 to present a complete flowchart for our proposed
simple trading strategy in Figure 4.

4.5. Technical issues of trading

Having worked out the mathematical and algorithmic foundations for mean
reverting trading, in this section some of the technical questions are examined
which arise during trading. One important question is whether to spend all
our available cash at the time we identify a mean-reverting portfolio which is
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Figure 4. Flowchart for simple convergence trading of mean reverting portfolios

below its long-term mean level or to use some cash management strategy to
only spend part of our current holdings. Indeed, we have two parameters, β and
λ which we can use to help establish our level of confidence in the profitability
of the portfolio. For simplicity, we have used the approach of spending all of our
available cash each time we identify an appropriate portfolio. Furthermore, the
simple convergence trading strategy we described in the previous section allows
holding only one portfolio at a time. We could enhance this to have the ability
to hold a number of portfolios at once, continually estimating the remaining
profitability of each and comparing this to the best available portfolio in the
market at each time step. Finally, in our numerical results, we have assumed
that we have the ability to buy and sell assets without any transaction costs
and we also have the ability to short sell. In order to make our results more
realistic, we could introduce a bid-ask spread or a more sophisticated order
book model to estimate the true profitability of these methods in the presence
of market friction.

5. Performance analysis

In this section, we will review some results of the numerical tests which
were produced for validating the methods outlined earlier. We first tested the
model parameter estimation methods on generated data to show their viability
and observe their limitations. We then produced a simple convergence trading
engine which has proven to perform extremely well on the generated VAR(1)
data, validating the theoretical value of our methodology. Finally, we ran our
parameter estimation, portfolio optimization and convergence trading strate-
gies on various historical financial time series.
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5.1. Performance of parameter estimation

In order to test the relative accuracy of the three different estimates of μ
presented in Section 4, we used simulated Ornstein–Uhlenbeck processes. Note
that for simulation purposes, as shown in [11], instead of equation (2.1), it is
more appropriate to use the discrete version of the differential equation, given
by

(5.1) p (t) = e−λΔtp (t− 1) +
(
1− e−λΔt

)
μ+ σ

√
(1− e−2λΔt)

2λ
dW (t)

As we can see in Figure 5, for a reasonably sized and sufficiently large
sample, the linear regression method produces a smaller Mean Squared Error
(MSE) than the other two estimates.
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Figure 5. MSE of each μ estimate as a function of σ. Fixing λ = 1, μ0 = 0
and sample size of 100, we generated noisy sequences as per (5.1) with μ =
1, 2, . . . , 50 and σ = 0.01, 0.02, . . . , 2.00

On the other hand, Figure 6 shows that the linear regression method is
unstable for smaller sample size (in these experiments, we used 20) and for
small values of λ. Indeed, we noted this instability in the description of this
estimator and for smaller sample sizes, and for smaller values of λ we are more
likely to encounter this. Note also that as we increase λ, the pattern matching
estimate produces increasing MSE with the limit of producing identical MSE
to the sample mean method.
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Figure 6. MSE of each μ estimate as a function of σ. λ = 0.5, 1, 2, 5, μ0 = 0
and sample size of 20

5.2. Performance of portfolio selection and trading
on generated data

In order to compare the portfolio selection methods outlined in Section 2,
we again generated VAR(1) data with random A matrix and noise with co-
variance matrix K. We then used the methods of Section 3 to compute the
estimates Â, K̂, and Ĝ and computed optimal sparse portfolios, maximizing
the mean-reversion coefficient λ. We found that in a large number of cases,
the greedy method yields portfolios whose mean reversion coefficient is close
to the theoretical best, produced by the Exhaustive method. Having run 1000
simulations on independently generated VAR(1) data, we observed that the ex-
haustive method produced better mean reversion coefficients than the greedy
method in 59.3% of the cases and outperformed the truncation method in 99.8%
of the cases. The greedy method produced lambdas which were, on average,
2.26% worse than the optimal lambda found by the exhaustive search while
truncation produced lambdas which were 7.34% worse on average. We also
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found a number of examples where the greedy method yielded portfolios whose
mean reversion coefficients were significantly below the theoretical optimum
and where other polynomial time heuristic methods could be found to improve
upon this (for an example, see Figure 7).
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Figure 7. Comparison of portfolio selection methods of various cardinality on
n=10-dimensional generated VAR(1) data

In order to examine the runtime of the portfolio selection algorithms, we
ran repeated simulations of selecting sparse portfolios from n assets for all car-
dinalities from 1 to n and plotting the total CPU time taken against n for each
of the proposed methods (Figure 8). We observe that the truncation method
is the fastest, taking less than 3 seconds on a Pentium 4, 3.80 GHz machine to
select all 100 subportfolios of 100 assets. The same took over 30 seconds for the
greedy method, which suggests that while the truncation method is well suited
for real-time algorithmic trading where sub-second algorithms are required for
a given cardinality, the greedy method could also be used for intraday elec-
tronic trading. The exhaustive search could also be viable for intraday trading
for asset populations of 20 or under, but the run times become hours on our
test hardware beyond 22 assets.

In order to prove the economical viability of our methodology, we imple-
mented the simple convergence trading strategy, outlined in Section 4.4. We
then generated n = 10-dimensional VAR(1) sequences of length 270 of which
the first 20 time steps were used to estimate the model parameters and find the
optimal portfolio of size L = 5 using the different methods, and the following
250 (approximate number of trading days in a year) were used to trade the
portfolio. Running each of the algorithms on 2000 different time series and
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Figure 8. CPU runtime (in seconds) versus total number of assets n, to compute
a full set of sparse portfolios, with cardinality ranging from 1 to n, using the
different algorithms

fixing ε = 0.02 as the error level, we found that all methods generated a profit
in over 97% of the cases. The size of the profit, starting from $100, using the
risky strategy of betting all of our cash on each opportunity, grew exponentially
over time, in some cases hitting as much as $14 million over the 250 trading
days. Figure 9 shows a typical pattern of successful convergence trading on
mean-reverting portfolios selected from generated VAR(1) data. We can ob-
serve that the more frequent the movement around the estimated long-term
mean, the more trading opportunities arise, hence the larger the profitability
of the methodology. Figure 10 shows the histogram of trading gains achieved
by the truncation method. All three methods produced average profits of the
same order of magnitude and the distribution of trading gains was very similar.
This is despite the fact that the exhaustive method produced mean reversion
coefficients on average 15 times those produced by the truncation method and
3 times those produced by the greedy method. This implies that the profits
reached by this simple convergence trading strategy are not directly propor-
tional to the lambda produced by the portfolio selection method. In order to
maximize trading gains, other factors (such as the goodness of model fit, the
amount of diversion from the long-term mean etc.) would need to be taken
into account. This topic is the subject of further research.

5.3. Performance of portfolio selection and trading
on historical data

We consider daily close prices of the 500 stocks which make up the S&P
500 index from July 2009 until July 2010. We use the methods of Section 3
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Figure 9. Typical example of convergence trading over 250 time steps on a
sparse mean-reverting portfolio. Weighted mix of L=5 assets were selected from
n=10-dimensional generated VAR(1) process by simulated annealing during the
first 20 time steps. A profit of $1440 was achieved with an initial cash of $100
having made 85 transactions
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Figure 10. Histogram of profits achieved over 2000 different generated VAR(1)
series. Note that in 30 cases the profit exceeded $4000 (not shown on the
histogram) with maximum profit of $12.6 million reached
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to estimate the model parameters on a sliding window of 8 observations and
select sparse, mean reverting portfolios using the algorithms of Section 2. Us-
ing the simple convergence trading methodology of Section 4, for portfolios of
sparseness L=3 and 4, the methods produced annual returns in the range of
23-34% (note that the return on the S&P 500 index was 11.6% for this reference
period). Detailed results are presented in Figure 11.

Figure 11. Comparison of minimum return, maximum return, average return,
and final return over a trading horizon of 1 year, on S&P 500 historical data of
the truncation and greedy methods for sparse mean-reverting portfolios of size
1, 2, 3, 4, 5, 7, and 10

Next, we studied U.S. swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y,
7Y, 10Y, and 30Y from 1995 to 2010. Similarly to the S&P 500 analysis, we
used sliding time windows of 8 observations to estimate model parameters and
applied the simple convergence trading methodology on heuristically selected
mean reverting portfolios. Due to poorer model fit, we observed more moderate
returns of 15-45% over the 15 years for portfolio cardinalities of 4 to 6. The
methods generated best results for cardinalities 4 and 5 (see Figure 12).



142 N. Fogarasi and J. Levendovszky

Figure 12. Comparison of minimum, maximum, average and final return on
historical U.S. swap data of the truncation method for sparse, mean reverting
portfolios of cardinality 1 to 8

6. Conclusions and directions for future research

In this paper we have examined the problem of selecting optimal sparse
mean reverting portfolios based on observed and generated historical time se-
ries. Having identified the portfolio, we have proposed a novel way to estimate
its long term mean, based on pattern matching. We have empirically shown
the relative stability and accuracy of this mean estimate, in comparison to
the other methods used in the literature on a variety of generated data. Fur-
thermore, we have introduced a simple trading algorithm based on a decision
theoretic approach and have shown its economic viability on both generated
and real historical data. Having examined the relationship between λ and the
profits generated by the simple trading method, we observe that the relation-
ship is not trivial. Further study of this will provide insight into what other
parameters should be considered during the optimal portfolio selection. It ap-
pears that whilst maximizing λ gives rise to an elegant formulation due to the
mapping to the generalized eigenvalue problem, this method does not maximize
the subsequent profits produced. Finally, more sophisticated trading methods,
involving multiple portfolios and better cash management as indicated in Sec-
tion 4.4 could be developed to further enhance trading performance and they
could be analyzed in the presence of transaction costs, short-selling costs and
order book.
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