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Abstract. We examine a simple model of public transport where under
certain conditions, there is an asymmetry in the traveling time between
two nodes in the two different directions. This asymmetry is surprising at
first sight, as it may also occur when every individual line is symmetric
with respect to direction – although only when line changes are made
during travel. The time-irreversibility of the journey is caused by the
asymmetry of waiting times when there are several possible ways to reach
the destination. We analyze the phenomenon under different assumptions
made on the waiting times and parallelism in the transport graph.

1. Introduction

In this short note we will discuss an interesting asymmetry in public trans-
port travel times the analysis of which has been motivated by personal experi-
ence. After moving to an outer district of Budapest a few years ago and having
used the public transport for a longer period, I observed that travel times tend
to be longer in the homebound direction than in the opposite direction. A few
measurements revealed that the difference (which turned out to be smaller in
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reality than in my mind) was mainly due to the differences in waiting times
between changes.

Below we examine models of public transport where travel time is not sym-
metric in the two directions. For simplicity, in most cases in the discussion we
will talk about means of transport as buses (or in a few cases metro lines to
emphasize larger line frequency), and assume that bus frequency at each stop
is the same in both directions. This is not always realistic, since for example
buses in the morning towards the city center may have slightly larger frequency
than backwards, but as we are mainly interested in comparing morning traffic
in one direction with evening traffic in the other, the symmetry assumption
is reasonable. We will also not try to analyze all of a city’s transport, so we
only concentrate on small parts of the transport graph. We make plausible
simplifying assumptions about expected waiting times.

Our model consists of the following: a graph G = (V,E) where V is the set
of bus stops and E is the set of undirected edges between nodes connected by
at least one bus line. The set of bus lines is denoted by L, and to every bus line
l ∈ L corresponds a walk (typically a path) in G, denoted by routel. For each
line l and edge e on routel we suppose that the travel time of line l along edge
e is described by a random variable Xl,e in both directions. At the two termini
of each line, a stochastic process describes the starting times. We suppose that
these processes are independent (so we do not take into account that if a bus
arrives late at a terminus, it will probably depart late in the opposite direction),
and also that the Xl,e are pairwise independent and also independent from the
dispatch times at the termini.

At any specific time instant at any stop v ∈ V the waiting time for line l in
a specific direction is described by a random variable. If we know the starting
times at the termini and Xl,e, then this random variable for the waiting time
can be calculated. We assume that the waiting time distribution averaged over
long time intervals converges to a limiting distribution. Thus it will make sense
to say that when we arrive at a stop at a “random time instant”, the waiting
time is described by a random variable. In what follows, we will assume that
this variable is already known, and is the same in both directions. We denote
it by Wl,v. We only consider situations when the passenger arrives at the stop
at a random time instant (they do not know the schedule).

A bus journey is defined as a series of bus lines l1, l2, . . . , ln together with
subpaths pi of routeli (or possibly of routeli reversed) for i = 1, . . . , n such that
the endpoint of pi is the starting point of pi+1 for i = 1, . . . , n − 1. The time
a bus journey takes (a random variable itself) is calculated as the sum of the
waiting times at the starting points of p1, . . . , pn−1 plus the sum of the times
needed for li to travel along pi.

We will assume that the aim of the passenger is to minimize the expected
travel time by choosing the best available journey. We do not require that
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they plan the entire journey before starting, so decisions based on observations
during the journey (“on-line” decisions) are allowed. The only type of on-line
decision we consider in the present paper is that the passenger can decide in a
stop whether to take bus 1 or continue waiting for bus 2 if bus 1 arrives first.

The paper is built up as follows: in section 2 we examine two simple sce-
narios to explain the importance of choices in the case of parallel lines. In
sections 3 and 4 we analyze these situations by making the assumptions that
waiting time is uniformly (resp. exponentially) distributed. We also give some
constructions in which the direction-dependence is present. In the summary,
we investigate further research directions. Throughout the article, we will use
facts from elementary probability theory without further reference. These can
be found in standard text books, e.g. [3, 6].

2. Two simple cases

We consider some simple cases where the passenger has a choice between two
journeys. The strategy for minimizing the expected travel time is not always
trivial. For the exact analysis of the situation, assumptions on the waiting
times need to be made, which we defer to the following two sections. Now we
only set up the scenarios and give an informal analysis of the travel times for
illustration purposes.

2.1. Slow and fast journeys between two points

In scenario 1 (see Figure 1), the passenger travels from point A to point B
and two lines are available for this: a slow line l1 and a fast line l2. The only
kind of on-line information that the choice is influenced by is which bus line
arrives at stop A earlier. Informally, is it worth waiting for the faster bus if
the slower bus arrives first? We can also ask if the answer can be different at
A and in the other direction at B.

It turns out that the one special case of the question has already been ana-
lyzed in [4]. A formerly known similar scenario is the “waiting versus walking”
problem [1, 2, 5] where the question is whether it is worth waiting for a bus if
the destination is within walking distance.

In our case, intuitively it is clear that if the average remaining waiting time
for the fast bus is smaller than the difference between the travel times of the
two lines then it is worth waiting for the faster bus when the slower bus arrives
first. We give the precise analysis of the situation in two important cases in the
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Figure 1. Scenarios 1 and 1*. There are two possibilities to go from A to B.
The question is if it is better to wait for the faster possibility or we should take
the line that arrives first.

following two sections. If we make the symmetry assumption that the waiting
times at A and B are identically distributed and that the journeys last equally
long in the two directions, then there is no difference in the strategy or the
expected travel time in the two directions.

In scenario 1* (see Figure 1), there is again a choice between two journeys,
but this time, both journeys contain a change. The slower journey consists of
slower bus 1 from A to C1, then metro 1 to B. The faster journey consists of
faster bus 2 from A to C2, then metro 2 to B. We assume that at B, the metro
lines share the same platform (so we can decide to take the first arriving line).

The analysis will be similar to scenario 1 but this time, waiting times at
A and B can be different. Thus the decision of waiting or taking the slower
journey can be different in the two directions.

2.2. Near-parallel lines with one change

In scenario 2, the situation is similar: the passenger wants to get from A
to B and also has two possibilities but this time a part of the two journeys is
a common track of some line. The situation is depicted in Figure 2. Point A
is situated far from the city center and there are two bus lines (bus 1 and bus
2 in the figure) connecting A to a frequently running metro line at points C1

and C2, respectively.
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Figure 2. Scenario 2: near-parallel lines connect A to a metro line along which
the destination B in the city center is situated. When going from A to B,
we take the first bus that arrives and change to the metro line at C1 or C2.
When going from B to A, we have to decide where to get off the metro possibly
without knowing whether bus 1 or bus 2 will start earlier.

When going from A to B one has the choice of taking either bus 1 or bus
2 and one has the option of taking the bus that arrives first. In the backward
direction we do not know which bus will have the shorter waiting time.

Scenario 2 was the situation that I observed in practice. At point A, the
waiting time until either bus 1 or bus 2 arrives is rarely more than 10 minutes.
In the other direction, after getting off the metro at either C1 or C2 waiting
times for buses relatively often exceed 10 minutes. It seems that this kind of
situation arises more often when A is in the suburban area and B in the center,
hence the title of this paper.

3. Uniform waiting times

The most simple waiting time distribution one can think of is the uniform
distribution. It seems plausible and has been observed [7] that in bus stops
close to the dispatch area, the interval between consecutive bus arrivals is
almost constant with small deviation from the average. Thus we may model
the situation by saying that arriving at a random time instant one is faced with
a waiting time Wl,v uniformly distributed in the interval [0, w] for some w.
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In scenario 1 from A to B, let the waiting times be independent and uniform
in the intervals [0, w1] and [0, w2], and let the expected travel times after getting
on the bus be e1 and e2 for bus 1 and 2 respectively (we assume that these are
known to the passenger). The strategy can be described by telling whether to
get on or not when the first bus arrives. The decision should only depend on the
time already spent by waiting and on the kind of bus arriving first. Formally, it
is a function f : [0,min{w1, w2}]×{1, 2} → {1, 2} where f(t, i) is i iff we should
take bus i if it is the one arriving first after t time of waiting. Conditional on
the condition that we have been waiting for time t, the (remaining) waiting
time pair is uniformly distributed in the rectangle [0, w1 − t]× [0, w2 − t]. If t
is the time instant when bus 1 arrives, then the expected travel time from now
on is e1 for bus 1, and e2 + (w2 − t)/2 for bus 2, since we still have to wait in
the latter case. If the bus arriving at time t is line 2, then the expected travel
times are e1 + (w1 − t)/2 and e2. The strategy is as follows:

f(t, i) = i if and only if 2(ei − ei) < wi − t .

Here 1 = 2 and 2 = 1. It is clear that we should take the faster line if it
arrives first. The formula says that we should take the slower one if twice the
time lost compared to the fast line is smaller than the worst-case time until the
fast bus arrives. Note the dependence of the strategy on t: if we have waited
long enough, we should wait some more because the remaining waiting time
decreases.

The expected travel time including waiting for a passenger arriving at A at a
random time instant can be calculated by integrating the expected time needed
for the optimal strategy over the rectangle [0, w1]× [0, w2], where (t1, t2) in this
rectangle represents a situation where bus i arrives ti time later (i = 1, 2).
Since the bus arriving first is 1 if and only if t1 < t2, the expected travel time
is: ∫

t1<t2,f(t1,1)=1

t1 + e1 dμ+

∫
t1<t2,f(t1,1)=2

t1 + e2 + (w2 − t)/2 dμ+

+

∫
t1≥t2,f(t2,2)=1

t2 + e1 + (w1 − t)/2 dμ+

∫
t1≥t2,f(t2,2)=2

t2 + e1 dμ.

Here μ is the uniform probability measure on [0, w1] × [0, w2]. If we assume
that e2 < e1 then the third integral is not present since we always take the
fast bus if it arrives first. We illustrate the regions over which the integrals are
taken in Figure 3.

Clearly, if we make symmetry assumptions on the lines, then at A and B
the analysis yields the same numbers. This is not true for scenario 1*, however.
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Figure 3. The three regions illustrate the strategy in the case of uniformly
distributed waiting times. The x-axis represents the time to the next arrival of
bus 1, the y-axis the time to the next bus 2. Bus 2 is faster.

The formulae apply to this case as well, but w1, e1, w2 and e2 might be different
at A and B. We prove that this can result in asymmetry of the expected travel
time by constructing an example. Suppose that in scenario 1*, bus 1 and 2 both
have uniform waiting times in the interval [0, 12] (in minutes) and both take
30 minutes to travel from A to Ci. Both metro lines come in every 6 minutes
and the metro journey is 20 minutes long. By symmetry w.r.t to journey 1
and 2 (or the above analysis), the strategy is to get on the line that arrives
first. From A to B we have w1 = w2 = 12, e1 = e2 = 30 + 6/2 + 20, including
waiting for the metro at Ci. The expected length of the travel time from A
to B including waiting is 12/3 + 30 + 6/2 + 20 = 57 by the integral formula.
The 12/3 is the expected time before the first one of bus 1 or 2 arrives. In
the opposite direction, the expected travel time is 6/3 + 20 + 12/2 + 30 = 58.
Informally, having an alternative between to infrequent lines (the bus lines)
is slightly preferable to having an alternative between two frequent lines (the
metro lines). Making available two parallel lines with identical waiting times
reduces the waiting time at a stop by one third if waiting times are uniformly
distributed and independent. The larger the waiting time was, the larger the
gain.

In scenario 2, the analysis is similar. First notice that if one were to get from
A to C1, the latter being between B and C2 on the metro line, the situation
would become a degenerate special case of scenario 1*, with metro 1 replaced
by an empty journey. The complete scenario 2 from A to B can also be handled
similarly.

But in the opposite direction, we have to make a decision about getting
off at C1 or C2 without any information on the bus lines. Let wBi be the
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maximum waiting time (both at A and Ci) and eBi the expected travel time
between A and Ci for bus i and let e12 be the expected travel time (without
waiting) between C1 and C2. The choice can be made in advance, by comparing
wB1+eB1+e12 with wB2+eB2. Let the waiting time for the metro be uniform
in [0, wM ] and the metro journey without waiting between B and C1 have
expected time eM .

We give an example where asymmetry occurs. Let wBi = 18, eB1 = 30,
eB2 = 25, wM = 2, e12 = 5 and eM = 10. From A to B there is no bias
between the two journeys (since eB1 = e12 + eB2), so we choose whichever bus
comes first (wBi/3 waiting on average). The expected travel time from A to B
is 18/3+ 30+wM/2+ eM = 47. In the opposite direction either strategy gives
wM/2 + 10 + wBi/2 + 30 = 50 minutes.

4. Exponential waiting times

Contrary to stops near the terminus, at stops farther away from the dispatch
area, the distribution of the time between two consecutive arrivals spreads
out to a larger interval. We will approximate the arrivals of the buses by a
Poisson process (see [7]), which means that waiting times are described by
an exponential distribution. The average waiting time is the same as at the
terminus, so the parameter λ of the distribution is the reciprocal of the waiting
time.

The main difference compared to the uniform distribution case is that wait-
ing does not reduce the remaining waiting time. So the strategy should not
depend on the time that we have already spent with waiting. Scenario 1 is
analyzed in [4] but we give an analysis for completeness.

In scenario 1, let λ1 and λ2 be the parameters of the waiting times, e1 ≥ e2
the expected travel times (without waiting) for bus 1 and 2 respectively. At
any time instant t before the buses arrive, the expected travel time including
waiting is 1/λi+ei for bus i, independently of t. Thus if the slower bus 1 arrives
first, we take it iff e1 < e2 + 1/λ2. If e1 − e2 < 1/λ1, then we take the first
bus that arrives, otherwise we always take bus 2. There is only a real choice
in the former case for which we calculate the average waiting times. This can
be done similarly to the above integrals, but now only two terms remain. The
overall travel time is then calculated as follows.

The probability that bus 1 arrives before bus 2 is λ1

λ1+λ2
. The expected time

for the first bus to arrive is 1
λ1+λ2

. Thus the expected travel time is the time
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for waiting plus the time for actual travel:

1

λ1 + λ2
+

λ1

λ1 + λ2
· e1 +

λ2

λ1 + λ2
· e2 =

1 + λ1e1 + λ2e2
λ1 + λ2

.

If we assume in scenario 1 that the parameters at A and B are identical, then
there is no asymmetry.

In scenario 1*, we construct an example similar to the uniform case, but
leave the details to the reader. We let every aspect of bus 1 be identical to that
of bus 2, and similarly for the metro lines. If the waiting times for the buses
have parameter λ, strictly smaller than the waiting time parameter μ for both
metro lines, then the average overall waiting time is 1

2λ + 1
μ
from A to B, and

1
2μ + 1

λ
from B to A, which is greater. Again, parallelism on a less frequent line

has larger benefits. This time, introducing two parallel lines reduces waiting
to half the time at that stop.

For an asymmetry in scenario 2, we let actual travel times be equal along
the two journeys and in either direction. Let the parameter for the waiting
time of the metro be μ, and that of both buses be λ. From A to B we wait
an expected amount of 1

2λ + 1
μ
, and in the opposite direction 1

μ
+ 1

λ
, which is

clearly greater.

5. Summary and further work

We described some situations with asymmetry between the two directions
even in the absence of asymmetries of any bus line frequencies or travel times
of single bus lines. Continuing this work, other waiting time distributions and
mixed cases (e.g. when the waiting time for bus 1 obeys a uniform distribution
but bus 2 arrivals are a Poisson process) should also be considered.

A further research possibility is to build a computer model of Budapest
public transport with (V,E), the Xl,e and the dispatch process at the termini
fed into it, and see how Wl,v and the optimal travel times are distributed. One
could then investigate between which points the asymmetry occurs, or more
generally, what can be said about the distribution of travel times of optimal
journeys and which choice should be taken. We made several reasonable sim-
plifying assumptions during the analysis and the model could be used to justify
or reject them. One thing that can clearly fail in practice is the assumption of
arriving at a “random time instant”: knowing the schedule (and the time) is
valuable information which helps in taking decisions about journeys. Another
important factor might be that near-parallel lines are often coordinated: the
arrival times are interleaved and waiting times are not independent.
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The passenger’s strategies may be generalized: instead of minimizing the
expected travel time, one might want to minimize the probability that the
travel time exceeds a specified time length. Or we can imagine a bet between
two friends at a bus stop on getting to some other place sooner: what is the
optimal strategy for maximizing the probability of winning the bet.

Finally, although I was unable to locate similar problems for routing in the
networking literature, there can be situations where some choice made during
path planning occurs in one direction and not in the other, resulting in a similar
time-irreversibility of the “journey”. It would be interesting to know if there
are similar scenarios in some other context outside traffic modeling.
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H-1117 Budapest
Hungary
peter.burcsi@compalg.inf.elte.hu


