
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 81–92

SOURCE CODE SCANNERS IN SOFTWARE

QUALITY MANAGEMENT AND CONNECTIONS

TO INTERNATIONAL STANDARDS

Anna Bánsághi, Béla Gábor Ézsiás,

Attila Kovács and Antal Tátrai

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 15, 2012; revised February 7, 2012;
accepted February 14, 2012)

Abstract. This paper deals with software quality by analyzing how source
code scanners in quality management are connected to international prod-
uct quality standards. The article has three parts: the authors (1) provide
a short overview of software quality management, (2) examine to what
extent can quality metrics of the static source code scanners PMD and
FxCop be classified into the attribute sets of ISO/IEC 9126 and ISO/IEC
25010 quality models, (3) investigate the quality road from the code to the
product via the ISO/IEC 25010 quality model.

1. Software quality management

Software quality is one of the most important aspects of a software com-
pany. Computers are being used in an increasingly wide variety of application
areas, their intended and correct operation is often critical for business suc-
cess and/or human safety. IT companies perform various activities and follow
various strategies to ensure the quality of their software systems.

Key words and phrases: Product Quality, ISO/IEC 9126, ISO/IEC 25010, PMD, FxCop.
1998 CR Categories and Descriptors: D.2.8, D.2.9.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).



82 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

Several quality standards, models, and methods have been developed in the
past to guide software companies in defining and institutionalizing their quality
management processes. Approaches, like ISO/IEC 9001, CMMI1, SPICE2,
Automotive SPICE focus on the quality of the software process. Some other
approaches, like ISO/IEC 9126 and ISO/IEC 25010 are about software product
quality. Others, e.g. GQM3, describe measurement techniques used in software
development, while even others, like PSP and TSP4 emphasize the importance
of human resources and personal processes used by the software development.
Nowadays, ITIL5, COBIT6, SoX7 and SQUARE8 are becoming more and more
popular, and other approaches, like Six Sigma, sometimes are also present in
the same quality management environment. In this paper we focus on software
product quality and we investigate the way source code scanners can be used
in quality management. First, for the sake of better understanding, we survey
the main aspects of software quality, the general (product) quality standards
and the source code scanners PMD and FxCop.

1.1. Aspects of software quality

The notion of software quality (SQ) can be defined in multiple ways, see [1,
2, 11, 13, 22, 23]. Although the various definitions are clear and unambiguous,
the concept of quality is noticeably complex. Just a few examples: Kitchenham
[19] states that quality is hard to define, impossible to measure, but easy to
recognize. Gilles [15] states that quality is generally transparent when present,
but easily recognized in its absence. DeMarco [14] states that a product’s
quality is a function of how much it changes the world for the better. An
important and useful approach of software quality is to consider it in a technical
and in a business context [7]. Functional requirements describe the behaviors
(functions, services) of the system that support user goals, tasks or activities.
Based on these requirements functional quality is typically measured through
specification-based software testing. The non-functional quality defines how
well non-functional requirements are met that support the delivery of functional
requirements. It is usually related to code and its internal structure. In this
paper we consider these aspects.

1Capability Maturity Model Integration
2ISO/IEC 15504 Information Technology, Process Assessment, also known as SPICE

(Software Process Improvement and Capability Determination)
3Goal Question Metric
4Personal Software Process, Team Software Process
5Information Technology Infrastructure Library
6A framework created by ISACA for IT Management and Governance
7Sarbanes-Oxley Act mandate controls to manage risk in the organization
8Requirements Engineering for Improved System Security and Privacy



Source code scanners in software quality management 83

1.2. Product quality standards

Specification and evaluation of software product quality is a key factor in
ensuring adequate business quality. This can be attained by defining appro-
priate quality characteristics taking into account of the intended use of the
software product [3, 5]. From a technical perspective, quality attributes drive
significant architectural and design decisions. Software quality management
(SQMG) helps to ensure that the required level of overall quality is achieved.
The ISO 9126 standard categorizes quality from the user perspective as func-
tionality, reliability, usability, efficiency, maintainability and portability pro-
viding 27 subcharacteristics of external quality (see Figure 1).

Figure 1. The software product quality based on the model ISO/IEC 9126

Quality-in-use is a combined effect of the six categories. Recently, the stan-
dard has been replaced by the ISO 25010 model (see Figure 2). This model has
eight product quality characteristics and 39 subcharacteristics. The standard
describes the internal and the external measures of software quality: internal
measures describe a set of static internal attributes that can be measured, while
the external measures focuses more on software as a black box and describes
external attributes. Besides the software product quality model, the standard
also describes another model, the model of software quality in use.

By comparing the two models it can be stated that the new model has a
broader range and is more accurate, but it suffers exaclty the same illnesses
as ISO 9126, namely, different parties with different views of software quality
can select different definitions. The ISO 9126 and the subsequent ISO 25010



84 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

Figure 2. The software product quality based on ISO/IEC 25010 model

standards both provide a good frame of reference for software product quality,
but do not offer a practically applicable method for quality assessment. On
the other hand, vast literature on software metrics proposes numerous ways
of measuring software without providing a traceable and in practice instantly
applicable translation to the multi-faceted notion of quality. We note hovewer,
that there are some valuable results in this direction, e.g. applying ISO 9126
based models for test specifications [25] or measuring maintainability via the
maintainability index [16].

For the sake of completeness we note that SQuaRE (Software product Qual-
ity Requirements and Evaluation) describes the structure, classification and
terminology of attributes and metrics applicable to SQMG [4]. Based on the
mentioned models the internal quality characteristics have been defined by the
Consortium for IT Software Quality (CISQ) [6]. CISQ has defined 5 major
quality characteristics needed for a piece of software to provide business value:
(1) reliability, (2) efficiency, (3) security, (4) maintainability, and (5) size.

1.3. The source code scanners PMD and FxCop

In software projects, the quality attributes have to be measured and eval-
uated. Software quality measurement is about quantifying to what extent a



Source code scanners in software quality management 85

software or system rates along each of the quality dimensions. An example for
such a measurement is static analysis. It is useful for catching common errors
early. Source code of various programming languages can be scanned and an-
alyzed in order to understand the code’s logical structure and determine the
impact of change. Source code scanner tools (SCST) provide metrics and often
statistical values for the scanned source code which can be used as the basis
for specific analysis and quality evaluations. In other words, these tools are
able to recognize ”code smells” (after Kent Black). Code smell is a hint that
something might be wrong in the code. It is important that calling something
a code smell is not an attack; it is simply a sign that in order to preserve or
reconstruct quality code a closer look is warranted. There are numerous SCST
tools accessible [10]. In this paper we use two of them.

PMD [8] scans Java source code and looks for potential problems like possi-
ble buggy statements, dead code, unused local variables, parameters and private
methods, suboptimal code, overcomplicated expressions, duplicate code, etc.
PMD is integrated with numerous IDEs. At present the latest version is 4.2.5.
We considered the following metric sets: Basic (33 rules), Braces (4 rules),
Clone Implementation (3 rules), Code Size (11 rules), Coupling (3 rules), De-
sign (48 rules), Finalizer (6 rules), Import Statement (5 rules), JUnit (11 rules),
Logging (7), Migration (14 rules), Naming (19 rules), Optimization (10 rules),
Exception (12 rules), String and StringBuffer (15 rules) and Security (2 rules).
We note that there are some rules in more than one metric sets.

FxCop [9] is an application that analyzes managed code assemblies (code
that targets the .NET framework common language runtime) and reports infor-
mation about the assemblies, such as possible design, localization, performance,
and security improvements. FxCop is intended for class library developers, de-
signed to be fully integrated into the software development cycle, and suited
for use as part of the automated build processes. It can be integrated with
Microsoft Visual Studio .NET. The current version is 10.0. We considered the
following rule sets: Design (62 rules), Globalization (11 rules), Interoperabil-
ity (16 rules), Mobility (8 rules), Naming (24 rules), Performance (16 rules),
Portability (3 rules), Security (42 rules) and Usage (43 rules). Here every rule
belongs to exactly one category.

2. Classifying the quality attributes by the standards

In this section we examine to what extent the quality metrics provided by
these tools can be classified into the attribute sets of the standards ISO 9126
and ISO 25010.



86 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

The classification process type was a technical review with at least 3 par-
ticipants, all of them having at least a two-year project experience in the given
programming language (Java experience in the case of PMD and C# experi-
ence in the case of FxCop). In the review meeting each rule has been discussed
and the probability of belonging to some quality attibute set has been quan-
tified. Each rule was allowed to belong to more than one set. If for a given
attribute the average quantity was more than or equal to 90%, then the rule
was accepted to belong to the appropriate set, otherwise was not. In this way,
the classification is reproducible having the same results with high probability.

As an example, let us see the PMD rule TooManyStaticImports. The ra-
tionale of the rule is that if one overuses the static import feature, it can make
the program unreadable and unmaintainable polluting its namespace with all
the static members imported. Readers of the code (including the author) a few
month later will not able to recognize (or only with extra effort) which class
a static member comes from. Therefore, the rule has been classified into the
Maintainability/Analyzability quality category with 100% consensus. In this
way we categorized all the 203 PMD rules and 225 FxCop rules into ISO 9126
and ISO 25010 categories (Figures 3–4).

Maint.

67%

Reliability

12%

Functionality

2% Efficiency

19%

Maintainability

53%

Efficiency

11%

Reliability

2%

Functionality

32%

Portability
2%

Figure 3. The distribution of the rule sets in the case of PMD (left) and FxCop
(right) regarding ISO 9126 quality categories.

We note that in the case of FxCop the pre-defined categorization (naming)
of the rules and rule sets gave a significant support for the classification.

Some interesting observations:

• In the case of PMD the impact of the changes in the quality categories
were marginal. In contrast, the impact of the changes in the case of
FxCop were more significant.

• Regarding ISO 25010 FxCop has more rules for Technical Security, Func-
tional Suitability and Compatibility, but proportionally less for Reliabil-
ity.



Source code scanners in software quality management 87

Maint.

69%

Reliability

11%

Security.

1% Performance Eff.

18%

Functional Suit.1%

Maintainability

53%

Transf.
2%

Perf. Eff.

11%

Reliability

2%

Func. Suit.

11%

Compatibility

7% Security

14%

Figure 4. The distribution of the rule sets in the case of PMD (left) and FxCop
(right) regarding ISO 25010 quality categories.

• Both tools have approximately the same number of rules for Performance
Efficiency.

• The most rules of the applied source code scanner tools are assigned to
the Maintainability attribute set.

• Inside the Maintainability characteristic the most significant subcharac-
teristic was Analysability. In the standard ISO 9126

– Case PMD: Analysability has 66%, Stability has 21%, Chengeability
has 10% and Testability has 3% of the Maintainability rules,

– Case FxCop: Analysability has 76%, Stability has 6%, Chengeability
has 10% and Testability has 8% of the Maintainability rules.

In the standard ISO 25010

– Case PMD: Analysability has 63%, Modification Stability has 21%,
Chengeability has 6% Testability has 3%, Modularity has 4% and
Reusability has 3% of the Maintainability rules,

– Case FxCop: there were no significat changes to ISO 9126.

3. The quality road from code to product

In order to specify non-functional quality, various distinctions can be made.
In the case of the executing system the qualities of interest are relative to user
goals. We will refer to these as run-time qualities. In the case of the work
products the qualities are driven by the development organization’s goals. We



88 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

will refer to these as development-time qualities (see [20]). The scope of these
requirements may be system-wide or local to some specific behavior.

• Run-time quality describes how well the functional requirements are sat-
isfied. The attributes are useability (such as ease-of-use, learnability, rec-
ognizability, efficiency, etc.), configurability, supportability, correctness,
reliability, availability, QoS requirements (such as performance, through-
put, response time, transit delay, latency, etc.), safety properties (such as
security and fault tolerance), operational scalability (including support
for additional users or sites, or higher transaction volumes).

• Development-time quality. In addition to systems that satisfy their users,
the development organization has interest in the properties of the arti-
facts of the development process (design, code, test, etc.). Qualities of
these artifacts influence the effort and cost associated with the current de-
velopment as well as support for future changes or uses (maintenance, en-
hancement, reuse). Examples of development-time quality requirements
are localizability, modifiability, extensibility, evolvability (support for new
capabilities or ability to exploit new technologies), composability (ability
to compose systems from plug-and-play components), reusability.

Extending this idea, a three-level quality model was introduced by Plösch
et al. (design quality, code quality, runtime quality) [21].

Figure 5 shows the connections and influences of code quality to product
quality. Code quality is closely related to architecture quality: a quality code
has to be well structured (but, of course, it is not enough). Architecture quality
consists of system architecture quality, package (module) quality, class quality
and abstract data structure quality. The development-time quality influences
the code quality via the architecture, and the code with its architecture in-
fluences the runtime quality. Source code scanners are able to examine the
architecture and the development-time quality decisions, and (to some extent)
the runtime properties as well. Source code scanners provide data for measuring
quality via quality rules. In our interpretation, code quality can be measured
via source code scanners applying the following quality rule sets:

• Complexity,

• Exception handling,

• Comment quality,

• Logging,

• Naming conventions,



Source code scanners in software quality management 89

Figure 5. Source code scanners and product quality



90 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

• Security,

• Proper language style,

• Proper programming technique,

• Volume,

• Resource efficiency,

• Time efficiency,

• Code clones.

The authors should like to raise the reader’s attention for the importance of
testing quality as being a significant part of the development-time quality. It
must be also noted that there are positive and negative influences among the
quality attributes (e.g. a more efficient code may be harder to maintain, while
appropriate comment quality may make it easier).

4. Conclusions and further work

In this paper we examined the ISO/IEC 9126 and ISO/IEC 25010 quality
models from the viewpoint of static code analyser capabilities. We assigned
the quality rules of the tools PMD and FxCop to the quality characteristics
and subcharacteristics of the standards (more than 200 rules in each tool). We
conclude that

• Case PMD: the classification of the rules yields almost the same distri-
bution in the quality characteristics of ISO 9126 and ISO 25010.

• Case FxCop: the characteristic Functionality of ISO 9126 represents pro-
portionally 32% but only 11% in the case of ISO 20510. The new category
Security represents 14%, which means that FxCop stresses significant em-
phasis on security. The characteristic Maintainability represents the same
proportion in both quality models (more than 50%).

For both standards the dominant characteristic was Maintainability with dom-
inant subcharacteristic Analysability.

One of our future plans is to give a model for supporting the establishment
and measurement of attributes in quality profiles via source code scanners and



Source code scanners in software quality management 91

call-graph analysis. The quality profile presents the relevant quality character-
istics and the evaluation levels for the software product. It reflects the notion of
quality for a certain software product and makes quality clear and measurable
for both developers and users. The profile is based upon information about
customer/user, business process and the software product itself. Our second
plan is to analyse the impact of automatic source scanner issues on code quality.

References

[1] IEEE 610.12:1990, IEEE Standard Glossary of Software Engineering
Terminology.

[2] ISO/IEC 9000:2000, ISO Standard for Quality Management Systems –
Fundamentals and Vocabulary.

[3] ISO/IEC 9126:2001-2004, ISO Standard for Software Engineering –
Product quality – Part 1: Quality model, Part 2: External metrics, Part
3: Internal metrics, Part 4: Quality in use metrics.

[4] ISO/IEC 25000:2005, ISO Software Engineering – Software Product
Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE.

[5] ISO/IEC 25010:2011, ISO Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE) – System
and software quality models.

[6] CISQ, Consortium for IT Software Quality, www.it-cisq.org, retrieved:
2012-01-01.

[7] Wikipedia, Software Quality, retrieved 2012-01-01.

[8] PMD, pmd.sourceforge.net, retrieved: 2012-01-01.

[9] FxCop, msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx,
retrieved 2012-01-01.

[10] Wikipedia, Static code analysers,
List of tools for static code analysis, retrieved 2012-01-01.

[11] American Society for Quality, Glossary - Entry: Quality,
www.asq.org/glossary/q.html, retrieved 2012-01-01.

[12] Abran, Alain, Al-Qutaish, Rafa E. and Desharnais, Jean-Marc,
Harmonization issues in the updating of the ISO standards on software
product quality, Metrics News Journal, 10/2, ed. Otto-von-Guericke, Uni-
versity of Magdeburg, Germany, December, (2005), pp. 35–44.

[13] Crosby, Philip, Quality is Free, McGraw-Hill, 1979.

[14] DeMarco, Tom, Management Can Make Quality (Im)possible, Cutter
IT Summit, Boston, April 1999.



92 A. Bánsághi, B.G. Ézsiás, A. Kovács and A. Tátrai

[15] Gillies, Alan C., Software Quality, Theory and Management, Interna-
tional Thomson Computer Press, 1996.

[16] Heitlager, I., T. Kuipers and J. Visser, A practical model for mea-
suring maintainability, in: Proceedings of the 6th International Conference
on the Quality of Information and Communications Technology (QUATIC
2007), IEEE Computer Society Press, 2007, pp. 30–39.

[17] Ho-Won Jung, Seung-Gweon Kim, Chang-Sin Chung, Measuring
software product quality: A survey of ISO/IEC 9126, IEEE Software,
21/5, September/October, (2004), 10–13.

[18] Kan, S.H., Metrics and Models in Software Quality Engineering,
Addison-Wesley, Boston, MA, second edition, 2002.

[19] Kitchenham, Barbara and Shari Lawrence Pfleeger, Software qual-
ity: The elusive target, IEEE Software, 13/1, (January 1996), 12–21.

[20] Malan, R. and D. Bredemeyer, Defining non-functional requirements,
www.bredemeyer.com/pdf files/NonFunctReq.PDF, retrieved 2012-1-1.

[21] Plösch, R., H. Gruber, C. Krner, G. Pomberger and S. Schiffer,
A proposal for a quality model based on a technical topic classification,
Proceedings of SQMB 2009 Workshop, held in conjunction with SE 2009
conference, March 3rd 2009, Kaiserslautern, Germany, published as Tech-
nical Report TUM-I0917 of the Technical University Munich, July 2009.

[22] Pressman, Roger, Software Engineering: A Practitioner’s Approach,
5th Edition, McGraw Hill, 2001.

[23] Schulmeyer, G. Gordon and James I. McManus, Handbook of Soft-
ware Quality Assurance, 3rd edition, Prentice Hall PRT, 1998.

[24] Spinellis, D., Code Quality: The Open Source Perspective, Addison Wes-
ley, Boston, MA, 2006.

[25] Zeiss, B., D. Vega, I. Schieferdecker, H. Neukirchen and
J. Grabowski, Applying the ISO 9126 quality model to test specifica-
tions - exemplified for TTCN-3 test specifications, Software Engineering,
(2007), 231–244.

A. Bánsághi and A. Kovács
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
Pázmány P. sétány 1/C.
H-1117 Budapest
Hungary
bansaghi@inf.elte.hu

attila.kovacs@compalg.inf.elte.hu

B.G. Ézsiás and A. Tátrai
MeasureIT Ltd.
Budapest
Hungary
ezsias.bela@gmail.com

tatraian@caesar.elte.hu


