
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 19–46

RAPID PROTOTYPING FOR DISTRIBUTED

D-CLEAN USING C++ TEMPLATES

Viktória Zsók and Zoltán Porkoláb

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 2, 2012; revised February 23, 2012;
accepted March 6, 2012)

Abstract. Earlier we have designed two coordination languages, D-Clean
and D-Box for high-level process description and communication coordina-
tion of functional programs distributed over a cluster. D-Clean is the high
level coordination language for functional distributed computations. The
language coordinates the pure functional computational nodes required by
language primitives, and it controls the dataflow in a distributed process-
network. In order to achieve parallel features, D-Clean extends the lazy
functional programming language Clean with new language primitives. Ev-
ery D-Clean construct generates a D-Box expression. D-Box is an intermedi-
ate level language and describes in details the computational nodes hiding
the low level implementation details and enabling direct control over the
process-network. Practical experiences of the two language usage showed
the difficulties of distributed program development, especially in testing
and debugging. This paper aims to provide software comprehension appli-
cation for a better way of understanding and utilizing the D-Clean language.
Here we provide a new modeling approach of the coordination language el-
ements and a new view of the D-Clean distributed system behaviour using
C++ templates. The strong type system of C++ templates guarantees
the correctness of the model. Using templates we can achieve impressive
efficiency by avoiding run-time overhead.

Key words and phrases: Distributed computation, skeletons, templates.
2010 Mathematics Subject Classification: 68N18, 68N19.
1998 CR Categories and Descriptors: D.3.3.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

20 V. Zsók and Z. Porkoláb

1. Introduction

The D-Clean distributed environment is a multiparadigm programming tool
for distributed programs based on the Clean pure functional language. The
system uses two coordination languages to provide language primitives for the
development of applications with client-programs written in functional pro-
gramming languages. The syntax and informal semantics of them are described
in [18, 19], while the mappings from D-Clean expressions to D-Box expressions
are in [7].

The D-Clean language consists of a minimal set of language primitives with
several advantages. Typical parallel programming algorithms can be imple-
mented elegantly using subproblems described in functional programming style.
The users can test their parallel and functional programming knowledge in a
multiparadigm environment. The set of the D-Clean primitives is minimal and
easy to use. However, debugging distributed programs can be a very difficult
task in a cluster environment. We have implemented in [20] a Clean executable
version of the sophisticated D-Clean primitives to provide an easier comprehen-
sion tool for D-Clean program developers.

This paper aims to present a new modeling approach of the distributed and
parallel functional programming examples tested now in C++ in templated ex-
ecutable environment with distributed language elements, boxes, channels and
messages. The D-Clean programs are presented in a tutorial style starting from
simple skeleton examples to more complex ones, while the new C++ templates
are explained in details.

Our main motivation is to verify the semantics of the primitives by program
execution. The template examples are handy to understand and to compare
the semantics of the distributed system with the executable version one. We
provide a framework as software comprehension tool for better understanding
the role of the language primitives.

The distributed evaluation of functional programs on a cluster and the
communication between computational nodes require high-level coordination
mechanism for the description of processes. Therefore, the D-Clean coordination
language has a higher level control role, while D-Box has a lower abstraction
level. The coordination of functions is expressed in the form of distributed
process-networks. D-Clean primitives control the dataflow on the channels of
the process-network.

A process network defines a partial computation graph, where the nodes
are functions to be evaluated and the edges are communication channels. The
computational nodes are implemented as statically typed Clean programs. The
process networks are defined by skeletons, algorithmic schemes parameterized
by functions, types and data.

Rapid prototyping for distributed D-Clean 21

D-Clean is compiled into an intermediate level language D-Box, based on
Petri nets [2]. D-Box is designed for the description of the computational nodes
implemented as pure Clean programs. It uses middleware services for asyn-
chronous communication. D-Box expressions hide implementation details and
enable direct control over the computation nodes. The language defines input
and output protocols for the communications via channels.

In functional programming, skeletons are higher order functions [4]. In
D-Clean a skeleton is a high level, abstract definition of the distributed com-
putation, and it is parameterized by functions, types and data. A scheme is
actually identified and described by compositions of coordination primitives.
The coordination primitives have the role of manipulating and controlling the
pure functional components written in Clean. The middleware services (for the
technical details see the second part of [19]) enable the distributed communi-
cation between the computational nodes.

Here in this paper we define in templated style the algorithmic skeletons of
parallel programming. The tested D-Clean programs are using the executable
definitions of the complex primitives of the distributed system (see the basic
list of primitives in Appendix A). The template description of the D-Clean

distributed model enables expressing the semantics of the D-Clean programs
using another programming paradigm than functional.

This templated model simulates in one sequential program the distribution
of tasks of the original D-Clean system. This new way of description demon-
strates the expressiveness and ease of use of the two coordination languages.
It leaves out the details of the distribution and communication in the original
environment. The programmer can do the sanity check of the distributed pro-
gram, can verify and test what to expect when the application is running in
the real distributed system.

The strong type system of C++ templates guarantees the correctness of the
model. Using templates we can avoid run-time overhead achieving impressive
efficiency. The provided framework enables for users familiarized with object-
oriented programming to test skeletons in specific, templated way.

The paper is organized as follows: we present first the D-Clean language
via examples, we explain the main components of the D-Clean using C++ tem-
plate classes in the model section, we enumerate related works, and finally we
conclude in the last section outlining further research plans too.

2. The D-Clean language primitives

D-Clean is a Clean-like language for distributed computations on clusters,
and it consists of a relatively small number of coordination language primi-

22 V. Zsók and Z. Porkoláb

tives. Here we define in monadic style the algorithmic skeletons of parallel
programming. The tested D-Clean programs are using the executable Clean def-
initions for the complex primitives of the distributed system (see the basic list
of primitives in the appendix).

In functional programming skeletons are higher order functions [4]. We call
a D-Clean skeleton scheme. A scheme is a high level, abstract definition of the
distributed computation, and it is parameterized by functions, type and data.
Schemes are actually identified and described by compositions of coordination
primitives. The coordination primitives have the role of manipulating and con-
trolling the pure functional components written in Clean, which however express
the pure computational aspects. The middleware services (for the technical de-
tails see the second part of [19]) enable the distributed communication between
the computational nodes.

A coordination primitive uses channels for receiving the input data required
for the arguments of their function expressions. The results of the function ex-
pressions are sent to the output channels. Every channel is capable of carrying
data elements of a specified base type from one computational node to another
one. In the executable version of the D-Clean system, we made an abstraction
of channels by numbering them and visualizing them by arrows.

A coordination primitive usually has two parameters: a function expression
(or a list of function expressions) and a sequence of input channels. The coor-
dination primitives transfer their results to a sequence of output channels. The
signature of the coordination primitive, i.e. the types of the input and output
channels are inferred according to the type of the embedded Clean expressions.
For a more detailed D-Clean language description see [7].

The executable semantics version of the D-Clean system is easier to under-
stand, and it is used for testing the program before running it on a cluster.
This system exploits the fact that the D-Clean coordination primitives can be
composed in a way similar to functions in a functional programming style, us-
ing a very easy signature, the primitives were given in executable way in a new
system defined in [20]. This section presents the D-Clean examples and their
visualization using this latter system.

The D-Clean language primitives have the same semantics in the two execu-
tion ways. However, due to abstractions from the real distributed environment,
some of the distributed D-Clean properties are difficult to express in the system
version designed especially for the testing semantics in executable way.

This section presents the D-Clean implementation of some useful skeletons.
The figures in this section are generated by the execution of the D-Clean pro-
grams in the executable semantics’ system, developed for testing and graphical
visualizing.

Rapid prototyping for distributed D-Clean 23

The examples of this section usually have a generated input dataflow (for
simplicity, here usually a list of integers is generated). The generator can easily
be extended to any other data structure.

2.1. The DExec encapsulation

The task of the DStart primitive is to start the distributed computation by
producing the input data for the dataflow graph. It has no input channels,
only output channels. The DStart primitive will take the input given by the
generator function and it then starts the computation. The results of the
generator are sent to the output channels. Each D-Clean program contains at
least one DStart primitive.

Another coordination primitive which must be included in any D-Clean pro-
gram is the DStop primitive. If a function expression embedded into a DStop

primitive has k arguments, then the computation node evaluating the expres-
sion needs k input channels. Each input channel carries one argument for the
function expression. The task of the DStop primitive is to receive and save the
result of the computation. It has as many input channels as the function ex-
pression requires, but it has no output channels. DStop closes the computational
process. Each D-Clean program contains at least one DStop primitive.

The executable system encapsulates these two mandatory primitives in the
DExec wrapper and enables writing directly in it the scheme to be tested.

In the following, we present some of the earlier defined schemes in [19]
together with their code-snippets developed here for the system version of the
executable semantics, and we generate their graphical visualizations too.

The D-Clean primitives (listed also in Appendix A, except the DStart and
DStop due to the above encapsulation) are composed using the >>= combinator
as the monadic bind operation.

2.2. Apply operations

Our first simple example illustrates how to use the distributed version of
the well known standard map library function. The D-Clean variant of the map

function is a simple computational scheme, and it applies the DMap primitive
designed for the purpose of elementwise processing of the incoming data ele-
ments.

The parameter function of the DMap primitive can be any Clean elementwise
function (see more details in [8]). Here, the DMap example computes the squares
of the elements of a list of integers. DExec is written in monadic style, the
parameters are lifted, the expression to be calculated is myflow, the dataflow to
which is applied is myval, the node numbering necessary for the visualization
is starting from 0.

24 V. Zsók and Z. Porkoláb

generator :: [Int]
generator = [1 , 2 , 5 , 7 , 12, 14, 17, 25, 30, 45]

square :: Int → Int

square x = x^2

Start w = dumpGraph (DExec myval myflow) w

where
myval = generator

myflow i

= DMap square (0 ,i)

The execution generates the following figure:

Figure 1. The DMap primitive

Since the coordination primitives can be composed, D-Clean skeletons can
be written as compositions of D-Clean language primitives. Suppose we define
a D-Clean scheme which is composed of three DMap elements given as in the
following code:

generator :: [Int]
generator = [1 , 2 , 3 , 5 , 1 , 4 , 3 , 6 , 3 , 5]

f1 :: Int → Int

f1 x = ((^) 2) x

f2 :: Int → Int

f2 x = x*x

f3 :: Int → Int

f3 x = ((+) 1) x

Start w = dumpGraph (DExec myval myflow_map3) w

where
myval = generator

myflow_map3 i

Rapid prototyping for distributed D-Clean 25

= DMap f1 (0 , i)
>>= DMap f2

>>= DMap f3

The computation scheme is visualized as in the Figure 2.

Figure 2. The Map3 skeleton

In the following we will ignore the Start expression writing in the code-
snippet only the applied primitive composition (given in monadic way). The
input dataflow is considered the list given by the generator, while the D-Clean

scheme is given in the myflow expression.

Similar schemes can be written in a more general way, using the DApply

coordination primitive.

generator :: [[Int]]
generator = [[11 , 223, 445, 21, 5] , [5 , 88, 7 , 6 , 3]]

mfold :: [[Int]]→ [Int]
mfold data = map total data

total :: [Int] → Int

total x = foldr (+) 0 x

For example, by using the above total function, which computes the sum of
the elements of a sublist, the DApply primitive can be used as follows.

26 V. Zsók and Z. Porkoláb

myval = generator

myflow_apply i

= DApply "mfold" mfold (0 , i)

DApply applies the same mfold function to the two sub-lists on different compu-
tational threads. Contrary to the other primitives, in the case of DApply we use
a string parameter to visualize explicitly the function performed by primitive.
It can also be observed that DMap is a special case of DApply.

Figure 3. The DApply primitive

The second variant, DApplyN applies different function expressions, which
are given in a function sequence, to different input dataflows. If the function
sequence contains an identity function, then the data received via the corre-
sponding channel is forwarded directly to the output channel and afterwards
to the next node. DApply1 applies n times the same function to n different
threads.

generator :: [Int]
generator = [1 , 2 , 3 , 6 , 4 , 5 , 7 , 6 , 8]

f1 :: [Int] → [Int]
f1 x = map ((^) 2) x

f2 :: [Int] → [Int]
f2 x = map f x

f3 :: [Int] → [Int]
f3 x = map ((+) 1) x

Analogously to the Map3 scheme, a composition of DApply primitives can be
written.

myval = generator

myflow_a3 i

= (DApply "f1" f1) (0 , i)
>>= (DApply "f2" f2)
>>= (DApply "f3" f3)

Rapid prototyping for distributed D-Clean 27

Figure 4 illustrates the above example similarly to Figure 2.

Figure 4. The DApply3 skeleton

Some computational skeletons have similar functionality, i.e compute the
same result, but using different coordination primitives and function param-
eters. Since the DMap coordination primitive is a special case of the DApply

primitive, the Map3 can be also considered a special case of the Apply3 scheme.
Choosing carefully the function parameters, the same computational skeleton
can be expressed by different compositions of basic primitives.

2.3. Farm skeleton versions

The farm skeleton divides the original task into subtasks, computes the
subresults and builds up the final results from the subresults (see Figure 5).

The skeleton uses two more D-Clean primitives: DDivideD for dividing the
input into n parts and DMerge for merging inputs. DDivideD splits the input
dataflow into n parts and broadcasts them to n computational nodes (the
value of n must be known at compile time). DMerge collects the input sublists
from channels and builds up the output data lists. All the input channels must
have the same type.

generator :: [Int]
generator = [1 , 9 , 4 , 6 , 2 , 8 , 5 , 3 , 10, 7]

combine_lists :: [[Int]] → [Int]
combine_lists [] = []

28 V. Zsók and Z. Porkoláb

combine_lists [x:xs] = merge x (combine_lists xs)

divide :: Int [Int] → [[Int]]
divide n xs = [split n (drop i xs) \\ i←[0..n-1]]
where

split n [] = []
split n [x:xs] = [x : split n (drop (n-1) xs)]

qsort :: [Int] → [Int]
qsort [] = []
qsort [a:xs] = qsort [x \\ x ← xs | x < a] ++ [a] ++

qsort [x \\ x ← xs | x > a]

The farm computational skeleton uses the following Clean function argu-
ments for the dividing and combining phases.

myval = generator

myflow_farm i = DDivideD (divide 3) (0 , i)
>>= DApply1 (F "qsort" qsort)
>>= DMerge combine_lists

Figure 5. Farm skeleton

The DDivide boxes also contain the threads numbers obtained after division.
The divide function divides the input into n parts, DApply1 applies the same
qsort function to the divided parts and DMerge will merge the subresults into a
final one using the combine_list function. DApply1 as the other apply operations

Rapid prototyping for distributed D-Clean 29

uses the F type constructor for Clean functions, while the D type constructor
stands for D-Clean expressions (see type definitions in the appendix A). Special
vizualization is applied for the DDivide computation node. Instead of depicting
one box for the primitive itself, we depict as many boxes as many computation
threads will appear after division. In this proper way, a box appears for every
subthread sparkled after division.

Another version of the farm skeleton may use the DReduce primitive in-
stead of DApply (see Figure 6). DReduce is a special case of DApply with some
restrictions. A valid expression for DReduce has to reduce the dimension of the
input channel. The modified farm skeleton can be used with the same divide

function and the sum:: [a]→a function as below.

myflow_farm_reduce i

= DDivideD (divide 3) (0 , i)
>>= DReduce sum

>>= DMerge sum

Figure 6. Farm reduce skeleton

The opposite of the DReduce is the DProduce primitive, which is another special
case of DApply. The expression has to increase the dimension of the channel
type.

2.3.1. Farm and pipeline skeleton composition

The following example uses the same farm computation skeleton, but here
the subtasks are pipelined functions. The square root values of the elements

30 V. Zsók and Z. Porkoláb

given by the generate function are computed using Newton iterations. The
approximate square root of the value a is calculated according to the following
formula:

x0 =
a

2

xi+1 =
1

2
∗
(

a

xi
+ xi

)
The generated real numbers are first converted into a record containing the
proper value and the first iteration (the half of the value).

:: Pair = { d :: Real

, a :: Real

}

generator :: [Real]
generator = [1.0,9.0,4.0,6.0,2.0,8.0,5.0,3.0,10.0,7.0]

t :: Real → Pair

t x = {d = x/2.0 , a = x}

transform :: [Real] → [Pair]
transform x = map t x

divide :: Int [Pair] → [[Pair]]
divide n xs = [split n (drop i xs) \\ i←[0..n-1]]
where

split n [] = []
split n [x:xs] = [x : split n (drop (n-1) xs)]

step :: Pair → Pair

step x = {d = 0.5*((x.a/x.d)+x.d) , a = x.a}

f :: [Pair] → [Pair]
f x = map step x

combine_lists :: [[Pair]] → [Pair]
combine_lists x = flatten x

The Farm scheme is used for distributing the values on three different compu-
tation threads. The input is a list of Pair elements obtained by the transform

function. DDivideD splits the input dataflow into three parts. After division, on
each branch a pipeline composition of g functions is applied. Finally, DMerge
collects the subresults into a final list.

Rapid prototyping for distributed D-Clean 31

myflow i

= DDivideD (divide 3) (0 ,i)
>>= DApplyN [F "f" (f o (f o f)) , F "f" (f o (f o f)) ,

F "f" (f o (f o f))]
>>= DMerge combine_lists

The generated visualization enables seeing the parallel operations and the sub-
results on the threads as in Figure 7.

Figure 7. Farm and pipe combination

3. The model of D-Clean distributed system using C++

Templates are key elements of the C++ programming language [16]. They
enable data structures and algorithms to be parameterized by types, thus cap-
turing commonalities of abstractions at compilation time [17]. In C++, in order
to use a template with some specific type, an instantiation is required. This
process can be initiated either implicitly by the compiler when a template with
a new type argument is referred, or explicitly by the programmer. During
instantiation the template parameters are substituted with the concrete argu-
ments, and afterwards the code is compiled. As the result, the generated code
will be free from run-time overhead.

32 V. Zsók and Z. Porkoláb

The abstraction provided by templates is frequently needed when using
general algorithms in data structures, or defining the data types like a vector
or a stack of elements of the same type. This method of code reuse is often
called parametric polymorphism to emphasise that here the variability is sup-
ported by compile-time template parameter(s). Generic programming [13] is
the programming paradigm for writing highly reusable components (containers
and algorithms) using parametric polymorphism. The most notable example
of generic programming is the Standard Template Library, part of the standard
C++ library [10].

The Standard Template Library defines template classes for the most com-
mon data structures, called containers, and generic algorithms working on con-
tainers. Algorithms are parameterized by iterators – special references to con-
tainer elements.

Many times variations on algorithms are expressed by further template
parameters – functors. Functors are objects from function classes. In C++

function classes are the generalisation of the concept of function or function
pointer. These classes define an operator() (the parenthesis operator), and
therefore functor objects can act like functions, i.e. they are callable. At
the same time, they are real C++ objects, so they may (and usually) have
constructors, they can be stored in variables and can be passed as function
parameters.

C++ templates are type-safe. The template instantiation happens as part
of the compilation and code generation process and any inconsistent usage of
templates cause compile-time errors. This feature makes the template an ideal
building block for constructing complex software architecture.

Due to the above advantages we decided to model the D-Clean distributed
system with C++ templates.

3.1. The model architecture

The executable model architecture consists of two major components: the
D-Clean foundation template library and the generated client code running on
top of the library. The foundation library contains the base architectural com-
ponents: the channels, the messages and the D-Clean elements. This is the
fixed part of the architecture: re-used but not modified for the various D-Clean

application models. On the other side, the client code is specific for the given
D-Clean application we want to model, and it is generated from the actual D-
Clean application. This is the code part where we assemble the various elements
of the foundation library to make them a working model.

We designed the foundation library according to the generic programming
paradigm but we have also utilized object-oriented techniques. All of the foun-
dation library elements are implemented as template classes. Template param-

Rapid prototyping for distributed D-Clean 33

eters of these classes represent the types carried by the D-Clean messages, the
cardinality of the channels connecting D-Clean coordination primitives and func-
tors representing the D-Clean skeletons. At the same time, an object-oriented
hierarchy provides some basic executable behaviour for model execution and
debugging purposes. In the following we explain this architecture in details.

3.2. DMessage

The DMessage class represents the unit of information propagated between
D-Clean coordination primitives. The message is a finite sequence of unspecified
elements from the parameter type T. We implemented the DMessage class via
the std::vector due to its simplicity and efficiency. The class is conceptually
the following:

template <typename T>

class DMessage : public std::vector<T>

{

// ...

};

As T could be any other well-defined type, a message could be a sequence of
integers, a sequence of complex structures (including classes) or even a sequence
of different finite sequences. The following examples are valid messages:

struct X { /* ... */ };

DMessage<int> dmi;

DMessage<X> dmx;

DMessage<std::list<dmx> > dmlx;

representing a sequence of integers, a sequence of elements with type X, and a
sequence of lists with elements of type X, respectively.

3.3. DChannelS

The DChannelS class represents a multi-dimensional communication chan-
nel between two coordination primitives. These channels have both statically
bound dimension (the S notation at the end of their name yields this) and
statically bound message type given as template parameters. In other words,
an instance of the DChannelS class can carry only a given type of messages and
have a fixed dimension. Conceptually, a DChannelS is the following:

34 V. Zsók and Z. Porkoláb

template <typename T, int N>

class DChannelS

{

// ...

};

where T is the type parameter of the DMessage objects transmitted via the
channel, and the N integer parameter is the static dimension. Thus, N, the
dimension of a DChannelS object represents N channels in a DClean expression.

The following examples are 2, 3 and 5 dimensional channels able to carry
messages defined in the earlier example:

DChannelS< int, 2> dchi; // transfers two DMessage<int>

DChannelS< X, 3> dchx; // transfers three DMessage<X>

DChannelS<std::list<X>,5> dchlx; // .. five DMessage<std::list<X>>

The channel class is implemented as an N-dimensional array of std::deques
containing DMessage objects with the appropriate type. These parameters are
accessible during run-time as they are part of the class public interface:

template <typename T, int N>

class DChannelS

{

public:

typedef T Type;

static const int Size = N;

int dim() const { return N; }

// ...

};

The main interface to write and read messages to and from a channel are the
pop and push functions:

DMessage<T> pop(int i);

void push(int i, const DMessage<T>& m);

These methods are applied to the i-th subchannel. Messages are written and
read in a sequential manner. The write() function places a new message to
the i-th subchannel. The read() function returns the subsequent message from
the i-th subchannel and also removes it from the channel.

Every channel object has a name attribute. This is set by the constructor
and accessible during run-time for debug purposes.

Rapid prototyping for distributed D-Clean 35

3.4. DBox

The DBox container stores pointers to DElem class, the common abstract
base class of every D-Clean coordination primitives. DBox is a generic template
container, hosting various coordination primitives. When the model is built up,
the coordination primitives should be registered to a DBox object. The main
feature of a DBox is the tick() method, which represents an execution step
in the model simulation. When tick() is called, it iterates over the container
and calls the tick() method of every coordination primitive object registered
to DBox.

class DBox

{

public:

void tick(bool verbose = false);

std::vector<DElem*>& elems() { return _elems; }

};

3.5. DElem

The D-Clean coordination primitives are implemented in distinct template
classes derived from a common base class: DElem. Each primitive has a unique
name for debug purposes and a virtual tick() method. Each call of the tick()
method executes a simulation step in the coordination primitive. To follow
these steps, the optional verbose parameter can be set to print extra debug
information.

class DElem

{

public:

virtual void tick(bool verbose = false) = 0;

std::string name() const { return _name; }

};

The DElem class is abstract class, and the intention is to instantiate only derived
classes. Derived classes define an overriding method of tick() to implement
coordination primitive specific actions for one execution step in the model sim-
ulation.

Every coordination primitive is represented as class templates derived from
the (non-templated) DElem class. The first template parameter of coordination
primitives is the type of the messages. The other template parameters are
the dimensions of input channels and of output channels, respectively. These

36 V. Zsók and Z. Porkoláb

parameters are compile time int constants. The last template parameter is
the functor executed by the coordination primitive.

The D-element classes are the following: DDivide, DApply1, DApplyN and
DMerge.

3.6. DDivide

The class DDivide represents a coordination primitive responsible to dis-
tribute information from the incoming channel to the outgoing one. The type
parameters are the type of the message (T), the dimensions of the incoming
and outgoing channels (Ni and No, respectively) and the functor executed as
the skeleton (F).

The main feature of the DDivide (as well as all of the other derived classes
inherited from DElem) is the overriding version of the tick method. This
method will be responsible to call the functor F and also to write relevant
debug information in case the verbose parameter was set.

Therefore the conceptual structure of DDivide is the following:

template <typename T, int Ni, int No, typename F>

class DDivide : public DElem

{

public:

DDivide(const char *n_, DChannelS<T,Ni>& in_,

DChannelS<T,No>& out_, F func_);

virtual void tick(bool verbose = false);

// ...

};

Creating C++ objects of template classes directly using the constructor is a
pain, as we have to explicitly specify each template parameter of the class.
This is especially uncomfortable due to the presence of functor parameters.
Therefore, we provide free functions as factories to create D-element objects
using template parameter deduction from actual arguments.

template <typename T, int Ni, int No, typename F>

DDivide<T,Ni,No,F>* make_DDivide(const char *name_,

DChannelS<T,Ni>& in_,

DChannelS<T,No>& out_,

F func_)

{

return new DDivide<T,Ni,No,F>(name_, in_, out_, func_);

}

Rapid prototyping for distributed D-Clean 37

The following function call creates a new DDivide object reading from a 2-
dimensional input channel ich and writing to a 5-dimensional output channel
och, redistributing incoming messages. The return value is a DDivide pointer
which has been safely upcasted to DElem pointer.

DElem *dePtr = make_DDivide("div", ich, och, RedistF<int,2,5>());

3.7. DApplyN

The most generic coordination primitive is DApplyN implementing a skeleton
reading and writing arbitrary channels while executing a functor parameter.

template <typename T, int Ni, int No, typename F>

class DApplyN : public DElem

{

public:

DApplyN(const char *n_, DChannelS<T,Ni>& in_,

DChannelS<T,No>& out_, F func_);

virtual void tick(bool verbose = false);

};

A usual situation is when the input and the output channels have different
dimensions. Therefore, DApplyN usually changes the channel dimension. This
class has a special version called DMerge to map multiple dimension input
channel into a one dimensional output channel.

3.8. DApply1

In many cases, a skeleton executes the same function on every dimension
of the input channel independently of the other dimensions. Such coordination
primitives can be implemented using DApplyN only with unnecessary complex-
ity. For such special cases we provide DApply1, a primitive for one-dimensional
transformation.

template <typename T, int N, typename F>

class DApply1 : public DElem

{

public:

DApply1(const char *n_, DChannelS<T,N>& in_,

DChannelS<T,N>& out_, F func_);

virtual void tick(bool verbose = false);

};

38 V. Zsók and Z. Porkoláb

While the parameter list of DApply1 is exactly the same as the one of DApplyN,
the functor is executed in a loop for every subchannel individually. We suppose
that the input and output channels have the same dimensions, otherwise we
emit compile-time errors.

template <typename T, int N, typename F>

void DApply1<T,N,F>::tick(bool verbose_)

{

// debug if verbose_

for (size_t i = 0; i < N; ++i)

{

DMessage<T> m = _func(_input.pop(i));

_output.push(i,m);

}

// debug if verbose_

}

4. Working example

In this section we show a complex scenario to describe the behaviour of the
executable model.

The scenario is the following. One integer number, K, is given in the input.
The first coordination primitive, a DDivide, will distribute this single number
into a 16-dimensional output channel, repeating K 16 times. The next primi-
tive is a random number generator implemented by a DApply1 on each single
dimension of the input channel generating a random number between 0 and
K-1. The generated number is placed to the corresponding output.

Thus, 16 random numbers will travel in a parallel way to the next primitive,
which is a DApplyN node, converting the 16-dimensional input channel into a
4-dimensional output channel, just creating a sequence of the input numbers.
Here, another DApply1 will sort each of the dimensions. The last two nodes are
DMerge nodes, merging a par of input sequences into a single ordered sequence.
At the very end, we will get a single ordered sequence of 16 numbers.

At the beginning we create a DBox object (db), where all the foundation
library elements will be registered. We create the DChannelS objects (input,
ch1, ..., ch5, output) with the corresponding message type and dimensions as
template parameters.

DBox db;

DChannelS<int,1> input("input");

Rapid prototyping for distributed D-Clean 39

DChannelS<int,16> ch1("ch1");

DChannelS<int,16> ch2("ch2");

DChannelS<int,4> ch3("ch3");

DChannelS<int,4> ch4("ch4");

DChannelS<int,2> ch5("ch5");

DChannelS<int,1> output("output");

Then we create the coordination primitives connecting the correct channels.
We register the objects to the DBox object. To create the objects we use the
factory methods introduced in 3.6. We apply the push back method of the
standard C++ std::vector class to insert the new elements to DBox.

DMessage<int> m1;

m1.push_back(10);

input.push(0,m1);

db.elems().push_back(make_DDivide("divide", input, ch1,

divF<int,1,16>()));

db.elems().push_back(make_DApply1("rand", ch1, ch2, randF));

db.elems().push_back(make_DApplyN("zip", ch2, ch3,

zipF<int,16,4>()));

db.elems().push_back(make_DApply1("sort", ch3, ch4, sortF));

db.elems().push_back(make_DApplyN("merge4", ch4, ch5,

mergeF<int,4,2>()));

db.elems().push_back(make_DApplyN("merge2", ch5, output,

mergeF<int,2,1>()));

We place the only input to the input channel and start the simulation calling
the tick() function.

DMessage<int> m1;

m1.push_back(10);

input.push(0,m1);

db.tick(true);

Now, the simulation iterates on all registered objects calling their virtual tick()
functions. The output of the example can be found in Appendix B. A simplified
Clean scenario and its skeleton cane be found in Appendix C.

5. Related work

Nowadays parallel functional applications are largely researched and tested
on Grid systems. The D-Clean language is an extension of the functional pro-
gramming language Clean with a relatively small sets of primitives to support

40 V. Zsók and Z. Porkoláb

the distributed computation of Clean functions over clusters. Early paralleliza-
tions of Clean for parallel super-computers are in [11, 15]. However, it became
important to provide tools for the new type of distributed environments too,
making it possible to program parallel skeletons on Grid systems. Our dis-
tributed process network approach is related to the Eden dialect [1] of Haskell
(for comparisons of parallel Haskell dialects see [12]).

Skeletons are computation patterns, algorithmic schemes that capture com-
mon computation mechanism [4]. Skeletons can be defined and parameterized
by functions, types and data. They are widely used in parallel computations,
see [14]. In functional programming, skeletons can be combined with evaluation
strategies in order to obtain optimal parallel behaviour, e.g. [8].

D-Clean is based on functional composition of the coordination primitives.
This enables us to build compound coordination structures, and they are ap-
plied on dataflows. Using the coordination primitives process schemes can be
defined easily. The D-Clean schemes are distributed functional computational
skeletons parameterized by types and by functions. Before instantiation, the
actual values of the type parameters have to be inferred from the type de-
scription of the embedded Clean expressions. In the case of the widely used
skeletons (like farm, divide and conquer, pipe and reduce), it is easier to deal
with the type inference problem than in general. Measurements demonstrated
high speed-ups for more complex problems. Several parallel functional lan-
guages ([5, 6]) are dealing with skeletons applied to dataflows [9, 3].

6. Conclusion and future work

In this paper we have presented the D-Clean model implemented using C++

templates. This implementation of the D-Clean distributed system model proved
to be an efficient software comprehension tool for testing parallel programs.
Complex D-Clean skeletons can be modeled and analyzed in a deterministic,
repeatable, single threaded environment. The strongly typed C++ templates
guarantees the correctness of the generated code and provides convincing run-
time efficiency.

We plan to further strengthen the C++ description of the distributed en-
vironment, to polish the generation of the templates directly from the D-Clean

definitions, which saves the programming efforts when testing distributed ap-
plications. Fully automated generation provides a maximum compatibility be-
tween the D-Clean system and the generated C++ model. We also plan to
develop larger applications for comparing the two different executable seman-
tics.

Rapid prototyping for distributed D-Clean 41

Appendix

A. The D-Clean language reference

// one function or a composition of functions
:: DExpr a b = F String (a → b)

| D (DFun (Ch a) (Ch b))

// a DClean expression is a state transition function
:: DFun a b :== a State → (b , State)

// single channel
:: Ch a :== (Int , a)

// multiple channel
:: MCh a :== [Ch a]

// wrapper
DExec :: a (DFun a b) → (a , (b , State))

// D-Clean primitives, toString restriction used to allow trace to be made.
DApply :: String (a → b) → DFun (Ch a) (Ch b) | toString b

DDivideD :: (a → [b]) → DFun (Ch a) (MCh b) | toString b

DApplyN :: [DExpr a b] → DFun (MCh a) (MCh b) | toString b

DMerge :: ([b] → a) → DFun (MCh b) (Ch a) | toString a

// D-Clean utility functions

DMap :: (a → b) → DFun (Ch [a]) (Ch [b]) | toString b

DApply1 :: (DExpr a b) → DFun (MCh a) (MCh b) | toString b

DProduce :: (a → [b]) → DFun (MCh a) (MCh [b]) | toString b

DReduce :: ([b] → a) → DFun (MCh [b]) (MCh a) | toString a

DMap2 :: (a → b) → DFun (MCh [a]) (MCh [b]) | toString b

DFilter :: (a → Bool) → DFun (MCh [a]) (MCh [a]) | toString a

42 V. Zsók and Z. Porkoláb

B. The sorting example - output

++ next step: divide ++

** Pre ****

input[1], size=1

{ {10,} }

ch1[16], size=0

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

** Post ****

input[1], size=0

{ }

ch1[16], size=1

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

++ next step: rand ++

** Pre ****

ch1[16], size=1

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

{ {10,} }

ch2[16], size=0

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

** Post ****

ch1[16], size=0

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

ch2[16], size=1

{ {3,} }

{ {6,} }

Rapid prototyping for distributed D-Clean 43

{ {7,} }

{ {5,} }

{ {3,} }

{ {5,} }

{ {6,} }

{ {2,} }

{ {9,} }

{ {1,} }

{ {2,} }

{ {7,} }

{ {0,} }

{ {9,} }

{ {3,} }

{ {6,} }

++ next step: zip ++

** Pre ****

ch2[16], size=1

{ {3,} }

{ {6,} }

{ {7,} }

{ {5,} }

{ {3,} }

{ {5,} }

{ {6,} }

{ {2,} }

{ {9,} }

{ {1,} }

{ {2,} }

{ {7,} }

{ {0,} }

{ {9,} }

{ {3,} }

{ {6,} }

ch3[4], size=0

{ }

{ }

{ }

{ }

** Post ****

ch2[16], size=0

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

ch3[4], size=1

{ {3,6,7,5,} }

{ {3,5,6,2,} }

{ {9,1,2,7,} }

{ {0,9,3,6,} }

++ next step: sort ++

** Pre ****

ch3[4], size=1

{ {3,6,7,5,} }

{ {3,5,6,2,} }

{ {9,1,2,7,} }

{ {0,9,3,6,} }

ch4[4], size=0

{ }

{ }

{ }

{ }

** Post ****

ch3[4], size=0

{ }

{ }

{ }

{ }

ch4[4], size=1

{ {3,5,6,7,} }

{ {2,3,5,6,} }

{ {1,2,7,9,} }

{ {0,3,6,9,} }

++ next step: merge4 ++

** Pre ****

ch4[4], size=1

{ {3,5,6,7,} }

{ {2,3,5,6,} }

{ {1,2,7,9,} }

{ {0,3,6,9,} }

ch5[2], size=0

{ }

{ }

** Post ****

ch4[4], size=0

{ }

{ }

{ }

{ }

ch5[2], size=1

{ {2,3,3,5,5,6,6,7,} }

{ {0,1,2,3,6,7,9,9,} }

++ next step: merge2 ++

** Pre ****

ch5[2], size=1

44 V. Zsók and Z. Porkoláb

{ {2,3,3,5,5,6,6,7,} }

{ {0,1,2,3,6,7,9,9,} }

output[1], size=0

{ }

** Post ****

ch5[2], size=0

{ }

{ }

output[1], size=1

{ {0,1,2,2,3,3,3,5,5,6,6,6,7,7,9,9,} }

C. Example in D-Clean

Start w = dumpGraph (DExec myval myflow) w

where
myval = [1 , 5 , 2 , 4 , 8 , 9 , 3 , 6 , 12, 7 , 14, 10, 15, 0 , 11, 13, 12]
myflow i = DDivideD (divide 4) (0 ,i)
>>= DApplyN [F "sort" sort , F "sort" sort , F "sort" sort ,

F "sort" sort]
>>= DMerge (sort o flatten)

The code generates the following graph:

Figure 8. Example

Rapid prototyping for distributed D-Clean 45

References

[1] Berthold, J., Explicit and Implicit Parallel Functional Programming
Concepts and Implementation, PhD Thesis, Philipps Universität Marburg,
2008.

[2] Best, E. and R.P. Hopkins, B(PN)2 - a basic Petri net programming
notation, in: Bode, A., Reeve, M., Wolf, G. (Eds.): Parallel Architectures
and Languages Europe, 5th International PARLE Conference, PARLE’93,
Proceedings, Munich, Germany, June 14–17, 1993, Springer Verlag, LNCS
Vol. 694, pp. 379–390.

[3] Clerici, S., C. Zoltan and G. Prestigiacomo, NiMoToons: a totally
graphic workbench for program tuning and experimentation, ENTCS, Vol-
ume 258 Issue 1, December 2009, pp. 93–107.

[4] Cole, M., Algorithmic skeletons, in: Hammond, K., Michaelson, G.
(Eds.): Research Directions in Parallel Functional Programming, pp. 289–
303, Springer-Verlag, 1999.

[5] Danelutto, M., R. Di Cosmo, X. Leroy and S. Pelagatti, Paral-
lel functional programming with skeletons: the OCAMLP3L experiment,
in: Proceedings of the ACM, Sigplan Workshop on ML, Baltimore, USA,
September 1998, pp. 31–39.

[6] Fournet, C., F. Le Fessant, L. Maranget and A. Schmitt, JoCaml:
A language for concurrent distributed and mobile programming, in: Jeur-
ing, J., Peyton Jones, S. (Eds): AFP 2002, Oxford, Revised Lectures,
Springer, LNCS 2638, pp. 129–158, 2003.

[7] Horváth Z., Z. Hernyák and V. Zsók, Coordination language for
distributed clean, Acta Cybernetica, 17(2), pp. 247–271, 2005.

[8] Horváth Z., V. Zsók, P. Serrarens and R. Plasmeijer, Parallel
elementwise processable functions in concurrent clean, in: Mathematical
and Computer Modelling 38, pp. 865–875, Elsevier, Pergamon, 2003.

[9] Johnston, W.M., J.R.P. Hanna and R.J. Millar, Advances in
dataflow programming languages, ACM Computing Surveys 36 (1), ACM
Press, March 2004, pp. 1–34.

[10] Josuttis, N., The C++ Standard Library: A Tutorial and Reference,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, ISBN:
0-201-37926-0, 1999.

[11] Kesseler, M.H.G., The Implementation of Functional Languages on
Parallel Machines with Distributed Memory, PhD Thesis, Catholic Uni-
versity of Nijmegen, 1996.

[12] Loidl, H-W., F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G.J. Michaelson, R. Peña, S. Priebe,

46 V. Zsók and Z. Porkoláb

Á.J. Rebón Portillo and P.W. Trinder, Comparing parallel func-
tional languages: Programming and performance, in: Higher-Order and
Symbolic Computation 16 (3), pp. 203–251, Kluwer Academic Publisher,
September 2003.

[13] Musser, D. R. and A.A. Stepanov, Algorithm-oriented generic li-
braries, Software-practice and experience, 27(7) July 1994, pp. 623–642.

[14] Rabhi, F.A. and S. Gorlatch (Eds.), Patterns and Skeletons for Par-
allel and Distributed Computing, Springer Verlag, 2002.

[15] Serrarens, P.R., Communication Issues in Distributed Functional Com-
puting, PhD Thesis, Catholic University of Nijmegen, January 2001.

[16] Stroustrup, B., The C++ Programming Language Special Edition,
Addison-Wesley, 2000.

[17] Vandevoorde, D. and N.M. Josuttis, C++ Templates: The Complete
Guide, Addison-Wesley, 2003.

[18] Zsók V., P. Koopman and R. Plasmeijer, An executable semantics
for D-Clean, in: Hage, J. (ed): Preproceedings of the 22nd Symposium
on Implementation and Application of Functional Languages, IFL 2010,
Alphen aan den Rijn, September 1–3, 2010, Technical Report UU-CS-
2010-020 August, 2010, Utrecht University, The Netherlands, pp. 173–179.

[19] Zsók V., Z. Hernyák and Z. Horváth, Designing distributed compu-
tational skeletons in D-Clean and D-Box, in: Central European Functional
Programming School, LNCS vol. 4164, pp. 223–256, 2006.

[20] Zsók V., P. Koopman and R. Plasmeijer, Generic executable seman-
tics for D-Clean, in: Porkoláb Z. et al (eds), Proceedings of the Third Work-
shop on Generative Technologies, WGT 2011, ETAPS 2011, Saarbrücken,
Germany, March 27, 2011, ENTCS, Vol. 279, Issue 3, Elsevier, December
2011, pp. 85–95.

V. Zsók and Z. Porkoláb
Department of Programming Languages and Compilers
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
zsv@elte.hu

gsd@elte.hu

