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Abstract. The C++ Standard Template Library is the flagship example
for libraries based on the generic programming paradigm. The usage of
this library is intended to minimize classical C/C++ errors, but does not
warrant bug-free programs. Furthermore, many new kinds of errors may
arise from the inaccurate use of the generic programming paradigm, like
dereferencing invalid iterators or misunderstanding remove-like algorithms.
Every standard container offers a template parameter in order to customize
the memory management. Allocator types are accountable for allocation
and deallocation of memory.
In this paper we present some scenarios that may cause undefined or weird
behaviour at runtime. These scenarios are related to allocators and reverse
iterators. We emit warnings while these constructs are used without any
modification in the compiler. We also present a general approach to emit
“customized” warnings. We support the so-called believe-me marks in
order to disable our specific warnings.

1. Introduction

The C++ Standard Template Library (STL) was developed by generic pro-
gramming approach [2]. In this way containers are defined as class templates
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and many algorithms can be implemented as function templates. Furthermore,
algorithms are implemented in a container-independent way, so one can use
them with different containers [21]. C++ STL is widely-used because it is a
very handy, standard library that contains beneficial containers (like list, vec-
tor, map, etc.), a lot of algorithms (like sort, find, count, etc.) among other
utilities.

The STL was designed to be extensible [6]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can
extend the set of algorithms with a new one that can work together with the
existing containers. Iterators bridge the gap between containers and algorithms
[4]. The expression problem [25] is solved with this approach. STL also includes
adaptor types which transform standard elements of the library for a different
functionality [1].

However, the usage of C++ STL does not guarantee bug-free or error-free
code [8]. Contrarily, incorrect application of the library may introduce new
types of problems [14].

One of the problems is that the error diagnostics are usually complex, and
very hard to figure out the root cause of a program error [26, 27]. Violating
requirement of special preconditions (e.g. sorted ranges) is not checked, but
results in runtime bugs [19]. A different kind of stickler is that if we have
an iterator object that pointed to an element in a container, but the element
is erased or the container’s memory allocation has been changed, then the
iterator becomes invalid. Further reference of invalid iterators causes undefined
behaviour [7].

Another common mistake is related to algorithms which are deleting el-
ements. The algorithms are container-independent, hence they do not know
how to erase elements from a container, just relocate them to a specific part
of the container, and we need to invoke a specific erase member function to re-
move the elements phisically. Therefore, for example, the remove and unique

algorithms do not actually remove any element from a container [12].

The previously mentioned unique algorithm has uncommon precondition.
Equal elements should be in consecutive groups. In general case, using sort

algorithm is advised to be called before the invokation of unique. However,
unique cannot result in an undefined behaviour, but its result may be counter-
intuitive at first time.

Some of the properties are checked at compilation time. For example, the
code does not compile if one uses sort algorithm with the standard list con-
tainer, because the list’s iterators do not offer random accessibility [23] . Other
properties are checked at runtime. For example, the standard vector container
offers an at method which tests if the index is valid and it raises an exception
otherwise [17].
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Unfortunately, there is still a large number of properties tested neither
at compilation-time nor at runtime. Observance of these properties is in the
charge of the programmers. On the other hand, type systems can provide a
high degree of safety at low operational costs. As part of the compiler, they
discover many semantic errors very efficiently.

Associative containers (e.g. multiset) use functors exclusively to keep their
elements sorted. Algorithms for sorting (e.g. stable sort) and searching in
ordered ranges (e.g. lower bound) are typically used with functors because of
efficiency. These containers and algorithms need strict weak ordering. Con-
tainers become inconsistent, if the used functors do not meet the requirement
of strict weak ordering [13].

Certain containers have member functions with the same names as STL
algorithms. This phenomenon has many different reasons, for instance, effi-
ciency, safety, or avoidance of compilation errors. For example, as mentioned,
list’s iterators cannot be passed to sort algorithm, hence code cannot be com-
piled. To overcome this problem, list has a member function called sort. List
also provides unique method. In these cases, although the code compiles, the
calls of member functions are preferred to the usage of generic algorithms.

Whereas C++ STL is pre-eminent in a sequential realm, it is not aware of
multicore environment [3]. For example, the Cilk++ language aims at multi-
core programming. This language extends C++ with new keywords and one
can write programs for multicore architectures easily. However, the language
does not contain an efficient multicore library, just the C++ STL only, which
is an efficiency bottleneck in multicore environment. We develop a new STL
implementation for Cilk++ to cope with the challenges of multicore architec-
tures [24]. This new implementation can be a safer solution too. Hence, our
safety extensions will be included in the new implementation. However, the
techniques presented in this paper concern the original C++ STL too.

In this paper we argue for an approach that generates warning during com-
pilation when the STL is used in some improper ways. For example, we want
to warn the programmer if a stateful allocator is in use, which is prohibited.
We also emit warning, if a reverse iterator is converted to iterator by the base
method.

This paper is organized as follows. In section 2 we present some motivating
examples that can be compiled, but at runtime they can cause problems. In
section 3 we present an approach to generate “customized” warnings at compi-
lation time. Then, in section 4 the implementation details of allocator-related
warning emission is discussed. Section 5 presents the solution of the problem
related to reverse iterators. The related work is being discussed in section 6.
Finally, this paper concludes in section 7.
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2. Motivation

In this section two different scenarios are shown. The first one is related to
reverse iterators and present a flabbergasting phenomenon. The second one is
related to allocators and may cause undefined behaviour.

The concept of reverse iterator is straightforward. Reverse iterators iter-
ate through the container from the end to the begin. So, it is easy to find
the last occurrence of the value x with the find algorithm and reverse iter-
ators. Unfortunately, the erase method requires iterator and cannot take
reverse iterator. We can convert it with its base method. However, the
following code snippet has a strange effect:

std::vector<int> v;

int x;

// ...

v.erase( std::find( v.rbegin(),

v.rend(),

x ).base() );

This code snippet does not erase the value of x from the container, but
it does erase the next element from the container. The call of base returns
iterator, which points the next element of the container. This behaviour is
counter-intuitive. The iterator that returns by the base is perfect when one
uses it as a position to insert some elements, but erroneous if someone deletes
it. Our implementation generates warning if one uses the base method.

Every standard container offers a template parameter in order to customize
the memory management. Allocator types are accountable for allocation and
deallocation of memory. According to the standard the STL implementations
may suppose that allocators with the same type are equal, hence many opera-
tions can take advantage of this. For instance, the list’s splice method can
be implemented in an easy and exception-safe way: copying is not necessary,
only some pointers are set:

template <typename T>

class SpecialAllocator {...};

typedef SpecialAllocator<Widget> SAW;

list<Widget, SAW> L1;

list<Widget, SAW> L2;

...

L1.splice( L1.begin(), L2 );
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When L1 is being destructed, all elements must be deallocated. It can only
use L1’s allocator even if the element is allocated by L2’s allocator. Hence,
the allocation and deallocation cannot depend on any other information. If an
allocator has state and the allocation and deallocation depends on this state, it
results in an undefined behaviour. The compilers do not check this requirement
and it cannot be discovered at runtime either. Hence, allocators should be
stateless types. Our implementation generates warning at compilation-time, if
the user applies a non-stateless allocator.

3. Generation of warnings

Compilers cannot emit warnings based on the semantical erroneous usage
of the library. STLlint is the flagship example for external software that is
able to emit warning when the STL is used in an incorrect way [9]. We do not
want to modify the compilers, so we have to enforce the compiler to indicate
these kinds of potential problems. Although static assert as a new keyword
is introduced in C++0x to emit compilation errors based on conditions, no
similar construct is designed for warnings. C++ templates are ideal constructs
to do compile-time checks and emit warnings and errors [24].

template <class T>

inline void warning( T t )

{

}

struct

DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER

{

};

// ...

warning(

DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER()

);

When the warning function is called, a dummy object is passed. This
dummy object is not used inside the function template, hence this is an unused
parameter. Compilers emit warnings to indicate unused parameters. Compila-
tion of the warning function template results in warning messages, when it is
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referred and instantiated. No warning message is shown, if it is not referred.
In the warning message the template argument is printed. New dummy types
have to be written for every new kind of warning.

Different compilers emit this warning in different ways. For instance, Visual
Studio emits the following message:

warning C4100: ’t’ : unreferenced formal parameter

...

see reference to function template instantiation ’void

warning<

DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER

>(T)’

being compiled

with

[

T=DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER

]

And g++ emits the following message:

In instantiation of ’void warning(T)

[with T = DO_NOT_CALL_FIND_ALGORITHM_ON_SORTED_CONTAINER]’:

... instantiated from here

... warning: unused parameter ’t’

Unfortunately, implementation details of warnings may differ, thus no uni-
versal solution is available to generate custom warnings. However, everyone
can find a handy, custom solution for his or her own compiler.

This approach of warning generation has no runtime overhead because the
compiler optimizes the empty function body. On the other hand – as previ-
ous examples show – the message refers to the warning of unused parameter,
incidentally the identifier of the template argument type is appeared in the
message.

This method can be used to detect possible defects based on compile-time
information. It can detect many potential errors, e.g. incorrect instantiations
[15], problematic algorithm parameters [16], erroneous base types [13] and many
more. However, it cannot be used to deal with runtime information. Neverthe-
less, this method has limitations related to compile-time information, too. It
works at compilation time, but this approach cannot deal with the syntax tree
or more detailed contexts.
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4. Stateless allocators

It is important to make sure that the allocators with the same type are
equal, hence they do not have any state. They may not have any nonstatic data
members because STL implementations take advantage of this idiosyncrasy.
However, compilers do not check it, and the error cannot be discovered at
runtime either. Allocators with state may ruin the containers.

Our solution consists of the following steps. First, we write a class which
defines the message of the warning and transform the warning template into a
template class.

class ALLOCATOR_WITH_STATE

{

};

template<bool b, class Allocator>

struct __WARNING

{

__WARNING()

{

warning( ALLOCATOR_WITH_STATE() );

}

};

template <class Fun>

struct __WARNING<true, Fun>

{

};

Next, a wrapper class is developed in order to trigger the compile-time
check. Hence, this class inherits from the allocator type, and every public
method is available just like the original allocator. The compile-time test
uses the Boost type traits library, in which statelessness test is being imple-
mented [10]:

template <class Alloc>

class __Stateless: public Alloc

{

WARNING< boost::is_stateless<Alloc>::value, Alloc > ___;

};



348 N. Pataki

There is a small change in the implementation of the STL. Containers use
the Stateless template instead of the allocator, just like the hereinafter
example:

template <class T, class Alloc = allocator<T> >

class list

{

__Stateless<Alloc> allocator;

// ...

};

If any user defined allocator violates the rule, compilation warning is emit-
ted. The programmer gets a warning diagnostics that the allocator may be
problematic. The ALLOCATOR WITH STATE identifier also can be seen in the
warning message. Believe-me marks are not supported, because stateful allo-
cators are not reasonable.

5. Reverse iterators

Reverse iterators seem to be easy and straightforward, but their conversion
is not easy and straightforward at all. The base method is not intuitive, because
it returns an iterator that points to an other element in the container. So, we
help the library users with warning emission to be careful.

Two adaptor classes are affected: reverse bidirectional iterator and
reverse iterator. We present our approach on reverse iterator:

struct BASE_ITERATOR_POINTS_TO_THE_NEXT_ELEMENT{};

struct I_Know_What_Base_Returns{};

#define I_KNOW_WHAT_BASE_RETURNS I_Know_What_Base_Returns()

template <typename Iterator>

class reverse_iterator: public

std::iterator<

typename std::iterator_traits<Iterator>::iterator_category,

typename std::iterator_traits<Iterator>::value_type,

typename std::iterator_traits<Iterator>::difference_type,

typename std::iterator_traits<Iterator>::pointer,

typename std::iterator_traits<Iterator>::reference >
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{

// ...

public:

Iterator base() const

{

warning( BASE_ITERATOR_POINTS_TO_THE_NEXT_ELEMENT() );

return base( I_Know_What_Base_Returns() );

}

Iterator base( I_Know_What_Base_Returns ) const

{

// original implementation of base

}

};

The implementation is not difficult. The base method emits warning with
the assistance of the previously presented warning template function. We
overload the base method. The original version emits the warning and invokes
the parametrized one.

Generally, warnings should be eliminated. On the other hand, the usage of
base does not necessarily mean problem. It can be used safely. However, we
cannot disable the generated warning if it is in use.

Believe-me marks [11] are used to identify the points in the program text
where the type system cannot obtain if the used construct is risky. For instance,
in the hereinafter example, the user of the library asks the type system to
“believe” that the programmer is conscious of the base. This way we enforce
the user to reason about the usage of the library:

std::vector<int> v;

int x;

// ...

v.erase( std::find( v.rbegin(),

v.rend(),

x ).base( I_KNOW_WHAT_BASE_RETURNS ) - 1 );

The implementation of reverse bidirectional iterator is straightfor-
ward.
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6. Related work

The most well-known tool that detects the incorrect usage of the STL is
STLlint [9]. It is an online tool, but its support is cancelled. However, it is based
on a modified compiler, and it is closed-source and it cannot work with third
party STL-like containers. Nevertheless, it is required to invoke another tool
after successful compilation by the programmer. Another important remark is
semantical issues generally related to the libraries, not the compilers. Compilers
cannot know all the libraries. In constrast, our approach is extensible for non-
standard elements too. Our solution is more platform-independent, because we
do not deal with compiler, only the library itself is modified. However, STL is
template library, so it cannot be compiled previously, its source is available on
every platform.

Our approach has been used in many different ways. The instantiations
of STL containers have been analyzed. Usage of containers of auto pointers
(COAP) is prohibited, vector<bool> as a full specialization of the vector does
not meet the requirements of the Standard. Our approach is able to detect if one
of these containers is instantiated [15]. User-defined functor objects have been
inspected from the view of proper adaptability [13]. Usage of STL algorithms
has been safer with the extension of iterator traits type [16].

Some properties can be checked only at runtime [20]. For instance, usage of
invalid iterators are discovered at runtime [19]. Special preconditions of STL
algorithms also can be evaluated at runtime [18]. Functors for sorting activity
are required to be strict-weak orderings. We test them at runtime automatically
[13]. STL takes intervals as two independent iterators. The ranges are natural
abstraction of this approach. A range-based implementation of the STL is
considered [14].

The printf function of the C standard library takes parameters. The first
argument is a formatting string, which specifies how to print the following
arguments to the output. The value of the formatting string is not handled by
the compiler, hence the usage of printf may result in runtime errors. We have
developed a metastring library in which the values of the strings are compile-
time information. We have implemented a safer version of printf with these
metastrings that is able to check the type information and able to detect the
incorrect usage during compilation [22].

Warning generation can be used for other purposes, too. They are applied
successfully when C++ template metaprograms are visualized. The chain of
instantiations is detected by the generated warnings [5].
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7. Conclusion

C++ STL is the most important library based on the generic program-
ming. It is a handy, useful standard library that contains many indispensable
containers and primary algorithms, etc.

However, the incorrect usage of the library may result in an undefined be-
haviour that should be avioded. Some reasonable scenarios have weird effects.
In this paper we argue for an extension to make the STL safer. With our
extension the compiler is able to generate warning if one of these dangerous
constructs is in use. We do not modify the compiler itself, but small changes
are done in the implementation of the STL.

In this paper we present a generic approach that is able to generate “cus-
tomized” warnings by the compiler. Our STL implementation is able to detect
if someone uses stateful allocator, which is strictly prohibited. Our imple-
mentation warns the programmer if a reverse iterator’s base method is called
that is dubious construct. We support believe-me marks to disable our specific
warnings.
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10th Symposium on Programming Languages and Software Tools, (SPLST)
2007, 360–371.

[8] Dévai, G. and N. Pataki, A tool for formally specifying the C++ Stan-
dard Template Library, Ann. Univ. Sci. Budapest. Comput., 31 (2009),
147–166.

[9] Gregor, D. and S. Schupp, Stllint: lifting static checking from lan-
guages to libraries, Software - Practice and Experience, 36(3) (2006),
225-254.

[10] Karlsson, B., Beyond the C++ Standard Library: An Introduction to
Boost, Addison-Wesley, 2005.

[11] Kozsik, T., Tutorial on Subtype Marks, Lecture Notes in Comput. Sci.,
4164 (2005), 191–222.

[12] Meyers, S., Effective STL - 50 Specific Ways to Improve Your Use of
the Standard Template Library, Addison-Wesley, 2001.

[13] Pataki, N., Advanced Functor Framework for C++ Standard Template
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[19] Pataki, N., Z. Szűgyi and G. Dévai, Measuring the overhead of C++
Standard Template Library safe variants, Electronic Notes in Theoret.
Comput. Sci., 264(5) (2011), 71–83.

[20] Pirkelbauer, P., S. Parent, M. Marcus and B. Stroustrup, Run-
time concepts for the C++ Standard Template Library, in: Proc. of the
2008 ACM symposium on Applied computing, 171–177.



Compile-time advances 353

[21] Stroustrup, B., The C++ Programming Language (Special Edition),
Addison-Wesley, 2000.
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[24] Szűgyi, Z., M. Török and N. Pataki, Multicore C++ Standard Tem-
plate Library in a generative way, Electronic Notes in Theoret. Comput.
Sci., 279(3) (2011), 63–72.

[25] Torgersen, M., The expression problem revisited – Four new solutions
using generics, Lecture Notes in Comput. Sci., 3086 (2004), 123–143.

[26] Zolman, L., An STL message decryptor for visual C++, C/C++ Users
Journal, 19(7) (2001), 24–30.
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