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Abstract. In this paper we present a Matlab implementation of a
method related to the fast calculation of Fourier coefficients with respect to
a product system of rational complex functions. The elements of the prod-
uct system used here are defined as compositions of two-factor Blaschke
products. We provide new tools for the visualization of the function sys-
tems in question, elaborate the outlined algorithms in [8], describe the
methods used for numerical calculation. The work presented here can be
applied in signal processing and control theory, future applications include
the analysis of ECG signals. The toolbox is available at:
http://numanal.inf.elte.hu/~locsi/fftratsys/

1. Introduction

In signal processing and in many areas of applied mathematics the fast cal-
culation of Fourier coefficients via the so-called FFT (Fast Fourier Transform)
is of great importance. Manymodern applications would have been unthinkable
without this method, first implemented in 1965 [3]. The traditional approach
uses the complex trigonometric system exp ikx = cos kx + i sinkx (k ∈ Z) as
basis, sampled uniformly in [0, 2π).
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In the recent decades rational function systems and non-uniform sampling
has became more and more widely used and also mathematically studied. E.g.
the Laguerre and Kautz systems are used in system identification [9, 10], and
the non-equidistant discretization generated by similar systems have also been
studied [6, 7].

In [8] F. Schipp outlines the concept of FFT for these rational systems. In
what follows, we basically rely on this work of his, elaborating, implementing
and demonstrating mainly all of the closely related theoretical work.

In Section 2 we recall the basic facts of the mathematical background: prod-
uct systems, FFT algorithms and dyadic rational systems. In Sections 3 and
4 our implementation is presented through a short documentation and by two
examples using the createdMatlab programs. Finally Section 5 exhibits some
possible areas of further work and research.

For testing purposes in this work the three-factor Blaschke product

f(z) :=

3∏
i=1

Bai(z) (z ∈ C), with

a1 = 0.3; a2 = 0.8i; a3 = −0.4 + 0.5i

will be used. (See Definition 2.2.) This function can be seen on Figure 1 as
plotted by the command plotd described in Section 3. The zeros are also
marked.

Figure 1. A three-factor Blaschke product on the complex unit disc.
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2. FFT for rational product systems

In this section we recall the basic definitions and theorems regarding product
systems, FFT algorithms and dyadic rational systems, which will be used later.
We will restrict ourselves to the finite dimensional vector space X := C

N for
some N = 2n (n ∈ N

+), but until the point when we turn our attention to
discrete calculations, everything could be analogously defined in the continuous
case.

2.1. Product systems

For the definition of product systems let us fix a collection of function
systems

(2.1) Φk := {1, ϕk} (0 ≤ k < n),

where each ϕk is an arbitrary complex valued function. Then with the unique
dyadic expansion of m ∈ N, 0 ≤ m < N :

(2.2) m =

n−1∑
k=0

mk2
k,

we write the following definition.

Definition 2.1. The product system Ψ = {ψm : 0 ≤ m < N } of systems
Φk (0 ≤ k < n) is defined by its elements as

(2.3) ψm :=
n−1∏
k=0

ϕmk

k .

Well-known examples for product systems are the Walsh system, the Walsh–
Paley system, but also the trigonometric system can be considered as a product
system.

Under some specific conditions FFT algorithms can be used to calculate
the Fourier coefficients with respect to a product system. Namely, a sufficient
condition is: if Φk is a sequence of adapted conditionally orthonormal systems.
Thus Ψ is an orthonormal system. (See [8].)

2.2. FFT algorithms

The traditional FFT algorithms calculate the discrete Fourier transform
(DFT) of a vector (or ’signal’) x ∈ X with respect to the first N elements of
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the discrete trigonometric system defined as

εm(t) = exp(imt) (0 ≤ m < N, t = 2πl/N, 0 ≤ l < N) .

In the simplest case N = 2n (n ∈ N
+) is assumed. Note that εm can be

considered as the function zm sampled uniformly at the points

TN := { exp(it) : t = 2πl/N, 0 ≤ l < N }

on the unit circle.

In this case, given a vector x ∈ X , the discrete Fourier coefficients are

cm = [x, εm]N (0 ≤ m < N),

where the discrete scalar product is defined as

(2.4) [f, g]N :=
1

N

∑
t∈TN

f(t) · g(t) (f, g ∈ X).

They can be calculated by using the FFT (see Algorithm 1): O(n·2n) operations
are required compared to the naive DFT calculation with O(2n ·2n) operations,
i.e. O(N logN) instead of O(N2). An FFT implementation is also very efficient
considering disk space usage. (A unit of calculation in the FFT is usually called
a ’butterfly’.) See also [3, 5].

Algorithm 1: The traditional (power-of-two, DIF) FFT algorithm.

Input: x ∈ X = C
N (N = 2n).

Output: the DFT of x in bitreversed order.
1 parts ← 1;
2 partwidth ← N ;
3 for phase ← 1 to n do
4 for part ← 0 to parts− 1 do
5 for butterfly ← 0 to partwidth/2− 1 do
6 i ← parts · partwidth+ butterfly + 1;
7 j ← i+ partwidth/2;
8 a ← x [ i ];
9 b ← x [ j ];

10 x [ i ] ← (a+ b)/2;

11 x [ j ] ← (a− b) · exp(−2πi · butterfly

partwidth
)/2;

12 parts ← parts · 2;
13 partwidth ← partwidth/2;
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Furthermore, each x ∈ X can be reconstructed from its Fourier coefficients:

x(t) =
N−1∑
m=0

cm · εm(t) (t ∈ TN ).

2.3. Dyadic rational systems

In the construction of the rational FFT algorithm, the Blaschke func-
tions play an important role. Let us denote the complex unit disc by D :=
:= { z ∈ C : |z| < 1 }, and the complex unit circle or torus by T := {z ∈ C :
: |z| = 1}.

Definition 2.2. Blaschke functions are complex valued functions of one
complex variable of the form

Ba(z) =
z − a

1− az
(z ∈ C \ { 1/a}),

with parameter a ∈ D. A Blaschke product is the product of finitely many
Blaschke functions.

Blaschke functions havemany interesting properties, e.g. they are bijections
on both D and T. Furthermore the equation

n∏
j=1

Baj (z) = τ (aj ∈ D, 1 ≤ j ≤ n, τ ∈ T)

has exactly n solutions (see [8]): i.e. a Blaschke product of order n is an n-
fold map on T. Also, note that with the choice a = 0, B0 = z, the products
Bm

0
= zm (m ∈ N) on T would produce the trigonometric system.

We will use two-factor (or second order) Blaschke products of a special form:

Ak := Bak
B−ak

(ak ∈ D, 1 ≤ k ≤ n).

Set
A0 := Ba0

(a0 ∈ D).

With these Ak (0 ≤ k ≤ n) functions we now define the generators of the
product system as in (2.1):

ϕ0 := A0,

ϕk := Ak ◦Ak−1 ◦ · · · ◦A1 ◦A0

= Ak ◦ ϕk−1 (0 < k ≤ n).
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Then we can form a product system in exactly the same way as described in
Section 2.1 by using (2.2) and (2.3).

Making use of the fact that the composition of Blaschke products is again
a Blaschke product (with an additional phase factor), one finds, that

• ϕ0 is a Blaschke function,

• ϕk is a Blaschke product of order 2k (1 ≤ k ≤ n),

• ψ0 is the constant one function,

• ψm is a Blaschke product of order m (1 ≤ m < N = 2n).

Note that An is not present in any way in the product system Ψ. Indeed, An

only appears in ϕn which is a Blaschke product of order 2n, and the functions
ψm are defined only for 0 ≤ m < 2n.

On the other hand ϕn has a role in the definition of the discretization points
on T. Namely, choosing

(2.5) TN := ϕ−1

n (τ) = { z ∈ T : ϕn(z) = τ } (N = 2n)

with an arbitrary τ ∈ T, the functions ϕk sampled at the points of TN give rise
to a sequence of adapted conditionally orthonormal systems. Thus the functions
ψm form an orthonormal system with respect to the scalar product in (2.4).
Furthermore one can apply FFT to calculate the Fourier coefficients.

In Algorithm 2 we indicated the only difference in the rational FFT com-
pared to the trigonometric algorithm. In Line 11 one should use the values
given by the generating functions instead of the exponential expression, sup-
posing that Phi [ m, k ] contains the sampled values of ϕk in the mth point of
TN .

Algorithm 2: The rational FFT algorithm. (Cf. Algorithm 1.)

10 . . .

11 x [ j ] ← (a− b) · Phi [ butterfly + 1, phase ] /2;
12 . . .

3. Implementation

In this section we describe our Matlab implementation of the theory sum-
marized in Section 2. Our goal is to give an overview of the implementation
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with a short documentation of the programs, and also to provide some exam-
ples. We follow the guidelines of reproducible research (see [2]). The created
programs can be downloaded from

http://numanal.inf.elte.hu/~locsi/fftratsys/.

3.1. General considerations

We have chosen the Mathworks Matlab environment to realize the ideas
presented above, because it is convenient for visualization, and it has a wide
range of programming tools. For a comprehensive guide to Matlab see [1] or
[11].

Matlab also supports object oriented programming, which enabled us to
deal with Blaschke functions, Blaschke products and Blaschke compositions in
an elegant and type safe way.

In order to use the programs, please download them from the above link,
extract them in your current Matlab working directory, or make sure some
other way, that they are available on the path.

3.2. Short documentation of programs

In this section we enumerate the programs (m files) created. A few words
and little examples are attached to each of these.

They are divided in four groups.

3.2.1. Classes

blaschke. This class implements the Blaschke functions. One may create an
instance of this class (i.e. a Blaschke function) in the following way:

b = blaschke(0.5);

supplying the parameter a as argument. Then one can calculate the function
values at given points (say 1 and i), and also the function handle is available
if needed:

b.values([1 1i])

bh = b.handle();

The class also supports some plotting routines, and it is robust (one can not
create Blaschke functions with invalid parameters, e.g. a /∈ D).



248 L. Lócsi

blaschkep. This is the class implementing Blaschke products. Naturally one
can create Blaschke products (but only valid ones) by supplying the desired
parameters, and the calculation of function values, function handles and plot-
ting routines are also available. For instance one can create a Blaschke product
of order 3 (as seen on Figure 1) with the following command:

bp = blaschkep([0.3 0.8*1i -0.4+0.5*1i]);

blaschkec. This class allows the construction of Blaschke compositions, i.e.
compositions of Blaschke products, as described in Section 2.3. In order to
create a Blaschke composition object one has to supply a row vector of Blaschke
products. E.g.:

b1 = blaschkep([-0.2 0.2]);

b2 = blaschkep([0.1 0.5]*1i);

bc = blaschkec([b1 b2]);

In addition to similar methods to those of previous classes (values, handles,
plotting), this class also implements methods for converting a Blaschke compo-
sition to a Blaschke product and for finding inverse images of the points of the
torus—needed to realize (2.5). One can find that both of the above tasks can
be reduced to recursively solving quadratic equations (when using two-factor
Blaschke products). These methods are demonstrated in Section 4.

3.2.2. Functions with mathematical objectives

Apart from the member methods of the above introduced classes there are
some other functions serving the calculation of rational FFTs. We present them
below, but their use can be only examined in Section 4.

prodsysgen. Given a sequence of Blaschke products this function creates the
generators of the product system as Blaschke compositions as seen in Section
2.3.

prodsys. This function assembles the product system from its generators as
seen in (2.3). (Note again that ϕn will not be used.)

samples. The FFT works on discrete points, so we have to sample all of our
functions at hand at given points of T. By sampling the functions in Ψ we will
get the matrix for the calculation of the DFT by definition. By sampling only
the ϕk (1 ≤ k < n) functions, we get the values needed in the FFT algorithm.
Of course the signal to be processed also has to be sampled.

rfft. The implementation of the rational FFT.
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3.2.3. Visualization methods

We have created some methods primarily for visualization purposes. By
means of them the verification of the aforementioned programs is also much
easier.

plotd. The name of this command stands for plot on the disc. Our func-
tions are most interesting on D, so we have created this function to give us an
idea of the behaviour of the functions here—both magnitude and phase. We
kept in mind also, that such a visualization is desired which also looks fine in
monochrome printed materials. So this program uses contour lines to display
the change in magnitude and phase of the function values. This is achieved by
applying the Matlab command contour twice.1 E.g. see Figure 1 in Section 1
(there we also added the zeros), or similar figures later in the paper.

The lines quasi concentric to the unit circle express the magnitude of the
function values and the lines crossing at the zeros describe the change in the
phase of the function values.

plotdm. Plots multiple functions on the disc, waiting 1 second between each
plotd plot. This method is useful for displaying the generators of the product
system, or the product system itself.

plotdp. Plots points of the disc. (Also displays points outside D, but the unit
circle is always shown.)

Figure 1 was created by the code fragment:

as = [0.3 0.8*1i -0.4+0.5*1i];

rb = blaschkep(as);

plotd(rb)

hold on

plotdp(as)

plott. This routine plots the function values on the torus. Both real and
imaginary components.

plottm. Similar to plotdm, but with plott. Plots multiple functions on T.

stemt. Visualizes non-uniformly sampled function values on T using the built-
in Matlab command stem. It is convenient for the display of both sampled
signals and sampled basis functions. The torus is presented as the real interval
[0, 2π).

3.2.4. Other tools

The programs listed in this section are also used in this context.

1A minor drawback is the slight visibility of the nonexistent ’jump’ in phase between 2π
and 0.
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randd. This command produces pseudorandom complex numbers inside D. It
is built on the basic Matlab command rand.

bitreversal. The FFT algorithm produces its output in bitreversed order,
so another small step is needed to rearrange the values in ’normal’ order: this
is done by the bitreversal method. It uses a quick algorithm to build the
bitreversed indices (cf. [4]).

rffttest. Basically goes through all the commands mentioned here: from
creating a product system using Blaschke compositions, through the visualiza-
tion of the generated system, to the calculation and validation of the rational
FFT.

test asprod. This script helped in the testing of the blaschkec class’method
for converting a Blaschke composition to a Blaschke product.

4. Examples

Now we will demonstrate how the created tools work together to realize
a rational FFT. For a more detailed demonstration please run the rffttest

script. We provide two examples, which differ only in the initial choice of pa-
rameters a0 and a1. The first example will exhibit a truly rational system (and
FFT algorithm) with non-uniform sampling points, while the second example
will result in the trigonometric system with uniform sampling points and the
traditional FFT.

4.1. A truly rational system

In this example we will create a product system generated by Blaschke
compositions and calculate the FFT of our test signal with respect to this
system. Consider the following code:

a0 = 0.3*1i;

a1 = 0.1 + 0.2*1i;

b0 = blaschkep(a0);

b1 = blaschkep([a1 -a1]);

psg = prodsysgen([b0 b1 b1 b1 b1 b1]);

ps = prodsys(psg);

Now we can visualize our system (excluding the constant 1 function), e.g. this
way (Figure 2 shows some elements of the generated set of 32 functions):
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plotdm(ps(2:end))

(a) Function ψ1 = ϕ0. (b) Function ψ2 = ϕ1.

(c) Function ψ4 = ϕ2. (d) Function ψ7 = ϕ2ϕ1ϕ0.

Figure 2. Some elements of the rational system.

We need to calculate the discretization points TN = ϕ−1

n (τ) with τ = 1
being the default parameter, as seen in (2.5). Next we sample the signal (see
rb above) and the generators. (One can also plot the signal, see Figure 3.)

ip = psg(end).inverset();

sig = samples(ip,rb);

G = samples(ip,psg);

stemt(ip,sig)

And finally one can apply the rational FFT:

c = rfft(sig,G)

As a simple validation of the results, one might want to compare these
coefficients to the result of the naive DFT calculation as amatrixmultiplication
using e.g. the maximum norm:
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(a) The signal (rational).
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(b) The signal (trigonometric).
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(c) Function ψ1 (rational).
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(d) Function ψ1 (trigonometric).
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(e) Function ψ2 (rational).
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(f) Function ψ2 (trigonometric).

Figure 3. The signal and some elements of the rational system sampled at the
discretization points on T in the general rational case (left), and in the special
trigonometric case (right). Only real parts are shown.

F = samples(ip,ps);

cm = F’ * sig / length(sig);

norm(c-cm,’inf’)

It is correct up to numerical precision.

4.2. The trigonometric system as a special case

The same can be done for another set of parameters. Let us now initialize

a0 = 0;

a1 = 0;

and do the rest again. We shall arrive at the trigonometric system, uniform
sampling points, the traditional FFT. We do not include the plots in this case,
but the reader is encouraged to try the Matlab functions him- or herself and
examine the results.

Figure 3 shows 6 stemt plots. One can compare both the sampled signal
and some elements of the used basis in the general rational case, and in the
trigonometric case. Observe, that with a well-chosen set of parameters, a non-
uniformly sampled signal might provide more information than a uniformly
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sampled one: the signal changes more rapidly in the first half. Also in this case
a suitable orthogonal system is needed, which is now provided by our tools.

5. Further work

This implementation can be extended in many ways. Without the con-
straint of using second order Blaschke products with parameters a and −a, one
might want to use arbitrary a1 and a2. This way the product system would not
be orthogonal: biorthogonal systems should be used, but the FFT could still
be applied. One might also want to drop the constraint of using only second
order Blaschke products.

How to choose the parameters for the Blaschke products, if a given set of
zeros are desired for the product system is also an open mathematical problem.

The method presented here is to be applied in the case of processing ECG
signals.

6. Summary

In this paper we presented our implementation of the topic related to FFT
algorithms for dyadic rational product systems defined by Blaschke products.

We provided an easy to use, robust Matlab toolkit supporting the study
of this kind of systems and algorithms. These tools can be freely downloaded.
We provided examples and a short documentation of the created programs.

Hopefully these programs and visualization methods will help the future
study and maybe teaching of the related mathematical background.
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L. Lócsi
Department of Numerical Analysis
Faculty of Informatics
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