
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 217–240

A DOMAIN BASED NEW CODE COVERAGE

METRIC AND A RELATED AUTOMATED

TEST DATA GENERATION METHOD

Dániel Leskó and Máté Tejfel

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received December 20, 2011; revised February 20, 2012;
accepted February 29, 2012)

Abstract. Since programmers write programs there has always been a
need to analyze the correctness of these programs, which is mostly done
by testing. However, testing our programs does not give any direct quality
guarantee on them, because it highly depends on the used test data set. Nu-
merous code coverage metrics can be applied to measure the quality of our
test set, but the majority of them were primarily designed for imperative
programs, and they rely mostly on control structures like branching and
looping. The problem is that expression-heavy programs and functional
programming languages normally do not have these structures. Hence, the
corresponding code coverage metrics are unsuitable at least, but mainly
useless for these kinds of programs.
In this paper we propose a new code coverage (domain coverage) met-
ric, which is based on (arithmetic) expressions. The relations and effects
among them are taken into account, such as some kind of semantics in-
formation about the programming language constructs. The paper also
presents an automated test data generation method, which is related to
domain coverage, and aims to reach the highest possible coverage ratio.

Key words and phrases: Code coverage metrics, domain, test data generation, symbolic
execution.
1998 CR Categories and Descriptors: D.2.5, D.2.8.

Supported by ELTE TÁMOP-4.2.2/B-10/1-2010-0030 and the Hungarian National Develop-
ment Agency (KMOP-1.1.2-08/1-2008-0002)

218 D. Leskó and M. Tejfel

1. Introduction

Since programmers write programs there has always been a need to verify
the correctness of these programs. Today, the most commonly used method
is testing, which is a very labor intensive work. There are estimations that
a common software development project uses 50-70% of its total resources to
achieve the desired software quality.

But simply the fact that we test our programs does not give any direct
quality guarantee on them. The quality of the used test cases has to be deter-
mined so as to be able to properly evaluate the test results and use them for
reasoning about the correctness of the tested program. We need to measure
the percentage of the reached features of the program currently under testing.
Based on this ratio, the usefulness of a particular test base can be easily judged.

Numerous code coverage metrics exist, such as statement coverage, decision
coverage, path coverage, etc. The common point of these approaches are that
they are working on some kind of syntactical/semantical representation of the
analyzed program. These metrics are used in various coverage based testing
tools [1] to measure the test case quality, and/or to recognize equivalence classes
on the problem space. This latter one is a more advanced use of metrics. If
two different test data yield exactly the same coverage result (been on the same
path, exercised the same code pieces), then they are considered equivalent from
the coverage metrics point of view; namely, they are in the same equivalence
class. As a consequence, it is perfectly enough to generate one test value from
each equivalence class, which will largely reduce the problem space.

The existing coverage metrics are more or less suitable for most kind of
programs. The expression-heavy ones (e.g. programs written in Feldspar [12] or
Matlab) or the functional ones (e.g. Haskell, Feldspar) are exceptions, because
these typically lack branching and iteration statements (e.g. if, for, while).
Of course, functional programs can express these notions by pattern matching
or recursion. Additionally a relatively complex arithmetic expression can be
written in one line. As a result of these properties, the existing code coverage
metrics are unsuitable at least but mostly useless for these kinds of programs.

The problem with existing coverage metrics is that they are concentrating
mostly on control structures (like branching and looping) and statements. The
expressions are considered only in those cases when they have an effect on the
control flow. However, the relations and effects between sub-expressions are
never examined.

In the rest of this paper, we propose a new code coverage metric (Section 2),
which solves the previously mentioned shortage by starting on the expression
level and then going upwards to the control layer. The next section describes

Domain coverage 219

a related test data generation method, which could reach the highest possible
domain coverage ratio. Section 4 explains briefly how to put the theory into
practice, then we finish up with related work (Section 5), conclusion and future
work (Section 6)

2. Code coverage metrics/measurement

Testing methods and code coverage metrics should always come hand in
hand, because a coverage metric is simply not applicable without a given test
set. On the other hand, a test set without its coverage information is basically
useless, when we try to reason about correctness. The only exception i, when
the whole input domain is in the test set, but this is very rarely feasible for
interesting, nontrivial programs.

Since computer programs exist, there has been a hard-to-reach desire, name-
ly, the programs should be bug free. In order to fulfill this desire numerous
testing approaches were developed. However, testing could not give us any
direct quality information about the program. A code coverage metrics has
to be used to collect information about which parts of the source code and
which program features were reached by the applied test set. The result can
be represented as percentage value between 0% and 100%, where the higher is
the better.

It would be desirable, if 100% coverage could mean that the program is
tested with all possible inputs and in all possible ways. In this hypothetical
case, the program would be not only validated by testing, but verified too,
since it was used with every possible input. Currently, we are far from that,
and also the strength and reliability of a specific coverage percentage depend
highly on the used coverage metrics. So using simply a coverage rate (without
knowing the used metrics) as a quality measurement is unsafe, and could even
give the feeling of false safety, which is even worse than having no clue about
the quality of the used test set.

From another point of view, a code coverage metrics specifies equivalence
classes over the input data space of the tested program. This means that we
need only one test value per class to reach the same coverage. Ideally, a class
should be a group of such input data that use exactly the same parts of the
tested code in exactly the same way. However, this highly depends on the
specific coverage metrics and, unfortunately does not hold generally.

2.1. Example

The following small program (written in WHILE language [3]) will be used
as a running example in this paper. The program is composed of 10 program-

220 D. Leskó and M. Tejfel

ming language constructs (see boxes in Figure 2). Nine of them are expressions,
so our example is really expression heavy. Please note that the code fragment
is buggy, and the x=0 case will cause failure.

if ((x - 1 < 10) && (x mod 2 = 0)) then

res := 100 div x

else

res := 10 * x

Figure 1. Example program in WHILE

Figure 2 shows the original syntax tree of the example code-fragment. Later,
there will be two modified versions of it.

Figure 2. Original syntax tree of the example

2.2. Thoughts about existing code coverage metrics

In this section, we will examine some well-known and commonly used code
coverage metrics. A short informal definition will be given mostly from the
point of view of our example in Figure 1 Also such test data sets will be given
for every metric, which reaches 100% coverage. Most of the metrics were taken
from Beizer’s paper [9], and some of them came from the industry [10, 11].

Statement coverage (also known as line coverage): The basic block
coverage is very similar, with the difference that there the unit of code measured
is not a statement, but a sequence of non-branching statements. Statement cov-
erage reports whether each executable statement is encountered. Full coverage
can be reached with the following two test values: x=10; x=11.

Decision/branch coverage: The metric reports whether logical expres-
sions are tested in control structures (such as branching or looping) evaluated

Domain coverage 221

to both true and false. The full coverage can also be reached with two test
values: x=10; x=11.

Condition coverage (or condition operand coverage): Condition
operand coverage improves the thoroughness of decision coverage by testing
each operand of decision conditions with both true and false values, rather
than just the whole condition. Full coverage with two smartly selected test
values: x=10; x=11.

This metric has an even more thorough variant, named Multiple condi-
tion coverage (and also known as condition operator coverage), which looks
at the various combinations of Boolean operands within a condition. Each
Boolean operator – within a condition – has to be evaluated four times, with
the operands taking each possible pair of combinations of true and false. For
this multiple version, we need four test values: x=9; x=10; x=11; x=12.

Path coverage (also known as predicate coverage): The metric re-
ports whether each of the possible paths in each function have been followed.
A path represents the flow of execution from the start of a method to its exit.
A method with N decisions has 2N possible paths, and if the method contains
a loop, it may have an infinite number of paths. Full coverage can be reached
with x=10; x=11.

Fortunately, we can use the Cyclomatic Complexity [13] to reduce the num-
ber of paths we need to cover. It directly measures the number of linearly
independent paths through a program’s source code. Cyclomatic complexity is
computed using the control flow graph of the program: the nodes (N) of the
graph correspond to indivisible groups of commands of a program, and a di-
rected edge (E) connects two nodes if the second command might be executed
immediately after the first command. Formula: M = E −N + 2P , where P is
the number of connected components.

The number of linearly independent paths through a method is generally
smaller than the total number of paths, although every possible path can be
formed by combining several linearly independent paths. The cyclomatic com-
plexity value is the maximum number of test cases needed to get 100% branch
coverage, and the minimum number of test cases needed to exercise every path
through a method, so it provides a good way to tell how well a method is tested.

Relational operator coverage: This one is not so commonly known and
used. It could be considered as an accessory and also a little bit exotic metric
rather than a regular one. It reports whether boundary situations occur with
relational operators (<, <=, >, >=). The hypothesis is that boundary test cases
find off-by-one mistakes and uses of the wrong relational operators such as <

instead of <=. Full coverage with x=10; x=11 can be reached.

Data flow based metrics: Most of the previously mentioned metrics
are based on control flow. The strength of coverage metrics can be enhanced

222 D. Leskó and M. Tejfel

by examining the data flow (e.g. how variables are defined and used in the
program).

Frankl and Weyuke [14] proposed numerous data flow based coverage met-
rics, which were all based on the idea that, in principle, for each statement in
the program we should consider all possible ways of defining the variables used
in the statement. At the end, all of these metrics select a set of paths which
satisfies their criterion.

Other code coverage metrics: Of course, several other code coverage
metrics exist (such as function, call, loop, Linear Code Sequence and Jump
(LCSAJ), ...), which were not mentioned earlier, because they are not really
relevant to our example code (see Section 2.1), or they are just a mutated
version of a presented one.

2.3. Revealing the problem

The previous subsection also showed that although it is easy to create a
program that scores 100% code coverage while the result is still buggy. Cur-
rently we are not aware of such metric that would not reach full coverage unless
there is a specific test case (in our case x=0), which results ”division by zero”
error.

The main problem with the example in Section 1 is that it is not sophisti-
cated enough for the problem that it aims to solve. Specifically there should
be another condition before the division. These types of bugs – those that can
be fixed by adding new code lines – are sometimes called faults of omission.
Unfortunately, they are quite common in real life, as numerous studies have
shown. One of them is from Glass [4], in which the author describes faults of
omission as ”code not complex enough for the problem”. Faults of omission
are not just unchecked status returns: they include missing conditions in ”if”
statements, missing ”catch” statements for exceptions and other, more complex
cases.

In hardware design (especially for microprocessors), there are two notions:
data-path layer and control-path layer. The data-path layer performs the arith-
metic operations and the control-path layer tells the data-path layer, memory,
and I/O devices what to do according to the instructions of the program.
These notions could be easily used for programs written in high-level pro-
gramming languages as well. The control-path layer would contain the control
structures (branching, looping), function and procedure calls (essentially every
statement). The data-path layer would be the lower one, containing arithmetic
and logical expressions.

The problem of the previously shown code coverage metrics originates in
the fact that they are relying almost entirely on the control-path layer of the
tested program. In the following subsection, we will propose a new coverage

Domain coverage 223

metric, which is based on the data-path layer, and on top of that could handle
the control-path layer too.

2.4. Domain coverage

A computer program always relies on lower layers, such as libraries, core
language constructs, or another programs written by other programmers. To
make sure that our program is bug free and works as it should, we have to see
and test the whole picture, not just our few lines of code.

In most cases, the lower layers are well tested, and also our program can
be tested with various tools and coverage metrics, but the interaction between
them are the weakest link. Testing these interactions basically means a low level
integration testing between our program and some core language constructs.
However, this approach is not used, mostly because it would require some
support from the programming languages, which does not exist yet.

In order to be able to perform thoroughly the previously mentioned low
level integration testing, we need such code coverage metric which will produce
a reliable test quality information. As shown earlier, the currently used metrics
fail to detect the ”possibly non-complete handling of an interaction” kind of
errors. We will present a new coverage metric, which aims to detect if a test set
for the previously mentioned low level integration testing is not as thorough as
it should be.

Figure 3. Example: ”possibly non-complete handling of an interaction”

Figure 3 shows an example, where the result of a function (compute) de-
pends on some incoming data (...params...), and there are three possible
outcomes. However, the user code has only one branch, which distinguishes
RESULT_1 from the other cases. On one hand, this could be on purpose, but on
the other hand, maybe the programmer was sloppy, or actually he/she never
realized that there are three possible outcomes. So a trustworthy code cover-

224 D. Leskó and M. Tejfel

age metric should account all three outcomes to report 100% coverage. The
problem is that this would require some information about the semantics of the
function (compute).

The rest of this section will propose a new coverage metric, which mainly
targets the previously mentioned interaction part, not just strictly the source
code. The new metric does not try to find out whether there is a branch or
some handling code for every possible outcome of a function, because the lack
of these could be the programmer’s intention. Rather we try to check that
the test data set is so thorough that the outcome of the function covers every
interesting part of the codomain.

Remark 2.1. In the followings we assume that an ordering exists (or it is
easily definable) on every used variable’s domain.

Definition 2.1. A sub-domain is a set of elements, more precisely it is a
part of a specified variable’s domain.

Notation: (a, b, c, d, e ∈ N)

• [a] means a as a single value

• [a..b] means (interval from a to b)

– (a ≤ b) ∀x ∈ N : x ∈ [a..b] ⇐⇒ a ≤ x ≤ b

– (a > b) ∀x ∈ N : x ∈ [a..b]⇐⇒ (a ≤ x ≤ MAX) ∨
∨(MIN ≤ x ≤ b)

• [a,b..c] means (a is the first element, b is the second, c is the end-
bound)

– (a ≤ b ≤ c) ∀x ∈ N : x ∈ [a,b..c] ⇐⇒
(x mod (b− a) = a mod (b− a)) ∧ (a ≤ x ≤ c)

– (a > b > c) ∀x ∈ N : x ∈ [a,b..c] ⇐⇒
(x mod (b−a) = a mod (b−a))∧((a ≤ x ≤ MAX)∨(MIN ≤ x ≤ c))

Example: [10,12..20] = {10, 12, 14, 16, 18, 20}

Definition 2.2. The domain of a specified variable is a partitioning of its
codomain. Practically, it is a set of sub-domains, where C is the codomain, D
is the corresponding domain, S is a sub-domain, and ∀x ∈ C : ∃!S ∈ D : x ∈ S.

Remark 2.2. A sub-domain could have infinite elements, because the pre-
viously mentioned MIN and MAX are not actual values by all means. They
could be just symbols. As a result of this, our model is not limited to finite
domains.

Domain coverage 225

Remark 2.3. In cases where there is not enough information about the co-
domain, and therefore we could not or would not split it into sub-domains, we
will use the � sign. It represents such a domain which has only one sub-domain,
containing the complete codomain.

In the following definition and also in the rest of this paper, we consider
each and every programming language construct as a function. For example,
the if..then..else.. construct will be thought as a function with three ar-
guments.

Definition 2.3. A behavior is a mapping from a programming language
construct (represented as a function) to a tuple of domains, where the arity of
the function and the arity of the tuple are equal. It assigns initial domains to
every programming language construct.

Notation: (behavior : F → D; where F is a set of every possible pro-
gramming language construct and operator; D is a set of domain tuples with
varying arity)

• behavior(�) : −

• behavior(�→ �) : D

• behavior(�→ �→ �) : D ∗D

• behavior(�→ �→ �→ �) : D ∗D ∗D

Remark 2.4. Mostly not the whole behavior will be required, just one
domain out of it. To make it more handy, the f ∈ F , n ∈ N : behavior(f)(n) :
F → N → D notation will be used. This means that we only need the nth

element of the resulted tuple.

Definition 2.4. An initial domain is a domain with a specific role. Each
sub-domain of an initial domain groups such values which behave similarly.
Basically it represents equivalence classes – according to the semantics of the
construct – on the codomain of the current language construct.

Ideally the initial domains of operators and other language constructs should
be given by the language designer.

The behavior function and the corresponding initial domains shown in Fig-
ure 4 will be used in the rest of this paper. The design of these initial domains is
completely the tester’s duty and responsibility. It basically reflects the tester’s
opinion about which partitions of each programming language construct’s do-
main is important and interesting. For example, we think 0 as a special value
according to Figure 4. This behavior function intends to check the program
also in mathematically incorrect cases ([0] for div).

226 D. Leskó and M. Tejfel

(0) behavior(variable) = �
(1) behavior(+) = ({[MIN..(-1)], [0], [1..MAX]} ∗ {[MIN..(-1)], [0], [1..MAX]})
(2) behavior(-) = ({[MIN..(-1)], [0], [1..MAX]} ∗ {[MIN..(-1)], [0], [1..MAX]})
(3) behavior(*) = ({[MIN..(-1)], [0], [1..MAX]} ∗ {[MIN..(-1)], [0], [1..MAX]})
(4) behavior(div) = ({[MIN..(-1)], [0], [1..MAX]} ∗ {[MIN..(-1)], [0], [1..MAX]})
(5) behavior(mod) = ({[MIN..(-1)], [0], [1..MAX]} ∗ {[MIN..(-1)], [0], [1..MAX]})

(6) behavior(=) =

(
({[true], [false]} ∗ {[true], [false]}) for logical expr.

({[MIN..MAX]} ∗ {[MIN..MAX]}) for arithmetic expr.

)

(7) behavior(<) =

(
({[true], [false]} ∗ {[true], [false]}) for logical expr.

({[MIN..MAX]} ∗ {[MIN..MAX]}) for arithmetic expr.

)

(8) behavior(¬) = {[true], [false]}
(9) behavior(∧) = ({[true], [false]} ∗ {[true], [false]})
(10) behavior(skip) = −
(11) behavior(:=) = �
(12) behavior(;) = � ∗�
(13) behavior(if) = ({[true], [false]} ∗� ∗�)

(14) behavior(while) = ({[true], [false]} ∗�)

Figure 4. Behavior and initial domains for the WHILE language

Definition 2.5. A behavior class is related to the notion of sub-domain.
Both aim to group such data which exercise a code fragment in exactly the
same way. The difference is that sub-domains are for single variables, while
behavior classes are for single programming language constructs. A behavior
class is a tuple of sub-domains.

The behavior function results a tuple of domains. Bp is a set of every possi-
ble behavior class (the previously mentioned tuple is interpreted as a Cartesian
product) for a p specific language construct or operator. b ∈ Bp : b is a behavior
class.

Bp = ×
1≤i≤arity(p)

behavior(p)(i)

Remark 2.5. In those cases when a constant value (which appears in
the source code as a parameter) is involved in a computation, we will always
perform currying on it. For example, if x+1 is given, then we will use (+1) :
: N → N , instead of (+) : N → N → N . This approach will significantly
reduce the number of not coverable behaviors.

Figure 6 shows some behavior classes for the example code (shown in Fig-
ure 3). Each rectangular with dashed lines marks a behavior class.

Domain coverage 227

Domain coverage metric (informal definition): The coverage is strong-
ly connected to the evaluation process of a program. The interpretation of a
program starts from the bottom of its tree-like representation, and proceeds
to the top by evaluating the sub-expressions. Basically, the idea is to record
the result of every sub-expression and statement during the evaluation phase.
This would result a modified syntax tree (see Figure 5), where the structure is
the same, but the operator nodes became a simple value. These values can be
used to check which behavior classes were covered.

Figure 5. Modified syntax tree of the example, showing internal results

The smallest unit is a sub-domain, which is covered if it was reached at
least once during the testing. A behavior class is a tuple of sub-domains and
we consider it covered if its every sub-domain was covered by the same test
data. An f programming language construct is covered if ∀b ∈ Bf : b behavior
class was covered. A program (P) can be considered as a set of programming
language constructs, and therefore it is covered if ∀f ∈ P : f was covered.

Definition 2.6. A covered behavior is a function which gets a p ∈ P
programming language construct and a test data (par) while results the covered
behavior class.

Notation:
cover : par → p→ b where p ∈ P, b ∈ Bp

Figure 6 shows covered behaviors for the example code (shown in Figure 3)
in the case of x=10 input data. Each dashed-line rectangular shows a behavior
class containing the covered sub-domains.

To sum up, the domain coverage metric has two levels (lower-upper), the no-
tion of behavior is the border-line between them. Below that, the sub-domains
are taken dependently, which means that the metric handles the parameters of
a programming language construct in a dependent way. The parts above the

228 D. Leskó and M. Tejfel

behavior notion are taken independently, which means that the statements and
other programming constructs of a specific program are handled independently
by the metric.

Figure 6. Modified syntax tree of the example, showing the covered behaviors

Definition 2.7. Domain coverage metric : covered behavior classes

total number of behavior classes

where

• params is the set of input test data

• covered behavior classes =
∑
p∈P

size(
⋃

par∈params
cover(par)(p))

• total number of behavior classes =
∑
p∈P

size(Bp)

• P is the tested program, represented as a set of programming constructs
and operators

• size(Bp) means the number of behavior classes of Bp

Relation to other code coverage metrics: Domain coverage subsumes
decision / branch coverage – and as a consequence statement coverage too
– because the behavior function ((13),(14) in Figure 4) assigns such initial
domains for if and while, where the logical values are split up into sub-
domains.

Simple condition coverage is subsumed by domain coverage, since every
logical operator has such initial domains ((6)-(9) in Figure 4), where the true
and false are separated into different sub-domains. As a result of this, every
logical expression has to be evaluated both true and false in order to reach
100% domain coverage, but this is also enough for 100% condition coverage.

Domain coverage 229

The multiple version accounts the logical expressions dependently, and there-
fore that is a stronger metric, which cannot be subsumed generally by domain
coverage.

Path coverage, data flow coverage and also relational operator coverage
are hard to compare with domain coverage, since they use a quite different
approach, but it is safe to say that generally domain coverage cannot subsume
either of them. The ”normal” path coverage and also the cyclomatic complexity
based one are not designed and not fit well for the programs we aim to test. The
almost complete lack of branching and looping statements makes them really
weak. Data flow coverage adapts really well, because expression heaviness does
not lower the size of the data flow graph. However, its main target (variable
definition-usage relations) is quite far from the idea of domain coverage which
originates in the semantics and behavior classes of the programming language
constructs.

Note that the power of domain coverage metric strongly relies on the given
behavior function. In this comparison, and in Figure 4 we tried to use it in a
smart way. However, a not so mature behavior function could result a much
weaker metric, which even can be subsumed by statement coverage.

3. Automated test data generation

Having a code coverage metric which tells that our current test data set is
not good enough is nice, but generally not so useful, because it does not say
anything about how to improve the test set to reach higher coverage.

This section presents a new test data generation approach close to coverage
based test data generation. The main difference is that our approach does not
use the coverage metric as-is, instead it only borrows some notion and function
definition from the metric and uses them with a slightly different purpose.

To be more specific, the coverage metric used the behavior function to
check that, which behavior classes were covered by the internal results dur-
ing execution with real input test data, while test data generation uses the
behavior function to perform a symbolic evaluation of the current program.
During this evaluation the domains of each variable of the program are refined
(split into more sub-domains) and propagated upwards. The result of this
symbolic evaluation is a refined domain for every input argument. Using this
information, we can easily generate such test data sets which will reach 100%
domain coverage.1

1If there are no infeasible combinations, otherwise the ratio is a bit less, but still the
highest possible

230 D. Leskó and M. Tejfel

Definition 3.1. (Refining a domain.) Let us take two domains, d1, d2 ∈ D,
and refine them with each other: refine(d1 ∪ d2)

where

refine(d) =

⎧⎨⎩
refine((d \ {s1, s2})

∪ split(s1, s2)) ∃s1, s2 ∈ d, ∃e ∈ s1 : e ∈ s2
d ∀s1, s2 ∈ d, �e ∈ s1 : e ∈ s2

split(s1, s2) = {[x|x ∈ s1 ∧ x /∈ s2], [y|y ∈ s1 ∧ y ∈ s2], [z|z /∈ s1 ∧ z ∈ s2]}

The refine function takes a set of sub-domains, which is usually not a
domain (has overlapping sub-domains), and refines it to a correct domain by
splitting and eliminating sub-domains. The split takes two – usually – over-
lapping sub-domains, and returns a set of sub-domains without overlapping.

A domain is basically a complete partitioning of its codomain. The union
or refinement of two domains (of the same codomain) could be imagined as
follows. Interpret each sub-domain starting and ending point as a delimiter,
and build a new domain, which contains only such sub-domains that start from
a delimiter and end at the next one.

3.1. Target oriented domain refinement

The main idea of our test case generation method is to do a bottom → top
symbolic evaluation, and during this process, gather such information about
the processed behaviors, which guarantees that the generated test data set
will cover every reachable behavior class.

One step of this recursive symbolic evaluation means the followings:

• Given:

– p ∈ P programming language construct or operator

– arity(p) number of domains (they will be referred as input do-
mains), which types are match to p’s signature

– target domain, which is the expected domain for the result of p

• Tasks:

1. Refine the input domains according to behavior(p).

2. Refine further the input domains in order to guarantee that if a test
set – generated from the knowledge of the refined input domains –
covers p’s every behavior class, then the result of p will always cover
the target domain.

Domain coverage 231

Figure 7. Outlining one step of the symbolic evaluation

Figure 7 outlines one step of the used symbolic evaluation, where p, q ∈
∈ P. According to the figure, p has exactly two arguments and q has at least
one. The number of arguments are orthogonal to the hereinafter described
method. Losing a bit of abstraction in this example hopefully results a better
understanding and a more comprehensible figure.

The input domains are either coming from the symbolic evaluation of lower
structures (sub-expressions), or they are the � domain in the case the corre-
sponding argument of p is a constant or a variable.

Note that a domain is always associated with a variable, so when we talk
about a domain we always mean that specific domain which is associated with
the current variable name. Generally we have an associated array of domains
where the variable names are the keys. The elements (domains) of this array
are updated (refined) during the symbolic evaluation of an expression and then
the whole array is propagated upwards.

The first part (marked as 1. in Figure 7) is easy, we only have to refine each
input domain with a corresponding behavior(p) (i) domain (in our example:
i ∈ {1, 2}). This ensures that every behavior class of p will be covered, if the
used test data set is generated according to the refined domains (details of the
generation in subsection 3.2).

The second part (marked as 2. in Figure 7) is much more tricky. The input
domains – which are the domains of p’s arguments – have to be refined again.
The goal is to refine the input domains in a way which will ensure that if p is
executed (with some generated test data based on the refined domains), then
the set of p’s results will completely cover behavior(q)(i) (in our example:
i ∈ {1}). We should use such refinement strategy that keeps the number of
sub-domains low, because this will also keep the size of the generated test set
low. Unfortunately, there is no general strategy for this task, but the following
technique works in common cases:

1. Check whether refinement is needed or not

2. If the input domain is close to the target domain (according to the number
and boundaries of the sub-domains), then refine this input domain with

232 D. Leskó and M. Tejfel

the target domain. After that, refine the rest of the domains with such
sub-domain that contains only the identity element (respectively to p)

3. User defined, specific strategies for p and maybe even for different kinds
of domains

Please note that the previous (1) or (2) could always solve the problem,
and mostly their efficiency is not so bad. The efficiency of a refinement strat-
egy could be measured by the number of newly introduced sub-domains. We
consider a strategy efficient if it tries to keep this number low.

Informal description of refine_to_targetp(arr, target domain) function,
where target domain ∈ D, and arr is an associative array of domains (the keys
are the corresponding variables).

• p ∈ P , p is a language construct, P is the program under testing, repre-
sented as a set of language constructs

• In practice we will need such version of p which

– works on domains instead of single values (map to each sub-domain’s
every element)

– has an inverse semantics of p (e.g. + → -)

Example: In the case of x-1, the p will be (-1) (because we curry the
constants), and the inverse semantics would mean that we increment each
value by one.

• The arr associative array contains a domain for every argp(i) where 1 ≤
≤ i ≤ arity(p)

• The result of this function is an associative array of domains (based on
arr), where the domains for argp are modified by the inverse p and refined,
if needed (depending on the given target domain)

Let us take the following small example, where p is (-1), the arr contains
a domain for x, and the target domain is [MIN..MAX].
refine_to_target(−1)([x → {[MIN .. (-1)], [0], [1 .. MAX]}, [MIN .. MAX]])

Firstly we have to apply the previously described version of p (inverse se-
mantics, works on domains) to the elements of the associative array. This
propagates our current knowledge upwards in the syntax tree. The result of
this step is [x→ {[(MIN+1) .. 0], [1], [2 .. MIN]}]. The second step is to refine
the result with the given target domain. Currently the target domain is the �
domain, which means that the refine function will not change anything, so
the overall result will be the result of the first step.

Domain coverage 233

3.2. Symbolic evaluation and test data generation

A special bottom-up symbolic evaluation will be used to refine, propagate
and gather domain information about the input variables of the evaluated code.
This domain information is a basis of our guided/restricted test data genera-
tion, where we pick one value randomly from each sub-domain.

A domain is always connected to a variable; therefore, during symbolic
evaluation we could represent them in an associative array. The union of such
arrays is an array that contains every occurrent domain. If a variable appears in
more then one array, than the union/refinement of the corresponding domains
will be used in the resulted associative array.

The following rules will be used for the symbolic evaluation. The ’initial’ is
only used for the first occurrence of a variable, in every other case the second,
’standard’ rule is used. We always start the evaluation by calling sym_eval for
the topmost p ∈ P programming construct of the analyzed program, and with
�, as a target domain.

sym_eval: p→ d→ arr (p ∈ P, d ∈ D, arr is an assoc. array of domains)

sym_eval(input variable, �) = [input variable → �] (initial rule)

sym_eval(p, target domain) = sndP (standard rule)

where

fstP=
⋃

i∈1..arity(p)
refine(sym_eval(argp(i), behavior(p)(i)), behavior(p)(i))

sndP = refine_to_targetp(fstP, target domain)

Firstly the function traverses the program’s syntax tree downwards. The
task of this traversal is to set the target domain for every argument. The sec-
ond step is to traverse upwards, and do the main task: compute and propagate
the refined domains.

Number of input arguments: According to the previously described
test data generation method, the size of the yielded test data set considerably
depends on the number of input arguments.

The result of the symbolic evaluation is a refined domain for every input
variable of the program under testing, then we take the Cartesian product of
the domains, which will result every possible behavior class. The last step is
to generate one test data from every behavior class.

In practice, normally we would not want to take the Cartesian product,
because this would mean that the size of the test set is exponential to the
number of input arguments. In this way, we would take dependently such
arguments (or occurrences of arguments) which are independent in the tested
program, and would also generate numerous infeasible combinations.

234 D. Leskó and M. Tejfel

By tracking the age (when it was created by refinement, during the symbolic
evaluation) and history (how it was refined/split during the evaluation phase)
of each sub-domain, we could gather extra information. This could be used
to create a smarter test data generator, which takes into account only such
behavior classes from the previously mentioned Cartesian product, where the
sub-domains are really dependent.

3.3. Example in details

In this subsection we will perform manually the symbolic evaluation to show
how it works. The code fragment of our running example (Figure 1) will be
used. The method will be presented thoroughly on the x-1 sub-expression; the
later parts will be rougher.

sym_eval(x-1, [MIN..MAX]) = snd_p

The target domain of x-1 is [MIN..MAX], which is coming from the < operator.

fst_p =
(substituting into the formula: x is the first argument the behavior is taken
from -’s first argument)

= refine(sym_eval(x,{[MIN..(-1)], [0], [1..MAX]}), {[MIN..(-1)],[0],[1..MAX]})
(calculating the inner sym_eval call by using the initial rule)

= refine([x → {[MIN..(-1)], [0], [1..MAX]}], {[MIN..(-1)], [0], [1..MAX]})
(performing the refinement; this was marked as 1. in Figure 7)

= [x → {[MIN..(-1)], [0], [1..MAX]}]

snd_p =
(substituting, and currying the constant, the p is (-1))

= refine_to_target(−1)(fst_p, [MIN .. MAX])
(inlining fst_p)

= refine_to_target(−1)([x → {[MIN..(-1)], [0], [1..MAX]}, [MIN..MAX]])
(performing refine_to_target marked as 2. in Figure 7)

= [x → {[(MIN+1) .. 0], [1], [2 .. MIN]}]

Domain coverage 235

3.3.1. Short overview of the evaluation

• x-1:

– arr1 = [x → �]

– arr1 ∪ [x → refine(�, {[MIN..(-1)], [0], [1..MAX]})]
– arr1 = refine_to_target(−1) (arr1,{[MIN..MAX]}) = [x →
{[(MIN+1)..0], [1], [2..MIN]}]

• ...<10:

– arr1 ∪ [x → refine({[MIN..(-1)], [0], [1..MAX]}, [MIN..MAX])]

– arr1 = refine_to_target(<10) (arr1,{[true], [false]}) = [x →
{ [(MIN+1)..0], [1], [2..9], [10..MIN]}]

• x mod 2:

– arr2 = [x → �]

– arr2 ∪ [x → refine(�, {[MIN .. (-1)], [0], [1 .. MAX]})]
– arr2 = refine_to_target(mod 2) (arr2,{[MIN..MAX]}) = [x →
{ [MIN..(-1)], [0], [1..MAX]}]

• ...=0

– arr2 ∪ [x → refine({[MIN..(-1)], [0], [1..MAX]}, �)]

– arr2 = refine_to_target(=0) (arr2,{[true], [false]}) = [x →
{ [(MIN+1), (MIN+3)..0], [(MIN+2)..(MIN+4)..0], [1], [2, 4..MIN],
[3, 5..MIN]}]

• ...&&...

– This construct does not result further refinements, therefore we just
collect the results.

– arr1 ∪ arr2 = [x→{[(MIN+1), (MIN+3)..0], [(MIN+2), (MIN+4)..0],
[1], [2, 4..9], [3, 5..9,] [10, 12..MIN], [11, 13..MIN]}] = arr1,2

• 100 div x:

– arr3 = [x → �]

– arr3 ∪ [x → refine(�, {[MIN..(-1)], [0], [1..MAX]})]
– arr3 = refine_to_target(100 div) (arr3,{�}) = [x → {[MIN..(-1)],

[0], [1..MAX]}]

236 D. Leskó and M. Tejfel

• 10 * x:

– arr4 = [x → �]

– arr4 ∪ [x → refine(�, {[MIN..(-1)], [0], [1..MAX]})]
– arr4 = refine_to_target(10 *) (arr4,{�}) = [x→ {[MIN..(-1)], [0],

[1..MAX]}]

• res:=... ; res:=...

– These constructs do not necessitate further domain refinements.

• if

– This construct does not result further refinements, therefore we just
collect the results.

– arr1,2 ∪ arr3 ∪ arr4 = [x → {[(MIN+1), (MIN+3)..(-1)], [(MIN+2),
(MIN+4)..(-1)], [0],[1], [2, 4..9], [3, 5..9], [10, 12..MIN], [11, 13..MIN]}]
= arr1,2,3,4

Outcome: The result of the symbolic evaluation is the following associative
array, which – in our case – contains the refined domain of x:
{[(MIN+1), (MIN+3) .. (-1)], [(MIN+2), (MIN+4) .. (-1)], [0],[1], [2, 4 .. 9],
[3, 5 .. 9], [10, 12 .. MIN], [11, 13 .. MIN]}

According to the previous result, the following test set would reach 100%
domain coverage: x ∈ {-2, -1, 0, 1, 2, 3, 10, 11}

4. Domain coverage in practice

It is obvious that the presented code coverage metric and the annotated
test data generation method are not lightweight solutions: they require a mas-
sive support from the used programming languages. Therefore, it is unlikely
that the presented methods will be reachable soon in major main-stream pro-
gramming languages like Java, C++ or Haskell. However, this is not the case
with embedded domain specific (EDSL) languages, which are nowadays very
popular due to their small size, flexibility and rapid prototyping possibilities.
Therefore, it is much easier to work out the needed support for the techniques
presented in this paper. In fact – as a member of the Feldspar development
team –, we are planning to create a real life case study about the presented
theoretical results, using Feldspar [12].

Domain coverage 237

Adding the feature of calculating domain coverage to an existing language
requires the followings. Firstly we have to create the machinery which will
calculate the coverage: a new interpreter, which is just a smart wrapper of the
original one. The wrapper interpreter will evaluate the program in a bottom-up
manner, while in each step it will call the original interpreter to really evaluate
a sub-expression, and then records the internal results for the coverage ratio
calculation. This wrapping can be avoided if the interpreter supports such
callback function which is invoked after each sub-expression’s evaluation. For
domain coverage we also need the behavior function defined for every construct
of the programming language. The cost of creating the wrapper interpreter is
constant, and does not depend on the actual language, while the cost of the
behavior function scales as the complexity of the current language.

For test data generation we have to create a simple symbolic evaluator,
which will handle the propagation and refinement of the domains connected to
variables. Furthermore, we will need an inverse-like function for each language
construct (as described in Section 3.1). The cost of the symbolic evaluator is
almost constant, but it is hard to give a complexity estimation for the inverse-
like definitions, because the creation of them completely depends on the current
programming language and its special constructs.

5. Related work

Cheng and Hsiao [2] start with almost the same idea (examine the domain
of some predefined internal variables) and they use it as a coverage metric and
also for test data generation. But the approach differs, because ours has a
formalized background, and a statical analyzer is built on top of that, while
their approach uses simulation, dynamic analysis and heuristics to determine
the equivalence classes. As a consequence of the chosen approach, our proposal
is much more reliable, and it can be used even for reasoning about complete
code coverage.

According to the survey [1] made by Zhu et al, the domain analysis and
domain based approaches for testing are known for a long time. The main idea
of domain based approaches is the following (according to Myers [5]). Try to
partition the input domain of a program into a finite number of equivalence
classes so that you can reasonably assume (but, of course, not be absolutely
sure) that a test of a representative value of each class is equivalent to a test
of any other value.

To partition the input space, we need information, which could come either
from the specification or from the program. When partitioning the input space

238 D. Leskó and M. Tejfel

according to the specification [6], we consider a subset of data as a sub-domain
if the specification requires the same function on the data. The software in-
put space can also be partitioned according to the program (mostly evaluated
symbolically [7]). In this case, two input data belong to the same sub-domain
if they cause the same computation of the program. Usually, the same execu-
tion path of a program is considered as the same computation. Therefore, the
sub-domains correspond to the paths in the program.

We would place our result between the two previously mentioned approaches,
because our partitioning is done according to the program, but each level of the
syntax tree is handled independently, which means that we do not collect path
information. Instead of that – during symbolic evaluation – we use semantics
information of the programming language constructs.

White and Cohen [8] use the result of domain partitioning to test the ”corner
cases” of the program by generating minimum, maximum, just inside/outside
values from each sub-domain. Our method randomly generates one value from
each sub-domain, but a different generation strategy (such as boundary testing)
is easily applicable.

6. Conclusion and future work

A new code coverage metric and a related automated test data generation
method were presented. We realized that most of the existing methods con-
centrate only on the statements and control structures (branching, looping,
etc.), but the lower layer (expressions) are mostly not considered thoroughly
from the metrics point of view. Mostly, the analysis of expressions are about
to determine their effects on the control flow, but the relation between two
expressions – using some kind of semantics information – was never considered
by coverage metrics (as far as we know).

The proposed metric takes both expressions and statements into account
while calculating coverage ratio. During this calculation it uses specific domain
information and behavior classes. These notions are describing equivalence
classes on arguments and on programming language constructs, based on their
internal behavior. Basically we pushed the analysis level lower, and the cover-
age reports only if the implementation of a programming language construct
is covered. To be able to do this we need some semantics-like information, the
so-called initial domains. They group such values for each language construct
which trigger exactly the same behavior (observable and internal too!). This
information is ideally given by the language designers.

Domain coverage 239

The related test data generation aims to reach the highest possible domain
coverage. The method uses symbolic evaluation to refine (split into smaller
sub-domains) and propagate domain information upwards to the top. During
the evaluation we could use special refinement strategies to keep the result of
the refinement efficient. A possible future work is to investigate more advanced
strategies, or try to find such ones that subsumes every other. As a result of
this evaluation, we get such solidly refined domains which enable us to reach
our goal. At the end we generate a single data from every behavior class.

The presented method is so far theoretical. Only a small scale case study
(for a simple functional-ish language, embedded into Haskell, which was de-
signed only for this purpose) was created to prove the feasibility of the idea.
So it is definitely future work to put the theory into practice and create a real
life, working case study.

References

[1] Zhu, H., P.A.V. Hall and J.H.R. May, Software unit test coverage
and adequacy, ACM Computing Surveys, 1997, 366–427.

[2] Cheng, X. and M.S. Hsiao, Simulation-based internal variable range
coverage metric and test generation model, in: Proceedings of International
Conference on Software Engineering and Applications (SEA), 2006.

[3] Nielson, H.R. and F. Nielson, Semantics with Applications: A Formal
Introduction, John Wiley & Sons, Inc., New York, NY, USA, 1992.

[4] Glass, R.L., Persistent software errors, IEEE Transactions on Software
Engineering, Los Alamitos, CA, USA, 1981, pp. 162–168.

[5] Myers, G.J. and C. Sandler, The Art of Software Testing, John Wiley
& Sons, New York, NY, USA, 2004.

[6] Hall, P.A.V., Relationship between specifications and testing, Informa-
tion and Software Technology, 1991, 47–52.

[7] Girgis, M.R., An experimental evaluation of a symbolic execution sys-
tem, Software Engineering Journal, Herts, UK, 1992, pp. 285–290.

[8] White, L.J. and E.I. Cohen, A domain strategy for computer pro-
gram testing, IEEE Transactions on Software Engineering, Piscataway,
NJ, USA, 1980, pp. 247–257.

[9] Beizer, B., Software testing techniques (2nd ed.), New York, NY, USA,
1990.

240 D. Leskó and M. Tejfel

[10] Information Processing Ltd., Structural Coverage Metrics Executive
Summary, http://www.ipl.com/pdf/p0823.pdf, 2012.

[11] Cornett, S., Code Coverage Analysis,
http://www.bullseye.com/coverage.html, 1996.

[12] Axelsson, E., G. Dévai, Z. Horváth, K. Keijzer, B. Lyckeg̊ard,
A. Persson, M. Sheeran, J. Svenningsson and A. Vajda, Feldspar:
A domain specific language for digital signal processing algorithms, in:
Proc. Eighth ACM/IEEE International Conference on Formal Methods
and Models for Codesign, MemoCode, 2010.

[13] McCabe, T.J., A complexity measure, in: Proceedings of the 2nd in-
ternational conference on Software engineering, Los Alamitos, CA, USA,
1976.

[14] Frankl, P.G. and E.J. Weyuker, An applicable family of data flow
testing criteria, IEEE Transactions on Software Engineering, 1988, pp.
1483–1498.

D. Leskó and M. Tejfel
Department of Programming Languages and Compilers
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
ldani@caesar.elte.hu

matej@caesar.elte.hu

