
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 159–177

NEIGHBORHOOD PRINCIPLE DRIVEN

ICF ALGORITHM AND

GRAPH DISTANCE CALCULATIONS

Norbert Kézdi, Katalin Pásztor Varga and Éena Jakó
(Budapest, Hungary)

Communicated by László Kozma

(Received December 19, 2011; revised January 25, 2012;
accepted February 1, 2012)

Abstract. In the field of Boolean algebra there are many well known
methods to optimize/analyze formulas of Boolean functions. This paper
presents a non-conventional graph-based approach by describing the main
idea of the Iterative Canonical Form (or ICF) [5,9] of a Boolean function,
and introducing an algorithm that is capable of calculating the ICF. The
algorithm is iteratively processing the neighboring nodes inside the n-cube.
The iteration step count is a linear function of n. Some novel efficient meth-
ods for computing distances by matching non-complete bipartite graphs,
derived from the ICF and named as ICF-graphs [4,9,10] are proposed. Dif-
ferent metrics between the ICF-graphs are introduced, such as weighted
and normalized node count distances, and graph edit distance. Some re-
cent results and application possibilities of the ICF-graph based distance
calculations from the field of molecular systematics, ecology and medical
diagnostics are discussed.

1. Introduction

The efficiency of Boolean function manipulation in various applications
depends on the form of representation of Boolean functions. In principle, a

Key words and phrases: Iterative Canonical Form, ICF, ICF-graph, Boolean function,
Boolean algebra, mathematical logic, graph distance, graph metrics, biological applications.
2010 Mathematics Subject Classification: 03B70, 03G05, 03G10, 05C85.
1998 CR Categories and Descriptors: E.1, E.2, F.4.1, G.2.2, J.3.

160 N. Kézdi, K. Pásztor Varga and É. Jakó

Boolean function may be represented by an infinite number of Boolean formu-
las. In practical applications, however, it is useful to consider some restricted
classes of such formulas, in which any Boolean function is represented by ex-
actly one formula, called canonical form. The most widely used canonical forms
are the Complete Disjunctive Normal Form (CDNF), Complete Conjunctive
Normal Form (CCNF) and the Zhegalkin polynomial, known also as the Reed-
Muller form. The Iterative Canonical Form (or ICF) of a Boolean function
introduced by Jakó [5] differs from the known disjunctive (conjunctive) normal
forms in using only monotone disjunctions (conjunctions), and from the Zhe-
galkin polynomial in using operations of Boolean algebra instead of Boolean
ring. Because of this substantial difference, the ICF algorithm can take ad-
vantage of the lattice-structure of the n-dimensional Boolean space, unlike the
conventional algorithms, which are using the standard rules of simplification.

Normal forms have been proved as fundamental tools in automated theorem
proving, logical design and in the investigation of the complexity of logical
mappings. The ICF and corresponding ICF-graph is a successful approach to
that [10].

In the field of structural pattern recognition and classification, graphs con-
stitute a powerful way of representing discrete objects. A Boolean function
of n variables can be represented as a rooted, directed, acyclic graph on a
corresponding n-dimensional Boolean cube (Boolean n-cube). In the Boolean
n-cube a vector with the rank k (where k is the number of the true compo-
nents in the vector) will generate an (n− k)-dimensional sub-cube. All of the
nodes inside the generated sub-cube will share the truth value with the gener-
ator vector, according to the analyzed Boolean function. If all of the vectors
inside the generated sub-cube are having the same truth value as the Boolean
function under consideration, and there are no unprocessed vectors in the do-
main, then the ICF algorithm will terminate. Otherwise, if there is a vector
inside the generated sub-cube with a conflicting truth value, then the algorithm
will go on with the minimal nodes of these conflicting vectors. The final re-
sult will be a graph, named as ICF-graph, which is a colored sub-graph of the
n-cube. The ICF-graph provides a compressed description of the Boolean func-
tion without loss of information. The nodes in the ICF-graph can be considered
as generator vectors of the sub-cubes. There are two different types of nodes
in the graph, called “generator” and “closure” nodes. The “closure” nodes
are colored white, while the “generator” nodes are colored black. Each node
is labeled by a Boolean vector (which can be considered as a monotone con-
junction/disjunction of Boolean variables or their negates). The black nodes
generate those vectors which will have the 1 (or true) truth values according to
the given Boolean function, while the white ones will generate the 0 (or false)
ones. There is an edge between two nodes if the Hamming distance of the two
Boolean vectors is exactly one.

ICF-method, ICF-graph distance 161

Some metrics between ICF-graphs are introduced, such as: Node count
distance, Weighted node count distance, Normalized node count distance and
Graph edit distance. Here the graph edit distance metric can be used for arbi-
trary graphs as well, although since it is not symmetric it is not a mathematical
metric, but still useful in other application areas.

2. The ICF algorithm

In this section we shall lay down the basic definitions and will prove some
lemmas/theorems so we can introduce the ICF calculator algorithm.

Let us denote the n-dimensional Boolean space by B
n, where B = {true,

false}. An element from B
n will be an n-dimensional Boolean vector. In other

words, an element from B
n is an ordered n-length list containing logical values.

The logical value true will be denoted by 1 and false by 0. If n = 4, then, for
example

x =

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦ ≡
⎡⎢⎢⎣

true
true
false
true

⎤⎥⎥⎦
is an element of B4. The elements within a Boolean vector are called coordinates
or bits. In the previous example x had the following bits: x1 = 1, x2 = 1,
x3 = 0, x4 = 1.

Definition 2.1. If x, y ∈ B
n, then dc(x, y)

def⇔ ∃i ∈ [1, n] ∩ N : ∀j ∈
∈ ([1, n] ∩ N)\{i} : xj = yj , and xi = 0, while yi = 1. In other words the
Hamming-distance of x and y is 1, and x̂ < ŷ, where x̂ denotes the number

format of x. For example, if x =

⎡⎣ 1
0
0

⎤⎦, then x1 = 1, x2 = 0, x3 = 0 and

x̂ = 1002 = 410. One should read this as “y is a direct child of x”.

Definition 2.2. If x, y ∈ B
n, then x → y

def⇔ dc(x, y) or ∃z1, z2, . . . , zk ∈
∈ B

n : dc(x, z1), dc(z2, z3), . . . , dc(zk, y). One should read this as “there is a
route from x to y”.

Definition 2.3. If x, y ∈ B
n, then x→̃y

def⇔ x→ y or x = y.

Definition 2.4. If ∅ �= A ⊆ B
n, then α(A) = {x ∈ B

n : A � a→̃x}. This
operation shall be called as α-extension.

162 N. Kézdi, K. Pásztor Varga and É. Jakó

Definition 2.5. If x ∈ B
n, then DC(x) := {y ∈ B

n : dc(x, y)}.
Definition 2.6. If x ∈ B

n, then Rank(x) = |{xi = 1 : i = 1, . . . , n}|. In
other words, Rank(x) is the number of true bits inside the x Boolean vector.

Definition 2.7. If ∅ �= A ⊆ B
n, then α2(A) (strict α-extension) can be

calculated with the following method:

G0 := A

G1 :=
⋃

x∈G0

DC(x)

G2 :=
⋃

x∈G1

DC(x)

...

Gk :=
⋃

x∈Gk−1

DC(x)

...

We continue until we reach a positive q, where Gq = ∅. This will surely happen
at some point, since with the calculation of each Gk the rank of the elements
will increase. If the dimension of Boolean space is n, then the maximum rank
is also n, and there will be only

(
n
n

)
= 1 element with the rank n, the vector

with the 2n−1 number format. This vector has not got any child, which means
DC(2n − 1) = ∅. Since the B

n space is finite, we will reach 2n − 1 eventually.

If ∅ �= A ⊆ B
n, then

α2(A) :=

q−1⋃
i=1

Gi.

Lemma 2.1. If ∅ �= A ⊆ B
n, then α2(A) = {x ∈ B

n : A � a→ x}.

Proof. If xi ∈ α2(A)(xi �= 0), then ∃j ∈ N
+ : xi ∈ Gj ⇒ ∃xi−1 ∈ Gj−1

that dc(xi−1, xi), since

Gj =
⋃

g∈Gj−1

DC(g) = {x ∈ B
n : g ∈ Gj−1 ∧ dc(g, x)}.

But in this case ∃xi−2 ∈ Gj−2 that dc(xi−2, xi−1) and so on, which means
∃x1 ∈ G1 that dc(x1, x2). We know from before that

G1 =
⋃

a∈G0

DC(a)

Since G0 = A, this means that ∃a ∈ A that dc(a, x1). So dc(a, x1), dc(x1, x2),
dc(x2, x3), . . ., dc(xi−1, xi), and the Definition 2.2. indicates that a→ xi. �

ICF-method, ICF-graph distance 163

Corollary 2.1. If ∅ �= A ⊆ B
n, then α(A) = α2(A) ∪A.

Proof. As we saw, according to Lemma 2.1.

α2(A) = {x ∈ B
n : A � a→ x},

which means:

α2(A) ∪A = {x ∈ B
n : A � a→ x} ∪A =

= {x ∈ B
n : A � a→ x, or x ∈ A} =

= {x ∈ B
n : A � a→ x, or x = a} =

= {x ∈ B
n : A � a→̃x} =

= α(A). �

Theorem 2.1. The α2 extension can be calculated with the following algo-
rithm as well:

C0 := A

C1 :=
⋃

x∈C0

DC(x)

C2 :=
⋃

x∈C1\C0

DC(x)

...

Ck :=
⋃

x∈Ck−1\(
⋃k−2

j=0
Cj)

DC(x)

...

We continue until we reach a positive q, where Cq = ∅. We claim that:

α2(a) =

q−1⋃
i=1

Gi =

q−1⋃
i=1

Ci .

Proof.

G0 = A = C0

G1 =
⋃

x∈G0

DC(x) = C1

G2 = C2 ∪
⋃

x∈C1∩C0

DC(x)

164 N. Kézdi, K. Pásztor Varga and É. Jakó

G2 = C2 ∪
⋃

x∈C1∩C0

DC(x)

...

Gk = Ck ∪
⋃

x∈Ck−1∩(
⋃k−2

j=0
Cj)

DC(x)

...

Note that for every k ∈ N
+ number,

⋃
x∈Ck−1∩(

⋃k−2

j=0
Cj)

DC(x) ⊂
k−1⋃
i=1

Ci,

which means that:

q−1⋃
i=1

Ci =

q−1⋃
i=1

Gi = α2(A). �

Corollary 2.2. If A,B ⊆ B
n, and A �= ∅ and B �= ∅ then α(A ∪ B) =

= α(A) ∪ α(B).

Proof. This is a trivial consequence of Definition 2.4. �
Corollary 2.3. If A := a1, a2, . . . , an ⊆ B

n, then

α(A) =

n⋃
i=1

α(ai)

Proof. This is a trivial consequence of Corollary 2.2. �
Corollary 2.4. If ∅ �= A ⊆ B

n, and a ∈ A, then α({a}) ⊆ α(A).

Proof. According to Corollary 2.2.,

α(A) = α(A\{a} ∪ {a}) = α(A\{a}) ∪ α({a}),

which means α(A) = α(A\{a}) ∪ α({a}). Therefore, α({a}) ⊆ α(A). �
Lemma 2.2. If x, y ∈ B

n, and x→ y, then α({y}) ⊂ α({x}).

Proof. According to definition 2.4., α({x}) = {b ∈ B
n : x→̃b}, also

α({y}) = {b ∈ B
n : y→̃b}, therefore y ∈ α({x}).

Definition 2.1. and 2.2. tells us that the→ relation is a strict partial order,
so it is transitive, ergo ∀b ∈ B

n : y→̃b⇒ x→ b, since x→ y.

According to Lemma 2.1., {∀b ∈ B
n : x → y→̃b} ⊆ α2({x}), which is a

subset of α({x}), ergo α({y}) ⊂ α({x}). �

ICF-method, ICF-graph distance 165

Corollary 2.5. If ∅ �= A ⊆ B
n, and x /∈ A, also ∃a ∈ A : a → x, then

α({x}) ⊂ α(A).

Proof. This is a consequence of Corollary 2.4. and Lemma 2.2. since
α({a}) ⊆ A, as well as α({x}) ⊂ α({a}), therefore α({x}) ⊆ A. �

Definition 2.8. If X,Y, Z ⊆ B
n, then β(X) = Y ⇔ Y ⊆ X and α(Y) =

= α(X), but ¬∃Z ⊂ Y : α(Z) = α(X). This operation is called β-reduction.

Lemma 2.3. If A := {a1, a2, . . . , am} ⊆ B
n, and ∃(ai, aj) ∈ A2 : ai → aj,

then α(A) = α(A\{aj}).

Proof. According to Corollary 2.3.

α(A) =

m⋃
k=1

α({ak})

α(A\{aj}) =
m⋃

k=1,k �=j

α({ak}).

At first we could think that α(A) contains every element of α({aj}), while
α(A\{aj}) will not necessarily contain all of them. But ai ∈ α(A\{aj}), since
ai → aj , ergo ai �= aj . Therefore, as Corollary 2.5. would suggest α({aj}) ⊂
⊂ α(A\{aj}). �

Lemma 2.4. If A := {a1, a2, . . . , am} ⊆ B
n, and ∃j ∈ {1, 2, . . . ,m} : ∀i ∈

∈ {1, 2, . . . ,m}\{j} : ai �→ aj then α(A) �= α(A\{aj}).

Proof. Let us denote A′ := A\{aj}. According to Lemma 2.1., α2(A
′) =

= {y ∈ B
n : A′ � a → y}, which means aj �∈ α2(A

′). Moreover, Corollary 2.1.
indicates that α(A′) = α2(A

′)︸ ︷︷ ︸
aj �∈

∪ A′︸︷︷︸
aj �∈

⇒ aj �∈ α(A′), but the initial conditions

tell us that aj ∈ A ⇒ aj ∈ A ∪ α2(A) = α(A). Ergo α(A) �= α(A′) =
= α(A\{aj}). �

Theorem 2.2. If ∅ �= A ⊆ B
n, then β(A) = A\α2(A).

Proof. According to Lemma 2.1., α2(A) = {x ∈ B
n : A � a → x}. Let us

denote H := A ∩ α2(A), in this case ∀h ∈ H ∃a ∈ A : a → h and H ⊂ A. Let
us denote A′ := A\H, Lemma 2.3. indicates that α(A′) = α(A).

Now let us prove that A′ is a minimal set with the previous quality. It
is clear that A′ = A\H = A\α2(A), also according to Lemma 2.1. α2(A) =
= {x ∈ B

n : A � a → x}, which means we will delete all of those vectors
from A that are related to each other with the → relation, in other words:
¬∃(x, y) ∈ A′ × A′ : x → y. Ergo, if we drop an arbitrary element from A′,
then we will not be able to restore this element with an α-extension because of
Lemma 2.4. �

166 N. Kézdi, K. Pásztor Varga and É. Jakó

Corollary 2.6. If ∅ �= A ⊆ B
n, then β(A) = {x ∈ A : ¬∃y ∈ A : y → x}.

Proof. This is a trivial consequence of Theorem 2.2. �

Definition 2.9. If ∅ �= A ⊆ B
n, then then we can split A into n+1 disjoint

rank-classes. Each rank-class will contain those elements of A which are having
the same rank. Let us denote this with AR := {x ∈ A : Rank(x) = R}.

Theorem 2.3. If A ⊆ B
n, then we can calculate β(A) with the following

algorithm:

Let us denote m := min{Rank(x) : x ∈ A}, and M := max{Rank(x) : x ∈
∈ A}. Let us see the following sets:

B0 := Am

B1 := B0 ∪ {y ∈ Am+1 : ¬∃z ∈ B0 : z → y}
B2 := B1 ∪ {y ∈ Am+2 : ¬∃z ∈ B1 : z → y}
...

Bk := Bk−1 ∪ {y ∈ Am+k : ¬∃z ∈ Bk−1 : z → y}
...

where 1 ≤ k ≤M −m. In this case:

β(A) = BM−m.

Proof. It is a trivial consequence of definition 2.6. and 2.9. that A =
=
⋃n

i=0
Ai =

⋃M
i=m Ai, because A0 = A1 = . . . = Am−1 = ∅, and AM+1 =

= . . . = An = ∅ (if m > 0 and M < n). As we know that B0 = Am, it is clear
that ∀a ∈ Am : Rank(a) = m ⇒ ¬∃(a, b) ∈ Am × Am : a → b. Furthermore,
since the minimal rank of an element in set A is m, ¬∃x ∈ A : x→ a (a ∈ Am).
As we saw Bk = Bk−1 ∪ {y ∈ Am+k : ¬∃z ∈ Bk−1 : z → y}, which means
¬∃(a, b) ∈ Bk×Bk : a→ b. Since 1 ≤ k ≤M−m, we have covered the whole A
set with the Bk sets, and we filtered out those elements that are related to each
other with the → relation. Therefore, BM−m = {x ∈ A : ¬∃y ∈ A : y → x},
and this will be equal with β(A) according to Corollary 2.6. �

Definition 2.10. Let us denote the truth set of an f Boolean function

with M
(1)

f . The ICF (Iterative Canonical Form) of f can be calculated itera-
tively by executing the β-reduction and α-extension operations in the following
algorithm:

1. i:=1

2. V1,1 := M
(1)

f

ICF-method, ICF-graph distance 167

3. S1,i := β(V1,i)

4. V0,i := α(S1,i)\M (1)

f

5. If V0,i = ∅ then goto 11

6. S0,i := β(V0,i)

7. V1,i+1 := α(S0,i) ∩M
(1)

f

8. If V1,i+1 = ∅ then goto 11

9. i := i+ 1

10. goto 3

11. Collect the vectors from the Si,j sets. The “generator” (black) vectors
can be found in the S1,j , while the “closure” (white) vectors in the S0,j

sets.

Definition 2.11. We can easily get the ICF-graph of a Boolean function
by the following algorithm:

1. Calculate the ICF of the Boolean function under consideration

2. Draw down the n-cube.

3. Delete those nodes (vectors) that cannot be found in any of the Si,j sets.

4. Color the nodes (vectors) in the S1,j sets to black.

5. Color the nodes (vectors) in the S0,j sets to white.

Theorem 2.4. The algorithm in Definition 2.10 will terminate in a finite
time.

Proof. The number of iteration steps is in linear correlation with the
dimension of the Boolean space. The algorithm will terminate if V1,j or V0,j is
an empty set for a positive j. With every new iteration, the minimum of the
ranks will be increased, also for a positive k number the set S0,k will contain
those vectors that are enclosing the generator nodes in S1,k. There are two
possible outcomes:

• In the last iteration the maximal element of the space (the vector with
the rank n) shall be inside the set S1,m (m ∈ N

+). Since all of the
elements in the n-dimensional Boolean space are in relation with the n-
ranked element, this will be the one and only vector in S1,m. As the
maximal element does not have any child, additional closure nodes will
not be required, which means V0,m+1 will be the empty set.

168 N. Kézdi, K. Pásztor Varga and É. Jakó

• The other possible outcome is that we have already processed all of the
nodes inside the truth set of the Boolean function, which means that at
least in the next step all of these will be enclosed by the closure nodes.
However, this means that we cannot add any additional generator nodes,
nor we need to add any additional closure nodes.

It is clear that the n-dimensional Boolean space is finite, and the maximal
element will have the rank n. So there cannot be any more nodes with a higher
rank. �

Theorem 2.5. If we have calculated the ICF of a Boolean function, then
we can describe this function with the following formula:

M
(1)

f =

n⋃
i=0

(α(S1,i)\α(S0,i)).

Proof. We have (n+1) different rank-classes if the dimension of the Boolean
space is n, but the null-vector is related with every other element in the Boolean
space, so the number of S1,j sets cannot be more than n. Also every closure
set must have a corresponding generator set. The “non-existent” sets can be
looked as empty sets, so these will not have any impact on the result. For
an arbitrary positive k number the set S1,k will contain generator nodes, and
exactly these shall be enclosed by the nodes within S0,k. Thanks to the α-
extension with α(S1,k)\α(S0,k), we will get a sub-set of the truth set of the
original Boolean function, since every nodes within S1,k is having a true value,
and the node inside S0,k are the first nodes — according to the→ partial order
relation — that will have a false value. If we calculate the α(S1,k)\α(S0,k) (1 ≤
≤ k ≤ n) for every generator and closure set pairs, then

M
(1)

f =

n⋃
i=0

(α(S1,i)\α(S0,i)),

since with the α(Si,j) sets we already covered all of the vectors in the range of
the Boolean function. �

3. ICF graph distance

In this section we shall introduce some distance concepts especially for ICF-
graphs. These can be used for ICF-graph comparison, so in a way we can

ICF-method, ICF-graph distance 169

compare anything that is representable with ICF-graphs. The ICF method has
already been used successfully in various biological applications.

Let us denote the set of all n-dimensional ICF-graphs with ICFn. Let us
assume that G is an n-dimensional ICF-graph. The set of black nodes within
G are denoted by G1. (G1 := {x|x is a black node of G}), and the set of the
white nodes are denoted by G0.

Definition 3.1. If X,Y ∈ ICFn, then X � Y = Z
def⇔ Z1 = X1 � Y 1 ∧

∧X0 � Y 0, where � is the symmetric difference set operation.

Remark. Note that Z in Definition 3.1. not necessarily will be a valid
ICF-graph. Let us just look at it as a set pair.

Definition 3.2. Assume X,Y ∈ ICFn, and X � Y = Z, in this case the
node count distance between X and Y is:

δ(X,Y) := |Z| := |Z1|+ |Z0| =: |X � Y |

Definition 3.3. Until now, every node in each graph had the constant
weight of 1. Instead of this fix weight, let us use a weight function; the weighted
node count distance between X,Y ∈ ICFn is:

δfn(X,Y) := |X � Y |fn :=
∑

x∈XY

fn(x),

where fn : [0, 2n − 1] ∩ N0 → R
+ is the weight function.

Definition 3.4. Assume X,Y ∈ ICFn, then the normalized node count
distance of X and Y is:

δnorm(X,Y) =

{ |XY |fn
|X∪Y |fn if X �= Y �= ∅;
0 if X = Y = ∅.

Remark. Each node should get a weight value independently of the other
nodes. This is important in order to make sure that the distance between two
graphs will be 1 only if the two graphs are disjoint.

The normalization will set boundaries for the distance: 0 ≤ δnorm(X,Y) ≤
≤ 1, since X � Y ⊆ X ∪ Y , also δnorm(X,Y) = 1 ⇔ X ∩ Y = ∅, because
δnorm(X,Y) = 1⇔ |X ∪ Y | = |X � Y |, but |X � Y | = |X|+ |Y | − 2 · |X ∩ Y |,
and |X ∪ Y | = |X| + |Y | − |X ∩ Y |, therefore |X| + |Y | − 2 · |X ∩ Y | =
= |X|+ |Y | − |X ∩ Y | ⇔ X ∩ Y = ∅.

Remark 3.1. The three distance concepts above are metrics, because it
can be proved that:

Let δ denote any of the previously defined distances. If X,Y, Z ∈ ICFn,
then

170 N. Kézdi, K. Pásztor Varga and É. Jakó

1. δ : ICFn × ICFn → R,

2. δ(X,Y) ≥ 0,

3. δ(X,Y) = δ(Y,X),

4. δ(X,Y) = 0⇔ X = Y ,

5. δ(X,Y) ≤ δ(X,Z) + δ(Z, Y).

3.1. Graph edit distance

In some cases such as chemical or molecular biological applications, we
would like to define distance concepts that are not necessarily symmetric. In
spite of that the following distance is not symmetric — therefore, not a math-
ematical metric at all —, it is still a valid approach in some situations.

A simple way to define the distance between two graphs is to determine the
minimal cost transformation chain that is needed to make the “start” graph
isomorphic to the “final” graph [11].

The allowed distortions/manipulations (or operations) can be freely chosen.
When we work with ICF-graphs, the following three operations are allowed:

1. Node insertion: Insert(x) or I(x)
2. Node deletion: Delete(x) or D(x)
3. Node substitution: Substitute(x) or S(x)

We will transform the white and black nodes separately. The distance will be
the sum of the two costs of the optimal transformation of the black and white
nodes.

Let us introduce cost functions for each edit operation. The main idea is
that a low cost edit operation represents a minor change, while a high cost
operation will represent a significant change in the graph. These cost values
will be stored in a matrix.

In the cost matrix’s row header the black/white nodes of the “start” graph
U = {u1, . . . , un} are being listed, while in the column header the nodes of the
“final” graph V = {v1, . . . , vm}, respectively. The cost matrix’s (i, j) element
will represent the cost value of the operation, which will transform the ui node
into the vj node.

Remark 3.2. We denote an operation sequence by Action1(x); Action2(y),
which means that after we had preformed the Action1 operation on the argu-
ment x (x could be a vector), we preform the Action2 operation on the argument

ICF-method, ICF-graph distance 171

y (y could be a vector). Cost(T) or C(T) is the summarized cost of the T op-
eration sequence. If C(S(x, y)) > C(D(x); I(y)), then we use the D(x); I(y)
operation sequence instead of the S(x, y) operation.

If the row count of the cost matrix is n and the column count of the cost
matrix is m, then k := min{n,m}. In order to get the optimal transformation
between the “start” and “final” graph, we have to choose those k different cells
from the cost matrix, which make the addition of the chosen cells minimal.

This problem can be solved optimally with the Hungarian algorithm. It has
been originally proposed to solve the assignment problem in polynomial time.
The name “Hungarian method” came from the fact that the algorithm was
largely based on the earlier works of two Hungarian mathematicians: Dénes
Kőnig and Jenő Egerváry.

Let G1 and G2 each be an n-dimensional ICF-graph. Bi := G1

i \G1

1
∩ G1

2

and Wi := G0

i \G0

1
∩G0

2
, where i ∈ {1, 2}.

δ(G1, G2) := C(B1 → B2) + C(W1 → W2), where → denotes the optimal
transformation.

3.1.1. The Hungarian method

This section will describe a variant of the Hungarian method. The input of
the algorithm will be two sets. One will contain the “workers”, and the other
the “jobs”. We also know which worker can, and with how much cost preform a
certain job. In our case the “workers” set will contain the nodes of the “start”
graph, and the “jobs” set will contain the nodes of the “final” graph. The cost
of an assignment will be the cost of the node transformation.

1. Generate the cost-matrix, where each element represents the cost of a
single node assignment: Ci,j := min{C(S(ui, vj)), C(D(ui); I(vj))}.

2. If n �= m, then insert additional |n − m| rows or columns respectively
into the cost matrix, so it will become a square matrix. In these ad-
ditional rows/columns each element represents the cost of a single node
insertion/deletion respectively.

3. For each row r in C, subtract its smallest element from every element
in r.

4. For each column c in C, subtract its smallest element from every element
in c.

5. For all zeros in C (Ci,j = 0), count the amount of zeros in row i and
in column j, let us denote this value with Zi,j = |{Ci,k = 0 : k ∈
∈ {1, 2, . . . ,max{m,n}}}| + |{Ck,j = 0 : k ∈ {1, 2, . . . ,max{m,n}}}|.

172 N. Kézdi, K. Pásztor Varga and É. Jakó

Mark a zero with a star if there is no starred zero in its row or column,
and Zi,j is minimal. (Assignment pairs are indicated by the positions of
the starred zeros in the matrix.)

6. If there are max{m,n} starred zeros in the matrix, then GOTO 13.

7. Tick those rows which do not contain any starred zeros. Tick the cor-
responding column if there is a zero element in a ticked row. Tick the
corresponding row if there is a starred zero in the ticked column. Repeat
the procedure until there are no other rows or columns that can be ticked.

8. Cover each unticked row and ticked column. (Now all the zeros should
be covered. The number of covered rows/columns indicates the number
of the possible assignment pairs.)

9. If not all the elements are covered in the matrix, then we know for certain
that we should be able to select max{m,n} zeros to mark with a star.
GOTO 5, but this time try a different zero selection to mark with star,
following the rules defined in STEP 5. as close as possible.

10. Save the smallest uncovered element: θ.

11. Add θ to every double-covered element, and subtract it from every un-
covered element.

12. Clear all the covers, stars and ticks. GOTO 5.

13. Assignment pairs are indicated by the positions of starred zeros in the
cost-matrix.

Remark. The steps 3 and 4 will make sure that there will be at least one
zero in every row and column. We can only select one assignment pairs in
every row and column. The optimal solution for the reduced matrix will be the
optimal solution for the original matrix as well.

The solution will be optimal, since the Hungarian method is proved to give
optimal solution for the assignment problem. Also as seen in STEP 1, the
cost matrix has been created by this rule: Ci,j := min{C(S(ui, vj)), C(D(ui);
I(vj))}. This means the cost of the additional node deletions/insertions cannot
be decreased further.

3.1.2. The case of arbitrary graphs

We can use a similar approach for arbitrary, undirected graphs. We will use
the Hungarian method to assign the nodes of the “start” graph to the nodes
of the “final” graph. When we work with ICF-graphs, the storage of the edges

ICF-method, ICF-graph distance 173

is unnecessary. Now we have to handle the edges as well. At first we only
transform the nodes of the graph from the “start” to the “final”. Let G1 be
the “start” and G2 the “final” graph. Let us denote U = {u1, . . . , un} the
nodes of G1 and V = {v1, . . . , vm} the nodes of G2.

The cost matrix will be calculated by the following formula:

Ci,j := | deg(ui)− deg(vj)|,

where deg(x) denotes the x node’s degree.

The cost of the deletion or insertion of the node x will be: max{Ci,j : i ∈
∈ {1, . . . , n} ∧ j ∈ {1, . . . ,m}}+ deg(x).

With this cost-matrix we will assign the “similar” nodes to each other from
a graph-topology viewpoint. After we finished with the transformation of the
nodes by executing the Hungarian method, we shall transform the edges sepa-
rately. If we have preformed the S(x, x′) and S(y, y′) node operations, and the
edge e connected the node x to y in the original graph, then e should connect
now the x′ and y′ nodes to each other. If we deleted a non isolated node, then
we should connect the corresponding edges to a “fictional” node. It is possible
that we will have to delete or insert additional edges. At the end, the edges
should be transformed to be isomorphic to the “final” graph. We shall achieve
this by preforming the Hungarian method. The cost function can be chosen
freely for this.

3.2. The cost functions and their functionality

3.2.1. The case of ICF-graphs

When we use “weighted node count distance”, than we give the nodes of
the ICF-graph a cost value. In an ICF-graph the storage of the edges are
unnecessary, also the nodes have a special functionality. Therefore, we really
only need to give cost value to the nodes.

Definition 3.5. Rank cost function: Assume X,Y ∈ ICFn, and let Z :=
:= X � Y (n ≥ 2). We introduce two node cost functions:

fn(x) =

⎧⎨⎩
1 if x ∈ Z0 ∧ x �∈ Z1

n−Rank(x) + 1 if x ∈ Z1 ∧ x �∈ Z0

2 · n+ 3−Rank(x) otherwise,

gn(x) =

⎧⎨⎩
Rank(x) if x ∈ Z0 ∧ x �∈ Z1

n−Rank(x) + 1 if x ∈ Z1 ∧ x �∈ Z0

2 · n+ 2 otherwise.

174 N. Kézdi, K. Pásztor Varga and É. Jakó

Remark. It is clear from the definition that fn : [0, 2n − 1] ∩ N0 → N
+,

and the same goes for gn, since in a correct ICF-graph the rank of a white node
cannot be 0.

Definition 3.6. Absorption cost function: If G ∈ ICFn, and x ∈ G1, then
the absorption cost of x will be |α({x})\α(G0)|+1. This will count the number
of nodes generated by x, and increase this value by one in the case of a zero
generation. If y is in G0, then the absorption cost should be 1. Or it could be
the following:

If y ∈ S0,i ⊆ G0, then H := {x ∈ S1,i : x→ y}. In this case, the absorption
cost of y will be |α(H) ∩ α({y})|; this will count how many nodes have been
“closed” by y.

Remark. This cost function should not be used with the normalized node
count distance, since in this case the cost value of the nodes is not independent
of each other.

When we use “graph edit distance” then by cost function, we mean cost-
matrix. A cell in the cost-matrix will indicate the cost of the substitution of
two nodes. We should transform the black and white nodes separately, and
then sum the two transformation costs.

Definition 3.7. Rank cost function: If x �= y, then

C(S(x, y)) := |Rang(x)−Rang(y)|+ 1,

where x is a black/white node of the “start”, and y is a node of the “final”
graph, and y is the same color as x. If x = y and x shares the same coloration
as y, then C(S(x, y)) := 0. If x = y and x has a different color than y, then
C(S(x, y)) := Rang(x) + Rang(y) + 1. Let G1 be the “start” graph, and G2

be the “final” graph. G1 ∈ ICFn and G2 ∈ ICFm. k := max{m,n}. The cost
value of a node insertion/deletion will be k + 2; these operations will be the
most expensive ones.

3.2.2. The case of “arbitrary” graphs

By cost function we mean cost-matrix in this particular case. A cell in the
cost-matrix will indicate the cost of the substitution of two edges similar to
what was shown in section 3.1.2.

After we transformed the nodes of the “start” graph by preforming the Hun-
garian method with the cost-matrix defined in section 3.1.2., we have to trans-
form the edges as well. We will do this by using the Hungarian method again,
but now the cost-matrix will contain cost values for the edge edit operations.
If G is the “final” graph after the node transformation, and there ∃e1, e2 ∈

ICF-method, ICF-graph distance 175

∈ Edge(G) where e1 and e2 have a vertex in common and G′ = G − e1 + e2,
then we say that G is transformed into G′ by an edge rotation [3]. Let
us introduce the following cost-matrix for the edge operations C(S(e1, e2)),
which will indicate the needed amount of edge rotations. We should give
the edge insertion/deletion the most expensive cost value: max{Ci,j : i ∈
∈ {1, . . . , n} ∧ j ∈ {1, · · · ,m}}+ 1.

4. Discussion

The algorithms and graphs based on the ICF of Boolean functions together
with different metrics can be used in various fields of applications, such as
computer aided design of digital systems, classification and pattern recognition,
ecological, chemical, biological applications and medical diagnostics.

The ICF algorithm was initially used in logical design of combinational cir-
cuits and Programmable Logic Arrays (PLAs) [6] as well as for recognition and
classification of discrete objects [2]. Here the ICF-based contraction algorithms
were considered for describing functions with a finite partially ordered domain
of definition and a linearly ordered range of values. Application possibilities for
k-valued functions are shown from the field of microbiology and engineering di-
agnostics on examples of contraction of the genetic code and as an operational
model of a logical device which implements a partial k-valued function.

In ecological modeling, the ICF representations were applied to recognition
of spatial patterns in plant coalitions [4]. The traditional methods mostly focus
on spatial dependence relations between pairs of species, which may result in an
over-simplified coalition-system, while many relationships remain unexplored.
The simulation experiments and analysis of field data suggested that, in com-
parison with the florula diversity approach, the ICF was much more sensitive
to changes in the combinations. The ICF graphs and analytical expressions
were used also as generalized molecular descriptors in comparative sequence
analysis and classification of biological macromolecules [8].

Some recent results, based on ICF-graph distance calculations were ob-
tained in molecular systematics for generation of phylogenetic trees [1]. The
performance and reliability of the ICF method were tested and compared with
the standard phylogenetic methods, using simulated — artificially evolved —
nucleotide sequences and the 22 mitochondrial tRNA genes of the great apes.
The initial tree of artificial sequence evolution and the generally well established
phylogeny of Hominidae were used as a benchmark. Considering the reliability
values, the authors used different phylogenetic methods for the simulated se-
quence trees, and the ICF appeared to be the most reliable method. Although

176 N. Kézdi, K. Pásztor Varga and É. Jakó

in some cases the results were the same as with the traditional methods, the
speed-performance was much more appealing.

The “weighted node count” metric introduced in this paper is a generalized
method for calculating distances between ICF-graphs in comparison with the
calculations used in the previous investigations. This new approach is more
flexible due to the fact that we can choose the weight function freely, while
in the original algorithm fix rules are considered, which in some cases may
cause minor data loss in the process. Since the original method uses merged
ICF-graphs for the distance calculation, it is possible that there are nodes with
the same label but with a different coloration in the graphs. This was solved
originally by simply ignoring the conflicting white nodes. In contrast, the newly
proposed modified approach will take this case into account.

An other prospective application of this recently developed methods is re-
lated to pattern recognition and classification in medical diagnostics (Kézdi, et
al., 2011, unpublished results)

Acknowledgment. We thank Eszter Ari and Péter Ittzés for their useful
comments.

References

[1] Ari, E., P. Ittzés, J. Podani, T. Quynh and É. Jakó, Comparison
of Boolean analysis and standard phylogenetic methods using artificially
evolved and natural mt-tRNA sequences from great apes, Mol Phylogenet
Evol. (in press).

[2] Frolov, A. and É. Jakó, Algorithms for recognition of partially or-
dered objects and their application, Scripta Technica, (1991), 109–118,
Originally published in Tekhnicheskaja Kibernetika, N5 (1990), 95–104
(in Russian).

[3] Goddard, W. and H.C. Swart, Distances between graphs under edge
operations,
http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.88.5311&rep=rep1&type=pdf

(available: 2011.12.19.)

[4] Ittzés, P., É. Jakó, Á. Kun, A. Kun and J. Podani, A discrete math-
ematical method for the analysis of spatial pattern, Community Ecology,
6(2) (2005), 177–190.

ICF-method, ICF-graph distance 177

[5] Jakó, É., Iterative Canonical Decomposition of Boolean Functions and
its Application to Logical Circuits Design, Ph.D. Thesis, Moscow, 1983 (in
Russian).

[6] Jakó, É. and I. Fábián, Programmable logic array (PLA). Hungarian
Patent No 203 173 INT CL: HO3K 19/173. Priority data: 28 April 1994.

[7] Jakó, É. and P. Ittzés, A discrete mathematical approach to spatial
pattern analysis in vegetation, Abstracta Botanica, 22 (1998), 121–142.

[8] Jakó, É., Generalized Boolean descriptors for biological macromolecules,
Proceedings of American Institute of Physics (AIP), 2 (2007), 552–557.

[9] Jakó, É., E. Ari, P. Ittzés, A. Horváth and J. Podani, BOOL-AN:
A method for comparative sequence analysis and phylogenetic reconstruc-
tion, Mol Phylogenet Evol., 52(3) (2009), 887–97.

[10] Pásztor Varga, K. and M. Várterész, Many-valued Logic, Mappings,
ICF Graphs, Normal Forms, Annales Univ. Sci. Budapest., Sect. Comp.
31 (2009), 185–202.

[11] Riesen, K., M. Neuhaus and H. Bunke, Bipartite graph matching
for computing the edit distance of graphs, GraphBased Representations in
Pattern Recognition, 4538 (2007), 1–12.

N. Kézdi and K. Pásztor Varga
Department of Programming Languages and Compilers
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány I/C
Hungary
kezdi@inf.elte.hu

pkata@ludens.elte.hu

É. Jakó
Department of Plant Systematics, Ecology and Theoretical Biology
Faculty of Science
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány I/C
Hungary
jako@elte.hu

