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Abstract. Crossing the borders of languages by letting them cooperate on
source code level has enormous benefits as different languages have distinct
language features and useful libraries to share. This is particularly true
for the functional programming world, where languages are in constant
development being the target of active research. There already exists a
double-edged compiler frontend for the lazy functional languages Haskell
and Clean, which enables the interoperation of features of both languages.
This paper presents a program transformation technique to solve the same
problem at another level by transforming STG, the core language of the
flagship Haskell compiler GHC to SAPL, the core language of Clean. By
this transformation (1) we have made a Haskell to JavaScript compiler
with the advantage that Haskell applications can now be executed e.g. in
a browser; (2) since there already existed a Clean to JavaScript compiler,
under certain limitations, one can mix Clean and Haskell code because
they are compiled to the same target code using the same run-time system
and calling convention; (3) one can more easily compare the core code
generated by the two compilers and measure their execution times.
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1. Introduction

Equivalence questions of core languages of different lazy functional lan-
guages have not attracted much attention so far despite their many theoretical
and practical use. First of all, an obvious theoretical question raises: does the
core language matter? One conjectures that the short answer is no being all
of them some kind of enriched lambda calculus, but even if it is true how does
the core language affect the run-time properties of the generated code?

Furthermore, the core languages often serve as the input of compilation to
alternative target platforms like Java or JavaScript. This fact promptly pro-
vides a natural practical use: by transforming a core language into another one
which possesses compiler to an alternative target platform, the source language
gets that platform as well. This idea is accomplished at a different level of ab-
straction in [8]. There was implemented a double-edged compiler frontend for
Clean to be able to compile Haskell code as well. In that project, however, the
primary goal was to provide interoperability of language features and libraries
for both of the languages.

Why do we need a Haskell to SAPL compiler when there is a compiler which
is able to generate SAPL from both Haskell and Clean code? Apparently, there
is a theoretical usefulness of doing the same thing in a different way. Yet, the
main points are the above-mentioned equivalence question and the limitation
of this double-edged frontend: it currently compiles only Haskell98 code, which
comprises only a limited feature set.

We chose STG, one of the core languages of the flagship Haskell compiler
GHC, as source language of the transformation, because of the many interesting
language features of GHC. Strictly speaking, the STG language is not the core
language of the GHC compiler. There exists a GHC Core, which is a very
small, explicitly-typed language. However, STG can be considered as a variant
of it, because this core language is transformed to STG as the last step of a
series of intermediate representations. Moreover, STG is the language of the
so called Spineless Tagless G-machine (STG) to which GHC compiles.

Our target language is SAPL, one of the core languages of Clean. This
latter has the advantage of being the platform of a highly efficient interpreter
technology [9] and JavaScript compiler [6].

However, these languages are interesting even in themselves. They are both
typeless, but while SAPL can be considered as a high level lambda calculus de-
signed for efficient interpretation, STG is designed to be compiled to machine
code, and to make code generators simple. SAPL has a definite call-by-need
evaluation strategy and many language features to enable interoperability with
other languages, e.g. syntactic sugar for records to be able to perfectly com-



Compiling Haskell to JavaScript through Clean’s core 119

municate using JSON. In contrast, STG is at a much lower level of abstraction.
It does not even have its own evaluation strategy, it is already compiled out
by the GHC compiler frontend and the STG code is augmented with explicit
force instructions.

In this paper we try to investigate the possibilities of translating STG to
SAPL. Our primary goal is to develop a reliable transformation technique which
enables the mixing of SAPL code of different sources under minimal restric-
tions. Clean profits from this property of the transformation. As for Haskell,
let this transformation be the source language of one of the the most com-
pelling and efficient JavaScript code generators. In Figure 1 an overview of the
Clean and Haskell compilers is presented. It shows how the SAPL language fits
the picture: both compiler frontends have been tapped to convert their cores
(internal data structures) into SAPL. Later on this intermediate language, as
a common multiply, is used to generate JavaScript code. Being this common
SAPL the source language of the JavaScript compiler it has the enormous ad-
vantage that the same run-time system and calling convention is used for both
languages, thereby the foundations of interoperability have been made.

Figure 1. An overview of the Clean and GHC compilers augmented with the
SAPL/JavaScript backend
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2. Introduction into SAPL

SAPL stands for Simple Application Programming Language. This is the
target of the transformation, a core lazy purely-functional language. Before we
explain the language in details, let us present some simple examples to grab the
main idea. Consider the Clean code of the following factorial and summation
functions:

fact 0 = 1
fact n = n * fact (n-1)

:: List a = Nil | Cons a (List a)

sum Nil = 0
sum (Cons x xs) = x + (sum xs)

The equivalent function definitions in SAPL are the following:

fact n = if (eq n 0) 1 (mult n (fact (sub n 1)))

:: List = Nil | Cons x xs

sum xxs = select xxs 0 (λx xs = x + sum xs)

Finally, the following mappair function written in Clean is a more complex
example, which is also based on the use of pattern matching:

:: List a = Nil | Cons a (List a)
mappair f Nil zs = Nil

mappair f (Cons x xs) Nil = Nil

mappair f (Cons x xs) (Cons y ys) = Cons (f x y) (mappair f xs ys)

This definition is transformed to the following SAPL function:

:: List = Nil | Cons x xs

mappair f as zs

= select as Nil (λx xs =
select zs Nil (λy ys = Cons (f x y) (mappair f xs ys)))

Basically, SAPL is obtained from Clean by removing type information (this
is done after the type checking phase of the compilation, SAPL programs gen-
erated from Clean are type correct) and syntactic sugar. This includes the
contraction of partial functions by the means of SAPL pattern matching con-
tracts if and select, as it can be seen in these examples.

SAPL was originally constructed as a language of its own implementing
language features to enable efficient interpretation [9]. Later a Clean like type
definition style and other language features were adopted for readability and to
allow for the generation of highly efficient JavaScript code [6]. Currently SAPL
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source code can be generated using the Clean compiler, thus, considering the
intermediate nature of SAPL, it can be regarded as a core language of Clean.

The formal definition of the language is given in [6], therefore we present
here its main characteristics only ensuring thereby the clarity of the following
sections. The simplified syntax of SAPL is illustrated in Figure 2.

D ::= :: x = C x | . . . | C x (Algebraic Type Definition)
f ::= x x = e (Function Definition)

e ::= x e (Application)
| select e e (Select Expression)
| if e e e (If Expression)

| let b in e (Let Expression)
| λ x = e (Lambda Expression)
| x (Variable)
| l (Literal)

b ::= x = e (Let Binding)

Figure 2. Core syntax of SAPL

Select Expressions Select expressions are intended to perform pattern
matching. The select keyword is used to make a case analysis on the
data type of its first argument, thus to accomplish this, the first argument
is reduced to head normal form before. The remaining arguments handle
the different constructor cases in the same order as they occur in the type
definition (all cases must be handled separately). Each case is a function
that is applied to the arguments of the corresponding constructor.

Lambda Expressions Only the arguments of a select expression can con-
tain lambda expressions in SAPL. All other nested lambda expressions
must be lifted to the top-level.

If Expressions An if expression can be considered as a normal function
which has strict semantics in its first argument, in its predicate. It returns
its second or third argument depending on the predicate which must be
reducible to a Boolean value.

Let Expressions Only constant (non-function) let expressions are allowed
that may be mutually recursive (for creating cyclic expressions).

Applications SAPL, in contrast to STG, does not require applications to be
saturated, and arguments of applications are allowed to be other appli-
cations (compound applications).
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Function Definitions Function definitions can be split into two kinds. SAPL
distinguishes normal functions and constant applicative forms (CAF).
CAFs cannot have any arguments and the ’:=’ notation is used for them.

Algebraic Type Definitions Explicitly providing algebraic type definitions
is essential being the constructor indexes used by the select construct.
In addition, the arity of data constructors carries important information
for the code generator.

3. Introduction into the STG language

The Shared Term Graph (STG) language, one of the core languages of
GHC, the language of the Spineless Tagless G-machine, is the source of the
transformation. To illustrate its main idea, let us consider the source code of
the summation function of the previous section (to gain this piece of code, one
has to provide explicit type definition for the sum function in Haskell, otherwise
it generates a less concise, generalized form of the function by the means of type
classes). The STG counterpart of the factorial example is given in Figure 3.

1Main.fact=
2λr srt:(0,*bitmap*) [ds_sCK]
3case ds_sCK of wild_sCP {
4GHC.Types.I# ds1_sCN →
5case ds1_sCN of ds2_sDb {
6__DEFAULT →
7let {
8sat_sDc=
9λu srt:(0,*bitmap*) [ ]
10let {
11sat_sDd=
12λu srt:(0,*bitmap*) [ ]
13let { sat_sDe= NO_CCS GHC.Types.I#! [1] ;
14} in GHC.Num.- GHC.Num.fNumInt wild_sCP sat_sDe;
15} in Main.fact sat_sDd;
16} in GHC.Num.* GHC.Num.fNumInt wild_sCP sat_sDc;
170 → GHC.Types.I# [1] ;
18};
19};

Figure 3. The STG code of the factorial function generated by GHC version
7.2.1 without any optimization turned on



Compiling Haskell to JavaScript through Clean’s core 123

Main.sum=
λr srt:(0,*bitmap*) [ds_sL7]

case ds_sL7 of wild_sMv {
Main.Nil → GHC.Types.I# [0] ;
Main.Cons x_sLb xs_sLc →

let { sat_sMu=λu srt:(1,*bitmap*) [ ] Main.sum xs_sLc;
} in GHC.Num.+ GHC.Num.fNumInt x_sLb sat_sMu;

};

Conceptually, the STG language is an enriched lambda calculus, further-
more, it can be regarded as a variant of administrative normal form (ANF) [7]
as (1) it allows only constants and variables to serve as arguments of function
applications (flat applications), and (2) it requires the result of a non-trivial
expression to be assigned to a let-bound variable or returned from a function.

Being the full language description rather extensive, a simplified syntax is
presented only in Figure 4, which is sufficient for our purposes. In the following
we highlight the salient characteristics of the language; the full syntax along
with well-defined operational semantics are given in [14].

f ::= x = e (Function Definition)

e ::= x a (Application)
| C a (Constructor Application)
| case e of x c (Case Expression)

| let b in e (Let Expression)
| λπ x = e (Lambda Expression)

a ::= x (Variable)
| l (Literal)

b ::= x = e (Let Binding)

c ::= m | n (Case Alternative)
m ::= C x –> e (Algebraic)
n ::= l –> e (Primitive)

Figure 4. Core syntax of STG

Case Expressions Case expressions are used to perform pattern matching.
In contrast to SAPL it handles both algebraic and primitive data types
and this is the only construct where data value is ever forced in STG. This
expression has a rather unique form, a bit of extra syntax attached to it,
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a variable to the right of the of keyword which indicates the evaluated
value of the pattern matched expression. Case alternatives may contain
a default branch as it can be seen in Figure 3, line 6. This default case
is always the first, if it is there at all.

Let Expressions Let expressions begin with one of the let or the STG spe-
cific let-no-escape keywords. This latter is used when the compiler
guarantees that the bounded variable can be used without a full closure
creation for the expression it is bound to. Let expressions can be mutu-
ally recursive and always bind variables to constructs resulting in a thunk
(suspended computation): lambda abstractions, constructor applications
or other let expressions.

Lambda expressions Lambda expressions contain special hints for the code
generator, the so called update flag. This flag is the first character (de-
noted by π in Figure 4) after the backslash, which indicates a lambda
expression. The arguments of lambda abstractions are given in square
brackets; if there are no arguments, that lambda expression simply de-
notes a thunk. For further information about the connection of lambdas,
thunks and update flags please refer to [14].

Applications There are two flavors of applications in STG. Normal functions
take their arguments simply enumerated after the name of the function,
while constructors and primitive operators take their arguments in square
brackets. This is not just a stylistic change: STG requires that all con-
structors and primitive operators are saturated (an application is satu-
rated if it gives the function exactly the number of arguments it expects);
this is indicated by the square brackets.

Function Definitions Function definitions are named lambda expressions in
STG, that is the f =λπ a1 a2 ... an → body form is used instead of the
usual f a1 a2 ... an = body style.

4. Salient differences between STG and SAPL

In this section we would like to emphasize two significant, non-syntactic
differences of the languages. The first one is the presence and absence of def-
initions of algebraic data types and, what is related to this issue, of saturated
applications. The presence of data constructors provides two pieces of infor-
mation: (1) the constructor indexes and (2) the arity of the constructors. The
arity of constructors carries information for the code generator, and it helps



Compiling Haskell to JavaScript through Clean’s core 125

with deciding on whether a given constructor curried or not. STG solves this
problem by requiring constructor applications to be saturated. As for the con-
structor indexes, this information is needed by SAPL select expressions: in
contrast to STG, where in a case expression constructors must be given by
name, select is parametrized with the help of constructor indexes. This re-
sults in simpler language element for more information in turn. However, the
extra information is not a waste: e.g. it enables the JavaScript code generator
to accelerate constructor applications.

The second difference is more essential: SAPL pattern matching constructs
(if and select expressions) and primitive functions have strict semantics,
that is it realizes a definite call-by-need evaluation strategy, while STG does
not even have its own evaluation strategy, it is already compiled out by the
GHC compiler frontend and the STG code is augmented with explicit force
instructions by the means of case expressions. As a consequence, although
we know that Haskell also uses call-by-need evaluation strategy, there may
have subtle differences in the actual evaluation order of the languages. In a
pure, effect-free setting, they must produce the same result, however with the
presence of non-pure functions, it may result in different output.

This remark has of primary importance considering that the following rewrite
rules change the evaluation order of the original STG program, thus we must
declare that the transformation is valid only in an effect-free environment. To
determine the impact of the transformation on non-pure functions further in-
vestigation is needed, which is not part of the current paper.

5. Transforming STG to SAPL

In this section we present a series of program transformations which, by
applying them on an STG program, result in SAPL code. We use the following
simple factorial function to illustrate certain steps:

fact :: Int → Int

fact 0 = 1
fact n = n * fact (n - 1)

Before digging into the explanation of the rewrite rules, let us have a look
at Figure 3, which contains the STG code of the factorial function. The code
is intuitively straightforward considering the brief syntax description of the
previous section, however it contains some oddness that still needs explanation.

• Lambda expressions now contains, in addition to the update flag and the
argument list, a new element, which begins with srt:(). This is the so
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called static reference table required for the garbage collection of static
elements, e.g. CAFs.

• STG code may contain various annotations related to profiling. Since we
were not compiling with profiling, the only annotation we can see here
is NO CSS, which means that no cost-centre stack attached to the given
thunk.

• The exclamation mark given as the last character of the function part of
an application indicates constructor application.

These annotations carry information for the code generator only, we do not
need them for our transformation, thus, as a preliminary step, they are re-
moved from the token stream. We also remove the update flags of the lambda
expressions and then, finally, let-no-escape keywords substitute for let key-
words (it is a valid transformation, let-no-escape expressions are simple let
expressions with additional information for the code generator).

After this step the abstract syntax tree (AST) of the SGT program is pro-
duced and the following rewrite rules are applied step by step in the given
order. This technique is sometimes called compilation by transformation [15],
although because the intermediate code is neither SAPL nor STG, strictly
speaking, the certain transformation steps are not correctness-preserving.

Transformation of named lambda expressions

Function definitions are named lambda expressions in STG, which can be
easily turned into SAPL function definitions by the following rewrite rule:

f = λ [x1 . . . xn] = b → f x1 . . . xn = b

This rule becomes slightly different in the case of empty argument list, be-
cause according to the semantics of Haskell, top-level functions with an empty
argument list are just CAFs:

f = λ [] = b → f := b

Extraction of algebraic type definitions

In SAPL, algebraic data type definitions must be explicitly provided. In
contrast, STG code does not contain explicit type definitions, but a pre-generated
function for every data constructor. Fortunately, these functions have a special
form, which enables us to recognize and turn them into constructor definitions.
Consider the following type definition in Haskell:
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data T = A Int Int | B

After generating STG and applying the previous steps of transformation we
gain this intermediate code:

Main.A eta_B2 eta_B1 = Main.A [eta_B2 eta_B1] ;
Main.B = Main.B [ ] ;

Considering this example, the rewrite rule is straightforward now:

f x1 . . . xn = f [x1 . . . xn]→ :: generated = f x1 . . . xn

These functions are converted into a type called generated, which has only
one data constructor. Later in this step these data constructors are merged
and the original functions are removed. In our example, the final result of this
step is as follows:

:: generated= Main.A eta_B2 eta_B1 | Main.B;

The type of the data constructors cannot be recognized this way (therefore
data constructors of different types will be collected into the generated type),
however it is not even necessary. In SAPL, type definitions are used to (1)
determine the constructor index of a given constructor and to (2) determine
the arity of a given constructor. The second requirement is obviously satisfied,
so we have to consider only the first one. The first one is required to ensure
that the data constructors occur in a select statement and have different
constructor indexes to avoid collision. This criterion is met and even more:
every data constructor will have different constructor indexes.

However, being the transformation valid is merely part of the picture.
Select expressions, which will handle algebraic pattern matching in SAPL
eventually, must have as many arguments as the number of data constructors
of the type of the expression being the subject of pattern matching. When
many data constructors are defined in a given program module, because they
are treated as the constructors of one common type, select expressions will
be cluttered with so many (unnecessary) arguments.

A possible solution is to discover groups of constructors by defining an
equivalence relation. We can say that two constructors are in the some group
(have the same type) if they are both alternatives of the same case expression.
Computing the transitive closure of the so gained groups we eventually get a
valid grouping of data constructors. The current prototype implementation of
the compiler does not implement this algorithm.

Saturation information removal

SAPL does not differentiate between applications, because it does not re-
quire any of them to be saturated as STG does. In this small step (after we used
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this information in the previous one) the saturation information of applications
is removed:

f [x1 . . . xn]→ f x1 . . . xn

Elimination of explicit thunk creation

STG provides a way to explicitly denote thunks using lambda expressions
with an empty argument list. In SAPL, thunks are recognized automatically
during code generation/interpretation, furthermore lambda expressions with-
out arguments are not allowed by the language. This step removes them (line
9 and 12 in our example).

λ [] = b → b

Elimination of the computation logic of case expressions

In STG, case expressions encode both pattern matching and computation.
It evaluates a given expression, binds a variable to the evaluated value and
matches the value to the case alternatives. However, considering that a let

binding creates a thunk, moving the pattern matched expression into an outer
binding would cause the same effect. In this way we can get rid of this rather
unique case of construct by substituting it for a normal case expression em-
bedded into a let expression. The rewrite rule is the following:

case e of x b → let x = e in case x b

The intermediate code after this step is given in Figure 5. It is still cluttered
by numerous let expressions, but the picture is getting clearer.

Elimination of variable-to-variable bindings

After the previous step we introduced several new let bindings. However,
if we take a careful look at Figure 5, it can be seen that we introduced variable
to variable bindings only. Actually, the expression in a case of statement can
be an application or even another case expression as well, but in the most
frequently occurring case it is only a variable. When this is so, we can further
simplify the AST by substituting let-bound variables in the nested expression.
This transformation is sometimes called copy propagation. Please notice that
this rule would remain valid even if x2 would be an arbitrary expression for the
price of losing call-by-need semantics.

let b1, . . . , x1 = x2, . . . , bn in e → let b1, . . . , bn in e[x1 := x2]



Compiling Haskell to JavaScript through Clean’s core 129

1Main.fact ds_sCK =
2let {
3wild_sCP= ds_sCK

4} in case wild_sCP {
5GHC.Types.I# ds1_sCN →
6let {
7ds2_sDb= ds1_sCN

8} in case ds2_sDb {
9__DEFAULT →
10let {
11sat_sDc=
12let {
13sat_sDd=
14let { sat_sDe= GHC.Types.I# 1;
15} in GHC.Num.- GHC.Num.fNumInt wild_sCP sat_sDe;
16} in Main.fact sat_sDd;
17} in GHC.Num.* GHC.Num.fNumInt wild_sCP sat_sDc;
180 → GHC.Types.I# 1;
19};
20};

Figure 5. The intermediate code after five steps

In our example, this transformation removes line 3 and 7 and changes line 4,
8, 15 and 17. The let statements with empty binding list, caused by this
transformation, will be removed in a subsequent step.

Elimination of forcing-only case expressions

Since only case expressions force evaluation in STG, it sometimes happens
that its pattern matching facility is not even used. When this is so, only a
default case exists. In SAPL there is no language construct to express default
case at pattern matching; these expressions must be removed from the AST:

case x DEFAULT –> e → e

By this transformation the evaluation of the given expression is delayed, but,
as long as we regard pure functions only, it is certainly safe by the considerations
of Section 4.

Lambda lifting

SAPL allows lambda expressions as the arguments of a select statement
only. STG, however, encodes local functions as lambda expressions occurring
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in let bindings. In this step these let bindings are lifted to the top-level as
new function definitions:

let b1, . . . , f = λ[x1 . . . xn] = e1, . . . , bn in e2

→ let b1, . . . , bn in e2[f := f ′FV1 . . . FVm] ,

where f ′ is a new, uniquely generated function name, FVi is the ith local free
variable (which is not free in the original function) of the expression assigned
to f , and m denotes the number of such free variables. The definition of the
f ′ function is as follows:

f ′ FV1 . . .FVm x1 . . . xn = e1

Application inlining

The STG machine requires function and constructor arguments to be atoms
(variables or constants). This constraint implies that all sub-expressions are
explicitly named and the evaluation order is explicit. This is well suited to
the pursuit of making the code generator as simple as possible. However,
some research indicates that if the bodies of functions or let bindings are
mostly small (which is the consequence of flat applications), the interpretation
overhead is relatively large [9].

In this step we invert the decomposition of non-flat applications, which
is done during the translation of GHC Core into STG. That time new let

bindings were added for the non-trivial arguments of applications; now let-
bound variables are inlined. We have to be careful, however. To preserve the
sharing property of thunks, only those let bindings can be inlined which occur
(1) only once and (2) only as the argument of an application. Furthermore, a
let can be inlined only if it is not mutually recursive. When these conditions
are satisfied, the rewrite rule is the following:

let b1, . . . , x = e′, . . . , bn in e → let b1, . . . , bn in e[x := e′]

Subsequently, let expressions with an empty binding list must be removed
and the transformation step must be repeated until there is no let binding
which satisfies the necessary conditions. After three iterations of this rule, our
example looks rather concise (the long line of embedded applications is broken
into multiple lines) as it can be seen in Figure 6.

Lifting of compound expressions of let bindings

SAPL does not allow let expressions to nest other let expressions, neither
in bindings nor in spine. In the previous step we eliminated some of them by
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1Main.fact ds_sCK =
2case ds_sCK {
3GHC.Types.I# ds1_sCN →
4case ds1_sCN {
5__DEFAULT →
6GHC.Num.* GHC.Num.fNumInt ds_sCK

7(Main.fact
8(GHC.Num.- GHC.Num.fNumInt ds_sCK (GHC.Types.I# 1)));
90 → GHC.Types.I# 1;
10};
11};

Figure 6. The intermediate code after inlining applications

inlining let bindings when they were applications. The remaining of such let

expressions, unfortunately, cannot be managed so easily; some bindings must
be lifted as a top-level function. These are the cases when a binding contains
another let, or a case expression. The following rewrite rule uses the notations
introduced at lambda lifting:

let b1, . . . , f = e1, . . . , bn in e2

→ let b1, . . . , bn in e2[f := f ′FV1 . . . FVm] ,

where e1 is a case or let expression and the definition of f ′ is as follows:

f ′ FV1 . . .FVm = e1

After the lifting of such expressions, the previous step must be repeated to
inline the newly introduced applications.

Fusion of nested let expressions

So far, we eliminated let expressions occurring in let bindings and inlined
most of the nested ones. However, to preserve call-by-need semantics, bindings
are allowed to be inlined when they occur only once in the nested body, there-
fore the intermediate code still can contain nested let expressions. To avoid
them, the bindings of the nested expression must be lifted and merged with
the bindings of its container. In this case, mutually recursive let bindings can
be moved safely, because they will not be broken up.

let b1, . . . , bn in let d1, . . . , dm in e

→ let b1, . . . , bn, d1, . . . , dm in e

This transformation finally results in an intermediate code, which does not
contain nested let expressions.
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Transformation of pattern matching logic

Pattern matching is performed by case expressions in STG. So far we elim-
inated the computation logic of this construct along with its special utiliza-
tion to force evaluation. This time the two flavors of case expressions, pat-
tern matching of algebraic and primitive types, are separated and translated
into SAPL select and if expressions, respectively. Being both corresponding
SAPL constructs strict in their first argument, that is force evaluation, this
transformation preserves the semantics of the original program. The type of a
given case expression can be clearly recognized by the analysis of the left hand
side of the case alternatives: if any of them is literal, we have to convert it to
an if expression, otherwise we deal with the algebraic type.

• Pattern matching on primitive types is converted to SAPL if expressions.
These expressions have three arguments in this order: (1) predicate (2)
true-branch and (3) false- or else-branch. The algorithm is the following:
the case alternatives are converted to nested if expressions, so we have
to determine first the else-branch of the inmost if expression. It will be
the default case alternative or the last case alternative if a default case
does not exist. Then the remaining alternatives, from top to bottom, are
converted to if expressions: every such expression will be the else-branch
of the previous one. The predicates are translated into an application of
the primitive eq function.

case x
l1 -> e1 → if (eq x l1) e1
l2 -> e2 (if (eq x l2) e2

...
...

ln−1 -> en−1 (if (eq x ln−1) en−1 en)...)
ln -> en

• Algebraic data constructors are already discovered by the previous steps,
thus we can easily determine the constructor indexes. This information
is vital as it defines the order of the arguments of the select statement
which is generated from such a case expression. We also need to know
the arity of the data constructors; fortunately, this information is both
available in the definition of data constructors and in the left hand side
of the case alternatives.

The GHC compiler does not generate a case alternative for every data
constructor of a given type. The case expression generated from a partial
function will contain a default case alternative for the non-defined con-
structors. In addition to this, we merged constructors of different types,



Compiling Haskell to JavaScript through Clean’s core 133

thus the positions of the data constructors belonging to other types must
be filled in the select statement. We will use the primitive nomatch

function for this purpose. With this remark, these functions are neglected
from the rewrite rule for the sake of readability.

case x → select x
C1 x1 -> e1 λ xI(1) = eI(1)

...
...

Cn xn -> en λ xI(n) = eI(n)

The I(n) function yields the index of the constructor in the list of case
alternatives by the global constructor index n.

1Main.fact ds_sFz = select ds_sFz (λ ds1_sFC=
2if (eq ds1_sFC 0) (GHC.Types.I# 1)
3(GHC.Num.* GHC.Num.fNumInt ds_sFz

4(Main.fact (GHC.Num.- GHC.Num.fNumInt ds_sFz (GHC.Types.I# 1)))))

Figure 7. The final result of the transformation

This final step results in a valid SAPL function (Figure 7). In the following
section we discuss interoperability issues, that is the differences between SAPL
functions generated from Clean and GHC through STG.

6. Interoperability issues between Haskell and Clean

There is another reason choosing the factorial function as primary example
of this paper behind its simplicity: it can be compiled by both Haskell and Clean
compilers without any modification. This property gives us the opportunity to
compare objectively the generated SAPL functions.

In [8], van Groningen et al, identify the most salient differences between
Clean and Haskell. These are: modules, functions, macros, newtypes, type
classes, uniqueness typing, monads, records, arrays, dynamic typing, and generic
functions. Studying this list carefully one can recognize that after the elimina-
tion of types and syntactic sugar we have to deal with the different low level
representations of basic constructs only, e.g. the representations of basic types,
arrays, records, tuples and so on.
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First of all, it must be defined what we mean by the term interoperability
here. Consider the following setting: we have two pieces of programs, one in
Haskell and one in Clean. In both codes we define the same type (it is not
always possible, see [8], but we will study interoperability only for those cases
when compatible types exist). We have different functions working on this type
written in Clean and Haskell. What happens if we composite them after their
translation to SAPL? This is the primary question this section wants to answer.

The following SAPL code snippet shows the code of the factorial function
produced by the Clean compiler:

Main.fact x_0 = if (eq x_0 0) 1 (mult x_0 (Main.fact (sub x_0 1)))

Comparing it to Figure 7, although the two codes seem completely different,
we can identify only two non-isomorph differences and only one of them is es-
sential. The less significant difference is the usage of type classes in GHC. The
GHC.Num.- and GHC.Num.* functions are responsible for subtracting and multi-
plying numbers. They can work on any kind of number; their first argument is
a type class instance, a dictionary (GHC.Num.fNumInt in this example, the Int
instance of the Num type class). Substituting them for the wrapper functions
add’ and mult’, helps us to clear the picture:

Main.fact ds_sFz = select ds_sFz (λ ds1_sFC=
if (eq ds1_sFC 0) (GHC.Types.I# 1)

(mult’ ds_sFz (Main.fact (add’ ds_sFz (GHC.Types.I# 1)))))

Primitive types

Now we can see the fundamental difference: Haskell primitive types are
boxed, they are wrapped by a data constructor (GHC.Types.I# for the type
Int). The select expression in this example unboxes the wrapped value.
These boxing semantics are important properties of Haskell. For more on this,
please refer to [14].

These semantics obviously cause interoperability problems. If we want to
call this factorial function generated from STG (SAPL* in the following) from
SAPL, we have to box the argument and unbox the return value:

Clean.fact x_0 = select (Haskell.fact (GHC.Types.I# x_0))) (λ r = r)

What could we do here? If we insist on the primitive types being fully com-
patible at this level, we can devise rewrite rules to unite representations. By
removing case expressions responsible for unboxing

case x
GHC.Types.I# l -> e → e[p′ := p]
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and by replacing applications, responsible for boxing, with their primitive value

GHC.Types.I# l→ l

we gain a sound transformation for boxed integers (p′ denotes a primitive op-
erator which works on boxed type, and p is its unboxed counterpart).

However, what we win on the compatibility we lose on performance. If
boxing semantics are removed, optimizations of the GHC compiler cannot be
used any more as boxing of primitive types plays an important role in the
handling of strictness (see Section 7).

Algebraic data types

In theory, instances of ADTs could be passed between SAPL and SAPL*,
the only restriction that constructor indexes must match. Unfortunately, this
condition is currently not satisfied since transformation from STG to SAPL*
merges the data constructors of different types. The implementation of the
grouping algorithm given in the previous section, however, would solve this
issue sufficiently.

Records

SAPL has special syntax to define records. Clean records are converted to
SAPL records during compilation. SAPL records, however, are just syntactic
sugar to allow distinguishing between constructors and records [6], they are
simple ADTs. GHC also represents records as ADTs, that is, with the remarks
of the preceding paragraph, records are compatible at this representation level.

Lists and tuples

Lists and tuples are represented as ADTs in both SAPL and SAPL*. The
only difference is in constructor names. SAPL* uses rather special names to
refer to these types. For Nil and Cons the keywords [] and : are used, tuples
with different arities are denoted by (,), (,,), . . .. In contrast, SAPL uses the
following compatible definitions:

:: predefined_List= predefined_Cons a1 a2 | predefined_Nil

:: predefined_Tuple= predefined_Tuple1 a1

:: predefined_Tuple= predefined_Tuple2 a1 a2

...

As for interoperability, only constructor indexes matter and this requirement
is satisfied by these types.
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Strings

The double-quoted form of a string literal in Haskell is just syntactic sugar
for list notation. This is a fundamental difference to Clean, where strings are
represented as unboxed arrays, that is simple objects. The difference is so
essential that it can be solved only by runtime conversion. The two different
string representations must be converted to each other by applying special
conversion functions to them.

Arrays

Clean has extensive language support, including syntactic sugar, for the effi-
cient handling of arrays. However, the syntactic sugar is completely eliminated
by the Clean compiler frontend, and it appears as a set of primitive functions
at the level of SAPL. Haskell has no built-in support, it provides arrays via
a standard module. Because there is no special elements for arrays in none
of the languages, the problem is simplified to using the same implementation
through different APIs. In this case, a special SAPL implementation of Haskell
Data.Array module must be provided, which ensures compatibility by using
SAPL primitive functions for array creation and access.

Type classes

GHC generates ADTs, while Clean generates records from type classes. By
the above-mentioned remarks, these are compatible at this representation level.

7. Benchmarks

So far we concentrated on a mere valid transformation technique. In this
section we discuss performance issues and present comparison of run-times
of JavaScript code generated from SAPL code gained from Clean and GHC
through STG using the above described technique.

In Figure 8 the optimized STG code (using GHC -O2) of the factorial
example is presented. Comparing it to Figure 3 one can identify two essential
differences. First of all, the factorial function is split into two ones: separate
versions are generated for strict and non-strict calls of the function. The entry
function (Main.fact) is now responsible only for unboxing the argument and
boxing the result. The actual computation logic is moved into a new function,
which works on an unboxed primitive integer. As for the second difference, the



Compiling Haskell to JavaScript through Clean’s core 137

usage of type classes is replaced by direct applications of primitive functions
(-#, *#). These modifications result in a completely different SAPL code:

Main.fact w_s1oZ = select w_s1oZ (λww_s1p2= (GHC.Types.I# (Main.wfact ww_s1p2)))
Main.wfact ww_s1oS= if (eq ww_s1oS 0) 1 (*# ww_s1oS (Main.wfact (-# ww_s1oS 1)))

The new Main.wfact function, apart from the names of variables and primi-
tive functions, is equivalent with the SAPL function generated by the Clean
compiler. This optimization has a big impact on execution time and memory
consumption, and actually this is how strictness is handled in Haskell [14].

1Main.wfact=
2λr [ww_s1oS]
3case ww_s1oS of ds_s1oU {
4__DEFAULT →
5case -# [ds_s1oU 1] of sat_s1tO {
6__DEFAULT →
7case Main.wfact sat_s1tO of ww1_s1oX {
8__DEFAULT → *# [ds_s1oU ww1_s1oX] ;
9};
10};
110 → 1;
12};
13

14Main.fact=
15λr [w_s1oZ]
16case w_s1oZ of w1_s1tP {
17GHC.Types.I# ww_s1p2 →
18case Main.wfact ww_s1p2 of ww1_s1p4 {
19__DEFAULT → GHC.Types.I# [ww1_s1p4] ;
20};
21};

Figure 8. The optimized STG code of the factorial example

Table 1 presents the results of an extensive range of benchmark programs.
It shows the run-times of the binary programs, the run-times of their JavaScript
counterpart, and finally, the memory usage and stack utilization of the binary
programs. Every such test is evaluated using version 2.3 of the Clean compiler,
GHC version 7.2.1 and the same GHC compiler version with the O2 flag. The
JavaScript code is generated from SAPL, which is produced by the Clean com-
piler and by compiling the STG output of the GHC compiler using the above
presented transformation.

All of the contemporary browsers have call stack size limitations, called re-
cursion limit. As for Chrome, it is currently a bit more than 20.000. Functional
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programs inherently tend to use a huge amount of stack, so this limitation af-
fects several benchmarks. With the exception of Queens benchmark, when we
could overcome the problem by increasing moderately the stack size of Chrome,
these ones must have been compiled by optimizing stack use instead of speed.
In the table, this special compilation technique, along with the corresponding
stack sizes, is indicated by bold faced numbers. Moreover, some JavaScript
benchmarks fail because of high memory consumption. In these cases there are
no results at the JavaScript run-times and italic font face is used to highlight
the memory consumption numbers of the related binary programs. Please note
that the stack/memory consumption of the JavaScript programs was not mea-
sured explicitly. The related problems were indicated by Chrome by the means
of error messages.

The employed benchmark programs are part of [11], for details of the pro-
grams, including source code, see [12]. The pre-compiled SAPL, STG and
JavaScript code can be obtained from [5].

Analyzing the results of Table 1 we can make some general observations
about them:

• The run-times of generated JavaScript programs are in pair with the
run-times of the corresponding binaries, meaning that the run-times of
binaries and JavaScript programs of certain benchmarks have the same or-
der. There are only three benchmarks breaking this rule (Braun, Knuth-
Bendix, SumPuz), but one of these results (Braun) is related to the un-
avoidable speed loss coming from the optimization for stack use instead
of speed.

• The high stack utilization of binaries clearly indicates high stack utiliza-
tion of the related JavaScript programs.

• The high memory consumption of binaries clearly indicates high memory
consumption of the related JavaScript programs.

According to these observations, the results indicate that the introduced
STG→ SAPL→ JavaScript transformation preserve the properties of the orig-
inal programs at a deep level. Notice, however, that the generated JavaScript
benchmarks run about 1 to 2 magnitudes slower than their binary counter-
parts. Why should we translate Haskell/Clean programs to JavaScript then?
The answers are manifold. First of all, there are tasks that inevitably must run
on client side, like validation or management of GUI elements. For a second
answer, one has to notice that running benchmarks is not part of the daily rou-
tine and most normal programs have acceptable run-times. This is even true
for relatively large applications, like the SAPL to JavaScript compiler itself.
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8. Related work

Compilation of traditional programming languages to JavaScript has drawn
much attention in the last years as client-side processing for Internet applica-
tions was gaining importance. Virtually every modern language has some kind
of technology which allows its client-side execution. A comprehensive overview
of JavaScript related technologies of functional languages is given in [6]. Now,
we are particularly interested in Haskell based compiler technologies.

There are several implementations of compilers from Haskell to JavaScript,
although none of them has reached a full release stage as of the time of writing.
Currently three important JavaScript backends exist for the various Haskell
implementations. One of the first attempts to compile Haskell to JavaScript
took a similar approach as ours; it also used STG as source language, but they
implemented an STG machine in JavaScript [3]. Later on this project moved to
YHC Core instead of STG, but it is abandoned since the development of York
Haskell Compiler is canceled. There is another backend under development for
Utrecht Haskell Compiler, which is going to be part of the upcoming release
[4]. As for GHC, after some initial attempts, the most promising technology is
GHCJS [1], which is still in its alpha stage at the time of writing. Finally, a bit
different but interesting approach was chosen by JSHC [2], which implements
a Haskell2010 compiler in JavaScript. Our approach, to convert the source
language to obtain a new target platform is a novel idea, which has the definite
advantage of reusing well established technologies and allows interoperability
between different languages.

9. Conclusion and future work

In this paper we presented a technique to translate STG, one of the core
languages of GHC, into SAPL, one of the core languages of Clean. To achieve
this we used a method called compilation by transformation; the actual trans-
formation consists of a series of rewrite rules. The presented transformation
currently has a restriction to pure functions only. This is due to the lack of
investigation of the impact of rewrite rules to monadic I/O. The viability of
the technique is proved by a prototype implementation which was used for
the compilation of an extensive range of benchmark programs. The translated
benchmarks were converted to JavaScript to compare their run-times to the
same benchmarks generated by the Clean complier. Analyzing the results we
concluded that the transformation preserves well the run-time characteristics
of the original programs.
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We have not discussed the question of the reverse transformation, converting
SAPL into STG. This task certainly would be harder, because STG, in contrast
to SAPL, contains much information for the code generator. However, the
necessary information is generated in a later stage by the SAPL to JavaScript
compiler, thus the reverse conversation is probably possible.

As for the future work, the current prototype implementation of the com-
piler needs further improvement to be applicable for real world tasks. The
most important modifications include the implementation of the data construc-
tor grouping algorithm and completing the implementation of the full set of
primitive functions of STG. Furthermore, cores of other Haskell compilers, e.g.
YHC, can be considered to be transformed into SAPL using a similar technique
which was presented in this paper.
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Pázmány P. sétány 1/C
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