
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 23–39

COMPARING THE COMPUTATION

OF CHEBYSHEV POLYNOMIALS

IN COMPUTER ALGEBRA SYSTEMS

Sándor Czirbusz (Budapest, Hungary)

Communicated by Antal Járai

(Received November 22, 2011; accepted January 20, 2012)

Abstract. In this article we compare the efficiency of the computer algebra
systems Maple and Sage, using as benchmark the calculation of Chebyshev
polynomials with various methods. In most tests, Maple performed better,
but Sage is also capable of doing the calculations. We conclude that Sage,
although still inferior to Maple in functionality and performance, has by
now become a reasonable open-source alternative of commercial computer
algebra systems.

1. Introduction

Nowadays the teaching of Computer Algebra in some form is an organic
part of higher education. We can select from a range of CA Systems, and it is
a hard decision, which one is the best for our objectives.

In 1999 appeared Wester’s reputed article: “A Critique of The Mathemat-
ical Abilities of CA Systems” [1]. Since then one can multiply the version
numbers by three; some systems have disappeared and there are many new
ones. In this article we performed tests on timing production of Chebyshev

Key words and phrases: Computer algebra, Chebyshev polynomials.
2010 Mathematics Subject Classification: 68W30.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

24 S. Czirbusz

polynomials generated in different ways. These two systems are : Maple and
Sage. The idea of this paper originated in the article of W. Koepf: “Efficient
Computation of Chebyshev Polynomials” [1]. The source of all these tests can
be found on my home page (http://compalg.inf.elte.hu/ czirbusz/).

Maple is one of the best known erudite CA Systems, at present the current
version is 15. In the tests version 11 was used. Sage is a relatively new free
system, based on Maxima, many abilities rewritten in Python. The system
integrates a large number of free mathematical software products, see [9].

In both systems some timing functions are available, they were used in these
tests. The results are measured in seconds, the Maple function returns three
digits, the Sage only two digits precision. All results were measured on three
computers, the used configurations are listed below:

Fujitsu Notebook: Fusjitsu Siemens Amilo PI2530, 2x Intel(R) Core(TM)
2 Duo CPU 1.50GHz with Ubuntu 10.10 32 bit operating system, Linux 2.6.35-
30-generic (i686) kernel, 2059716 kB total memory, swap 71892 kB.

Lenovo Notebook: Lenovo ThinkPad T510, 4 x Intel(R) Core(TM) i7
CPU M 620 2.67GHz with Ubuntu 11.04 64 bit operating system, Linux 2.6.38-
8-generic (x86 64) kernel, 1978924 kB total memory, swap 5660 MB.

Desktop Computer: AuthenticAMD, AMD Athlon(tm) 64 X2 Dual Core
Processor 3800, 1999.827 MHz with 512 KB cache with Ubuntu Linux, the
Ubuntu 11.04 64 bit operating system, 2.6.38-8-generic kernel, 998 MB total
memory, 2922 MB swap.

None of Microsoft operation systems were used because on Windows Sage
runs only through cygwin.

2. The Chebyshev polynomials

“Chebyshev polynomials are everywhere dense in numerical analysis.” This
remark illustrates the distinguished role of Chebyshev polynomials in numer-
ical mathematics. They are very important in approximation theory. The
relative simplicity of their definitions is easily adapted to symbolic computa-
tions and teaching computer algebra, see [2]. Hence they are especially suitable
to illustrate the exact arithmetic performance of CA Systems.

Comparing the computation of Chebyshev polynomials 25

2.1. The definition

Chebyshev polynomials of the first kind are orthogonal on the interval
(−1, 1) with respect to the weight function 1/

√
1− x2. We can define them

in many ways, the two simplest are the trigonometrical one

(2.1) Tn(cosx) = cosnx ,

and the recursive one

(2.2) Tn(x) = 2xTn−1(x)− Tn−2(x), T0(x) = 1, T1(x) = x .

All the coefficients of these polynomials are integers. In particular Tn(1) = 1
for all n, and Tn(0) = 0 for odd n, Tn(0) = (−1)n/2 if n is even.

2.2. Other properties

There are many interesting and unique properties of these polynomials,
which can be found in several textbooks or internet home pages, for example
[5, 6, 7, 8, 10, 11, 12]. In the following sections we use these properties without
proof or further reference.

3. The tests

In the column headers of resulting tables the following abbreviations were
used: “Mp” denotes Maple column, “SN” is Sage Notebook, “SS” is Sage Shell
and “Mx” denotes Maxima.

3.1. The built-in capabilities

Maple and Sage have built-in functions to generate Chebyshev–polynomials.
In older versions of Maple they were in the orthpoly package, but now it is
a ”toplevel” function: ChebyshevT. The Sage solution is very simple: it calls
the Maxima chebyshev t function via an interface. Maple uses polynomials in
a non-expanded form. Therefore the time(expand(ChebyshevT(n,x))) com-
mand was applied. The Sage method is different. First a polynomial ring
should be defined then time can be measured as follows:

26 S. Czirbusz

R = PolynomialRing(QQ, ’x’)

x = R.gen()

time p = chebyshev_T(n,x)

Here the assignment statement is necessary, otherwise in notebook mode Sage
prints the expanded polynomial, which is very impractical for large n. Since
Sage uses the Maxima function, I tested the Maxima timing as well. The results
are in Table 1.

Built-in capabilities
n Acer notebook Lenovo notebook

Mp SN SS Mx Mp SN SS Mx
10 0 0.03 0.01 0 0 0.02 0.01 0
100 0 0.13 0.08 0.010 0 0.01 0.03 0
500 0.004 1.15 0.38 0.220 0 0.12 0.28 0.100

1000 0.008 3.56 3.54 0.690 0 0.61 0.75 0.360
5000 0.052 * * 19.10 0.030 175.23 29.74 10.32
10000 0.164 * * 84.88 0.060 2230.78 309.74 52.90
100000 2.376 * * ** 0.850 * * **
* Does not response within two hours
** Maxima run out from memory

Built-in capabilities
n Desktop PC

Mp SN SS Mx
10 0 0.01 0.01 0
100 0 0.02 0.03 0
500 0.009 0.22 0.28 0.100

1000 0.010 1.36 0.75 0.360
5000 0.069 199.98 29.74 10.32
10000 0.189 * 309.74 52.90
100000 2.889 * * **
* Does not response within two hours
** Maxima run out from memory

Table 1. Built-in capabilities – computing the polynomials symbolically

It is surprising that Sage failed in the last three rows. This indicates that
the interface between Sage and Maxima has a bottleneck.

As we mentioned above Tn(1) = 1 for all n. Examining this simple fact
we get an astounding result. While Maple and Maxima computes the result in

Comparing the computation of Chebyshev polynomials 27

0 second, Sage uses relatively notable time and on 32 bit system it crashes for
n ≥ 5000. The Sage source is as follows:

_init()

return sage_eval(maxima.eval(’chebyshev_t(%s,x)’%ZZ(n)) .

locals={’x’:x})

Maxima makes the symbolic computation, Sage calls it without further
examination of parameters. The situation is the same when instead of exact
arithmetic we made floating-point computation with evalf() in Maple and
n() in Sage.

3.2. Method of determinants

We can compute the Chebyshev polynomials of the firts kind as the deter-
minant of the following matrix:

(3.1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x −1 0 0 . . . 0
−1 2x −1 0 . . . 0
0 −1 2x −1 . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . −1 2x −1
0 0 . . . 0 −1 2x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

It is evident that the result of the expansion of the determinant is the recur-
rence relation (2.2) within the elements of the polynomial sequence. Naturally,
this method is very ineffective, but we get a little insight into the array–handling
of computer algebra systems. There was a change in the matrix manipulation of
Maple since version 9. Now Maple prefers the LinearAlgebra package, which
is much more effective then the old linalg package. The Maple source is as
follows:

with(LinearAlgebra);

ChebyshevTDet := proc (n, x)

return Determinant(Matrix(n, (i,j)-> piecewise(i = 1 and

j = 1, x, i = j, 2*x, abs(i-j) = 1, -1, 0)))

end proc

The code with the linalg package is very similar. The same functionality in
Sage is:

28 S. Czirbusz

R1 = PolynomialRing(QQ, ’x’)

def ChebyshevTDet(n):

R2 = MatrixSpace(R1,n,sparse=True)

T = R2.matrix(2*x)

T[0,0] = x;

if n > 1:

T[0,1] = -1; T[n-1,n-2]= -1

for i in xrange(1,n-1):

T[i,i-1] = -1; T[i,i+1]= -1

return T.determinant()

This code shows the algebraic nature of Sage. See the timing results in Table 2.

Determinant method
n Acer notebook

Mp* Mp** SN SS
10 0.036 0.036 0.03 0.03
50 4.780 5.096 5.30 5.05
100 71.912 76.116 85.08 80.20
150 369.087 424.386 492.58 435.02
200 1244.753 1578.302 1781.65 1660.02
500 *** *** *** ***
1000 *** *** *** ***
* Maple with LinearAlgebra package
** Maple with linalg package
*** Does not response within 2 hours

Determinant method
n Lenovo notebook

Mp* Mp** SN SS
10 0.00 0.030 0.02 0.03
50 0.129 1.640 2.23 2.33
100 0.600 19.930 31.11 32.90
150 1.230 94.900 166,57 170.34
200 2.390 293.369 594.64 569.60
500 15.820 *** *** ***

1000 104.900 *** *** ***
* Maple with LinearAlgebra package
** Maple with linalg package
*** Does not response within 2 hours

Comparing the computation of Chebyshev polynomials 29

Determinant method
n Desktop PC

Mp* Mp** SN SS
10 0.029 0.030 0.02 0
50 3.459 3.460 3.70 0
100 47.30 50.049 55.97 0.100
150 239.570 279.510 292.30 0.360
200 784.119 930.850 1004.22
500 *** *** *** 10.32

1000 *** *** *** 52.90
* Maple with LinearAlgebra package
** Maple with linalg package
*** Does not response within 2 hours

Table 2. Method of determinants

It can be seen that the difference between the notebook and interactive
shell interface of Sage is not significant, so hereafter we will omit this part of
the tests. It is apparent that the LinearAlgebra package is very effective. We
note that the performance of Sage is not too bad. In fact it is similar to that
of the linalg package.

3.3. Generating function

The generating function of Chebyshev polynomials is

(3.2) F (z) =
1

2

(
1− z2

1− 2xz + z2
+ 1

)
.

From this we can generate Chebyshev polynomials by Taylor series expansions.
The results are in Table 3.

By the old test in [1] Maple failed from n = 300. Now we made it up
to n = 500 without problem, and without deleting the remember table of
the differential operator. Sage is systematically slower by a factor of three
to six. This is because Sage uses Maxima for calculus and according to the
previous tests this interface is very slow. The method is very impractical, and
for n ≥ 1000 Maple caused system crash.

30 S. Czirbusz

Generating function
n Acer notebook Lenovo notebook Desktop PC

Maple Sage Maple Sage Maple Sage
10 0.040 0.09 0.020 0.06 0.020 0.07
50 0.612 1.80 0.310 0.89 0.659 1.27
100 2.400 7.12 1.019 3.51 2.559 5.10
200 9.588 28.38 4.219 13.89 10.310 20.55
400 39.542 113.24 16.559 55.61 42.829 81.48
500 61.251 177.27 26.129 86.77 68.360 128.27
700 121.039 350.95 52.019 350.95 140.340 252.32

Table 3. Generating function

3.4. Rodrigues formulas

We may represent the Chebyshev polynomials of first kind with Rodrigues
formulas

(3.3) Tn(x) =
(−2)nn!
(2n)!

√
1− x2

dn

dxn
(1− x2)n−

1

2 .

The code in Maple is straightforward. In Sage we must pay attention to
the diff(f,x,n) function in which it is not always clear that n is a repetition
parameter or the second variable of a partial derivation. See the timing results
in Table 5.

We note that there exist similar Rodrigues formulas for other kinds of or-
thogonal polynomials.

n Maple Sage
10 0 0,09
50 0,007 0,42
100 0,024 1,32
200 0,088 6,43
300 0,156 17,45
400 0,784 39,66
500 1,184 78,53

Table 4. Rodrigues formula

Comparing the computation of Chebyshev polynomials 31

Generating function
n Acer notebook Lenovo notebook Desktop PC

Maple Sage Maple Sage Maple Sage
10 0 0.09 0 0.06 0 0.07
50 0.007 0.42 0 0.21 0 0.31
100 0.024 1.32 0.010 0.61 0.030 1.16
200 0.088 6.43 0.049 2.49 0.200 6.49
400 0.784 39.66 0.469 15.59 0.950 48.95
500 1.184 78.53 0.680 29.57 1.430 98.71
1000 * ** 3.860 241.34 ** **
5000 * ** * ** * **
* System freezes
** No response within 2 hours

Table 5. Generating function

3.5. Matrix powers

This method is based on [3] and [4]. The Chebyshev polynomials may be
represented by

(3.4)

(
Tn(x)

Tn−1(x)

)
=

(
2x −1
1 0

)(
Tn−1(x)
Tn−2(x)

)
= · · · =

(
2x −1
1 0

)n−1(
x
1

)
.

The matrix operations are different in the LinearAlgebra and the linalg
packages of Maple, and the evaluation strategy is different as well. Both systems
use fast matrix powering, we do not need any tricky codes, the programs in
essence are identical in Maple and Sage. The code with linalg package:

T0 := matrix([[2*x, -1], [1, 0]]);

T1 := matrix([[x], [1]]);

T := (n, x) -> evalm(‘&*‘(T0^n, T1));

The timing results are in Table 6.

Firstly, we note that the running time is less than in the previous methods.
Secondly, the result of the LinearAlgebra shows a little fluctuation. Probably
this is the sampling error of time function. Additionally, we can see that linalg
is significantly slower. Sage is surprisingly good, especially for larger n-s it is
better than linalg. It should be noted that Maple uses non-expanded form for
polynomials in matrix cells, on the other hand Sage expands the same elements.
Further we note that for large n Maple is not able to display the matrix while
Sage truncates the screen output and saves it to an external file.

32 S. Czirbusz

Matrix Powering

n Acer notebook Lenovo notebook Desktop PC
Mp* Mp** Sage Mp* Mp** Sage Mp* Mp** Sage

10 0.003 0.003 0.02 0 0 0.02 0 0 0

50 0.003 0.004 0.03 0 0 0.00 0 0 0.02

100 0.004 0.011 0.05 0 0 0.02 0 0.009 0.03

200 0.008 0.016 0.05 0 0.009 0.04 0 0.009 0.03

500 0.007 0.060 0.08 0 0.030 0.04 0 0.019 0.05

1000 0.007 0.212 0.08 0 0.100 0.03 0 0.189 0.05

2000 0.008 0.732 0.10 0 0.370 0.04 0 0.690 0.06

5000 *** *** *** 0 **** 0.03 0.010 **** ****

* Maple with LinearAlgebra package

** Maple with linalg package

***Not tested

**** length of output exceeds limit of 1000000

Table 6. Matrix powering

3.6. Per definitionem

3.6.1. A trigonometric joke

From (2.1) it follows that

(3.5) Tn(x) = cos(n arccosx) .

From this expression Maple computes the Chebyshev polynomials for n =
1 . . . 99 in 0 second. Virtually, it seems that this method works for larger n-s,
but Maple is not able to expand the expression. Sage works in a similar manner
and the expression is the expanded Chebyshev polynomial for large n-s.

3.6.2. The recursive formula

This formula is a simple programming exercise, essentially identical in most
programming languages. (Except the symbolic handling of variable x.) This
is true for the iterative version as well. In general the iterative version should
be significantly more effective than the recursive version. But Maple has a
very good solution for recursive programs, this is the remember table. When
the remember option is defined into a procedure then after every execution
this procedure inserts an entry to the remember table that records the return
values. When the procedure is used with the same parameter values then the
results are simply retrieved from here. There does not exist similar mechanism
in Sage. The results of these tests presented in Tables 7 and 8.

Comparing the computation of Chebyshev polynomials 33

The recursive relation in Maple

n Acer notebook Lenovo notebook
Mp* Mp** iterative Mp* Mp** iterative

10 0 0 0.003 0 0 0

50 0 *** *** 0 *** 0

100 0 *** *** 0 *** 0

500 0.016 *** *** 0.009 *** 0.009

1000 0.044 *** *** 0.030 *** 0.050

10000 1.852 *** *** 0.0830 *** 5.029

20000 34.146 *** *** **** *** 27.670

* Maple with remember table

** Maple without remember table

*** No response within 2 hours

**** Too many levels of recursion

The recursive relation in Maple

n Desktop PC
Mp* Mp** iterative

10 0 0 0

50 0 *** 0

100 0 *** 0

500 0.009 *** 0.010

1000 0.0040 *** 0.039

10000 2.830 *** 20.269

20000 **** *** 111.430

Table 7. The recursive relation in Maple

The recursive relation in Sage

n Acer notebook Lenovo notebook Desktop PC
recursive iterative recursive iterative recursive iterative

10 0 0.01 0.01 0 0.01 0.03

50 * 0.06 ** 0.02 ** 0.04

100 * 0.13 - 0.05 - 0.13

500 * 2.62 - 1.53 - 2.10

1000 * 9.98 - 6.69 - 7.68

10000 * * - ** - **

20000 * * - - - -

* No response within 2 hours

** Javascript error: the name “Cheby” is not defined

Table 8. The recursive relation in Sage

34 S. Czirbusz

As it was noted Maple works very fast with the remember table. The
recursive version without remember table caused system crash. In case of Sage
only the iterative program gives a reasonable solution, but the running time
grows very quickly with n. It is a surprise that the recursive version basically
does not work.

3.7. An algebraically closed formula

There is a simple formula to compute the Chebyshev polynomials:

1

2

(
x+

√
x2 − 1

)n
+

1

2

(
x−

√
x2 − 1

)n
.

Simply calling this expression with some n is a zero–time operation, thus
the test was executed in Maple with the expand function, and on Sage with
simplify and expand.

3.8. Differential equations

The Chebyshev polynomials are the uniqe solutions of the differential equa-
tions

(3.6) (1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0

with initial conditions

T ′n(0) = 0, if n is even , (−1)
n−1

2 otherwise

Tn(0) =0, if n is odd, (−1)n
2 otherwise .(3.7)

Maple has a very impressive knowledge in the area of differential equations.
It has a very powerful algorithmic background, the dsolve() function solves
this equation in 0.04 sec if n = 10000. But a closer examination of solutions
shows that it is a compound of trigonometric functions, and fairly hard to
convert to polynomial form. Using the “series” option of “dsolve” function,
the solution is slower by orders of magnitude. The solution is a truncated
formal power series, which one must convert. Some Maple code follows:

In := proc (n)

if ‘mod‘(n, 2) = 1 then return

[0, n*(-1)^((1/2)*n-1/2)]

else

return [(-1)^((1/2)*n), 0]

Comparing the computation of Chebyshev polynomials 35

end if

end proc;

n:=500;

Order :=n;

dsolve({eq, f(0) = In(n)[1],

(D(f))(0) = In(n)[2]}, f(x), ‘series‘)

Sage is very poor in this challenge. It uses Maxima, and solves only first
and second order linear equations and some other special equations. In this
case the program gets lost in the labyrinth of compound trigonometric and
hyperbolic functions.

Certainly there is an alternate way to solve this equation. Replacing x with
cos t the above equation becomes

f ′′(t) + n2f(t) = 0.

In Maple it is easy to deduce this form with the dchange statement of
PDETools package, there is no similar mechanism in Sage. The solution is
simple in both systems, but there remains the task of converting to polynomial
form.

3.9. Series representation

One of best known series representation of Chebyshev polynomials follows:

(3.8) Tn(x) =
n

2

�n
2
�∑

k=0

(−1)k (n− k − 1)!

k!(n− 2k)!
(2x)n−2k.

Both systems have an elegant sum function. But for large n-s the direct
summing is not effective due to the calls of the factorial function. However,
by using the recursive connection between the above coefficients we can make
an effective recursive program in Maple. Since there is no remember table in
Sage, for n = 2000 we get the error: ”maximum recursion depth exceeded”.
The timing results are in Table 9.

36 S. Czirbusz

Series representation
MpS Acer notebook Lenovo notebook

MpS MpP SS SP MpS MpP SS SP
10 0 0 0.02 0.01 0 0 0.03 0.02
50 0 0.004 0.03 0.13 0 0 0.02 0.01
100 0.004 0 0.05 0.51 0 0 0.04 0.01
500 0.024 0.008 0.92 12.50 0 0 0.39 0.07

1000 0.100 0.024 6.78 51.41 0.030 0.020 2.50 0.16
2000 * 0.168 51.76 * * 0.060 18.17 0.44
5000 - 0.804 930.32 - - 0.419 296.30 2.49
10000 - * ** - - 1.730 2145.61 7.48
20000 - - - - - 8.370 ** 29.71
MpS = Maple with built-in Sum, MpP = Maple with with our program
SS = Sage with built-in sum, SP = Sage with our program
* system hangs
** no respond within 2 hours
*** exception runtime error

Series representation
MpS Desktop PC

MpS MpP SS SP
10 0 0 0.02 0
50 0 0 0.02 0.01

100 0 0 0.06 0.02
500 0.010 0.010 1.70 0.33
1000 0.060 0.049 10.35 1.19
2000 ** 0.150 74.16 4.71
5000 - 1.100 1071.28 28.89
10000 - 6.890 ** 116.22
20000 - 43.010 - **

Table 9. Series representation

3.10. Divide and conquer

There is an elegant relation between two arbitrary Chebyshev polynomials:

(3.9) 2Tn(x)Tm(x) = Tn+m(x) + Tn−m.

Applying this formula first with m = n, then m = n− 1, we get by far the

Comparing the computation of Chebyshev polynomials 37

most effective procedure to make Chebyshev polynomials. This is true for both
systems. The Sage code is as follows:

def T(n,x):

if n == 0:

return 1

elif n == 1:

return x

elif Mod(n,2) == 0:

return 2*T(n//2,x)^2-1

else:

return 2*T((n-1)/2,x)*T((n+1)/2,x)-x

In the resulting table only the Sage times are represented because the Maple
running time is always zero.

Divide & Conquer
n Acer Lenovo Desktop
100 0.01 0 0
500 0.01 0 0.01
1000 0.03 0.02 0.01
5000 0.05 0.03 0.03
10000 0.05 0.01 0.03

106 0.28 0.12 0.21
109 9.81 3.93 7.57
1012 200.68 81.72 156.95

Table 10. Divide and conquer

3.10.1. Some notes

Both systems use the non-expanded form. (In Sage the computation used
the Symbolic Ring.) For large n-s both systems may calculate the degree of
polynomials very fast, but expanding the polynomials is impossible.

38 S. Czirbusz

4. Summary notes

These tests were a little unfair with Sage. Maple has very impressive know-
ledge in the area of mathematical analysis. It was written and compiled in
C language, although the Java visualization is not very successful. The Sage
developers are primarily algebraists, mainly using Maxima as a black-box for
calculus. It causes serious problems, as we have seen in case of the built-in
capabilities. As we can see beside ”extreme” conditions (say large n) Maple
is far better. It follows that for research purposes Maple is more appropriate,
especially in calculus. However, we experienced system crash several times in
case of Maple. For education purposes I prefer Sage. On the one hand it is
free, and on the other hand in contempt of some ”child’s illnesses”, the Web
based interface is modern, and usually is the winner for students.

References

[1] Wester, M.J., Computer Algebra Systems - A Practical Guide, John
Wiley & Sons Ltd., 1999.

[2] Geddes, K.O. and S.R. Czapor and G. Labahn, Algorithm for Com-
puter Algebra, Kluwer Academic Publisher, Boston, MA, 1992.

[3] Fateman, R., Lookup Tables, Recurrences and Complexity, Proceedings
of ISSAC’89”, ACM Press.

[4] Miller, J.C.P. and D.J.S. Brown, An algorithm for evaluation of re-
mote terms in a linear recurrence sequence, The Computer Journal, 9
(1966), 188–190.

[5] Spanier, J. and K.B. Oldham, An Atlas of Functions, Hemisphere
Publishing Corporation, Washington, DC, 1987.

[6] Mason J.C. and D.C. Handscomb, Chebyshev polynomials, Chapp-
man & Hall/CRC, Boca Raton, FL, 2003.

[7] Culham, J.R., Advanced Differential Equations And Special Functions,
http://www.mhtl.uwaterloo.ca/courses/me755/

[8] Rivlin, T.J., The Chebyshev Polynomials, Pure and applied mathemat-
ics, John Wiley & Sons Ltd., New York, 1974.

[9] Sage Standard Packages, http://sagemath.org/packages/standard/

Comparing the computation of Chebyshev polynomials 39

[10] Weisstein, E.W., Chebyshev Polynomials of the First Kind,
http://mathworld.wolfram.com/

ChebyshevPolynomialoftheFirstKind.html

[11] Wikipedia, Chebyshev polynomials,
http://en.wikipedia.org/wiki/Chebyshev polynomials

[12] Suetin, P.K., Classical Orthogonal Polynomials, Nauka, Moscow, 1976
(in Russian).

S. Czirbusz
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
czirbusz@compalg.inf.elte.hu

