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Abstract. In this paper we start from a given rational function system and
take the linear space spanned by it. Then in this linear space we construct a
rational function system that is biorthogonal to the original one. By means
of biorthogonality expansions in terms of the original rational functions can
be easily given. For the discrete version we need to choose the points of
discretization and the weight function in the discrete scalar product in a
proper way. Then we obtain that the biorthogonality relation holds true
for the discretized systems as well.

1. Introduction

There is a wide range of applications of rational function systems. For in-
stance in system, control theories they are effectively used for representing the
transfer function, see e.g. [1], [4], [5]. Another area where they have been found
to be very efficient is signal processing [8]. Recently we have been using them for
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representing and decomposing ECG signals [3]. In several cases the so called
Malmquist–Takenaka orthogonal systems are generated and used in applica-
tions. There are, however, applications when the result should be expressed
by the original rational functions rather than by the terms of the orthonormed
system generated by them. Then it makes sense to use the corresponding
biorthogonal system. This is the basic motivation behind our construction.

Let us take basic rational functions of the form

(1) ra,n(z) :=
1

(1− az)n
(|a| < 1, |z| ≤ 1, n ∈ P).

(P stands for the set of positive integers.) They form a generating system for
the linear space of rational functions that are analytic on the closed unit disc
D = {z ∈ C : |z| ≤ 1}, where D := {z ∈ C : |z| < 1} stands for the open unit
disc. Indeed, by partial fraction decomposition any analytic function can be
written as a finite linear combination of such functions. a∗ := 1/a = a/|a|2 is
the pole of ra,n the order of which is n. On the basis of the relation a∗a = 1
the parameter a will be called inverse pole.

In our construction we will use the following modified basic functions

(2) φa,n(z) :=
zn−1

(1− az)n
(z ∈ D, a ∈ D, n ∈ P) .

If a �= 0 then this modification makes no difference in the generated subspaces,
i.e.

span{ra,k : 1 ≤ k ≤ n} = span{φa,k : 1 ≤ k ≤ n} (n ∈ P, a �= 0) .

It is easy to see that the transition between the system of basic and the system
of modified basic functions is very simple. We note that, however, if a = 0 then
the two subspaces are different. Indeed, in this special special case we receive
the set of polynomials of order (n− 1) on the right side.

Let the set of rational functions that are analytic on D be denoted by R. It
is actually the set of linear combinations of modified basic functions given in
(2). R will be considered as the normed subspace of the Hardy space H2(D).
Recall that H2(D) is the collection of functions F : D→ C which are analytic
on D, and for which

‖F‖H2 := sup
0≤r<1

⎛⎝ 1

2π

π∫
−π

|F (reit)|2 dt

⎞⎠1/2

<∞

holds. It is known that for any F ∈ H2(D) the limit

F (eit) := lim
r→1−0

F (reit)
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exists for a.e. t ∈ I := [−π, π). The radial limit function defined on the torus
T belongs to L2(T). This way a scalar product can be defined on H2(D) as
follows

〈F,G〉 := 1

2π

π∫
−π

F (eit)G(eit) dt (F,G ∈ H2(T)) .

Then H2(D) becomes a Hilbert space since the norm induced by this scalar
product is equivalent to the original ‖ · ‖H2 norm.

Let b := (bn ∈ D, n ∈ N) be a sequence of inverse poles. Taking the segment
b0, b1, · · · , bn we count how many times the value of bn occurs in that. That
number will be called the multiplicity of bn and denoted by νn. In other words
νn is the number of indices j ≤ n for which bj = bn. Then we introduce the
following subspaces of R and of H2(D) generated by b

Rb
n := span{φbk,νk

: 0 ≤ k < n} (n ∈ P), Rb :=

∞⋃
n=0

Rb
n ⊂ R.

We note that Rb is everywhere dense in the Hilbert space H2(D), i.e. the
system {φbn,mn

: n ∈ N} is closed in H2(D), if and only if ([7], [11])

∞∑
n=0

(1− |bn|) =∞ .

By means of the Cauchy integral formula the scalar product of a function
F ∈ H2(D) and a modified basic function φa,k in (2) can be written in an
explicit form. Indeed, by definition

〈F, φa,k〉 =
1

2π

∫
I

F (eit)e−i(k−1)t

(1− ae−it)k
dt =

1

2πi

∫
|ζ|=1

F (ζ)

(ζ − a)k
dζ =

=
F (k−1)(a)

(k − 1)!
(a ∈ D, k ∈ P) .

(3)

Using this formula one can give an explicit form for the members of the so
called Malmquist–Takenaka (MT) system. The Malmquist–Takenaka system
(Φn, n ∈ N) is generated from (φbk,mk

, k ∈ N) by Gram-Schmidt orthogonal-
ization is of the form [12]:

(4) Φn(z) :=

√
1− |bn|2
1− bnz

n−1∏
k=0

Bbk(z) (z ∈ D, n ∈ N),

where

(5) Bb(z) :=
z − b

1− bz
(z ∈ D, b ∈ D)
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is the Blaschke function of parameter b. The Blaschke functions enjoy several
nice propeties. For instance they are bijections on the disc D and on the torus
T, they define a metric on D as follows

ρ(z1, z2) := |Bz1(z2)| =
|z1 − z2|
|1− z1z2|

(z1, z2 ∈ D) .

Moreover the maps εBb (b ∈ D, ε ∈ T) can be identified with the congruences
in the Poincaré model of the hyperbolic plane.
The orthogonal expansions with respect to Malmquist–Takenaka systems gen-
erated by a sequence of inverse poles turned to be very useful in several appli-
cations. On the other hand there are problems when the expansion in terms
of the generating basic or modified basic functions would be more useful. This
is the case for example in system identification when a partial fraction repre-
sentation of the transfer function is taken, and the poles should be determined
[10]. In such cases a biorthogonal system is needed to deduce such an expan-
sion. In the next section we construct a biorthogonal system to a finite system
of modified basic functions. The elements of the biorthogonal system are in
the subspace generated by the basic functions. In Section 3 we define a set
of points of discretization. By means of that and a proper weight function we
prove a discrete type biorthogonality as well. We note that a similar problem
was addressed in [9] except that equidistant subdivision was taken there and
the members of the biorthogonal system were polynomials.

2. Rational biorthogonal systems

Let b be a sequence of inverse poles in D and fix N ∈ P. Let a0, a1, · · · , an
denote the distinct elements in {b0, . . . , bN−1}. Then mj will stand for the num-
ber of occurrences of aj in {b0, . . . , bN−1}. We will use the simplified notations
φ
j := φa�,j , and RN := Rb

N . Then the following equations hold

RN = span{φ
j : 1 ≤ j ≤ m
, 0 ≤ � ≤ n}
{bk : 0 ≤ k < N} = {aj : 0 ≤ j ≤ n} ,
m0 +m1 + · · ·+mn = N.

In this section we will construct a system {Ψ
j : 1 ≤ j ≤ m
, k, � = 0, 1, . . . , n}
within RN which is biorthogonal to the generating system {φ
j : 1 ≤ j ≤
m
, 0 ≤ � ≤ n}. In notation

i) span{Ψ
j : 1 ≤ j ≤ m
, � = 0, 1, · · · , n} = RN ,

ii) 〈Ψ
j , φki〉 = δijδk
 (1 ≤ i ≤ mk, 1 ≤ j ≤ m
, k, � = 0, 1, · · · , n) .
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Then the operator PN of projection ontoRN can be expressed as a biorthogonal
expansion

PNf =

n∑
k=0

mk∑
i=1

〈f,Ψki〉φki .

In the construction of the explicit form of the biorthogonal system the formula
in (3), that relates biorthogonality with Hermite interpolation, will play a key
role. Using the Blaschke functions defined in (5) we introduce the function Ωn

as follows

(6) Ω
n(z) :=
1

(1− a
z)m�

n∏
i=0,i �=


Bmi
ai

(z) (0 ≤ � ≤ n) .

We will show that the members of the biorthogonal system can be written in
the form

(7) Ψ
j(z) = P
j(z)
Ω
n(z)

Ω
n(a
)
,

where

(8) P
j(z) =

m�−1∑
s=0

P
(s)

j (a
)

s!
(z − a
)

s

is a polynomial of order (m
 − 1).
Indeed, by (3) we have

(9) 〈Ψ
j , φki〉 =
Ψ

(i−1)

j (ak)

(i− 1)!
(1 ≤ i, j ≤ mk) .

It follows from the definition of Ω
n in (6) that if k �= � then ak is a root of the
nominator of Ψ
j of order exactly mk. Therefore the scalar product product is
0, and orthogonality holds in (9) for k �= �. In case k = � biorthogonality is
equivalent to

(10) 〈Ψ
j , φ
i〉 =
Ψ

(i−1)

j (a
)

(i− 1)!
= δij (1 ≤ i, j ≤ m
) .

Set

(11) ω
n(z) =
Ω
n(a
)

Ω
n(z)
.

We note that ω
n is analytic in a proper neighborhood of a
 since Ω
n(a
) �= 0.
By definition, see (7), we have

P
j(z) = Ψ
j(z)ω
n(z) .
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Using the product rule of differentiation and the condition (10) we obtain

P
(s)

j (a
) =

s∑
r=0

(
s

r

)
Ψ

(r)

j (a
)ω

(s−r)

n (a
) =

(
s

j − 1

)
(j − 1)!ω

(s−j+1)

n (a
)

for the coefficients of the polynomial P
j in (8). Hence

(12)
P

(s)

j (a
)

s!
=

⎧⎨⎩
0, (0 ≤ s < j − 1) ;

ω
(s−j+1)

n (a
)

(s− j + 1)!
, (j − 1 ≤ s < m
) .

For the calculation of the derivatives of ω
n we will use the following logarithmic
formula for the Blaschke functions, for definition see (5),

d

dz
log(Ba(z)) =

d

dz
[log(z − a)− log(1− az)]

=
1

z − a
+

a

1− az
=

1

z − a
− 1

z − a∗
(a∗ := 1/a).

(13)

Thus

d

dz
log(Ω
n(z)) =

d

dz
[−m
 log(1− a
z) +

n∑
i=1,i �=


mi log(Bai
(z))] =

= − m


z − a∗

+

n∑
i=1,i �=


(
mi

z − ai
− mi

z − a∗i

)
.

(14)

Since
ω′

n(z)

ω
n(z)
=

d

dz
log(ω
n(z)) = −

d

dz
log(Ω
n(z))

we can conclude by (14) that

(15) ω′

n(z) = ω
n(z)ρ
n(z)

with

ρ
n(z) :=
m


z − a∗

−

n∑
i=1,i �=


mi

(
1

z − ai
− 1

z − a∗i

)
.

This provides a recursion process for the calculation of the derivatives of ω
n.
As an example, the second and third derivatives are shown below:

ω
(2)

n = ω′


n ρ
n + ω
n ρ′
n = ω
n(ρ
2

n + ρ′
n),

ω
(3)

n = ω′


n(ρ
2

n + ρ′
n) + ω
n(2ρ
n ρ′
n + ρ

(2)

n ) = ω
n(ρ

3

n + 3ρ
n ρ′
n + ρ

(2)

n ).
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where the terms ρ
(j)

n (z) are

ρ
(j)

n (z) = (−1)jj!

⎛⎝ m


(z − a∗
 )j+1
−

n∑
i=1,i �=


mi

(
1

(z − ai)j+1
− 1

(z − a∗i )j+1

)⎞⎠ .

In summary, we have proved the following theorem.

Theorem 1. Let Ω
n, and ω
n be defined as in (6), and (11). Then the
systems

φki(z) : =
zi−1

(1− akz)i
,

Ψ
j(z) : =
Ω
n(z)(z − a
)

j−1

Ω
n(a
)

m�−j∑
s=0

ω
(s)

n (a
)

s!
(z − a
)

s

(z ∈ D, 1 ≤ i ≤ mk, 1 ≤ j ≤ m
, 0 ≤ k, � ≤ n) are biorthogonal to each other
with respect to the scalar product in H2(D).
The two systems span the same linear space.
The derivatives of ω
n can be calculated by recursion based on the relation in
(15).

3. Discrete rational biorthogonal systems

In this section we introduce a discrete scalar product in RN as follows

(16) [F,G]N :=
∑
z∈TN

F (z)G(z)ρN (z) (F,G ∈ RN ) ,

where the discrete set TN ⊂ T with number of elements equals to N, and the
positive weight function ρN on it will be defined later.
The Blaschke function Ba admits a representation on the unit circle of the form

(17) Ba(e
it) = eiβa(t) (t ∈ R) ,

where βa : R → R is strictly increasing for which βa(t + 2π) = βa(t) + 2π
holds. Moreover,

(18) β′
a(t) =

1− r2

1− 2r cos(t− α) + r2
(t ∈ R, a = reiα ∈ D) .



102 S. Fridli and F. Schipp

Indeed, let us continue (13) to obtain

d

dz
log(Ba(e

it)) = ieit
(

1

eit − reiα
− 1

eit − 1
r e

iα

)
= i

1− r2

1− 2r cos(t− α) + r2
.

Hence (17) and (18) follow. Then by the definition of {a0, · · · , an} at the
beginning of Section 2 we have that the Blaschke products can be written as

N−1∏
k=0

Bbk(e
it) =

n∏
j=0

eimjβaj
(t) = eiθN (t) (t ∈ R) ,

where

θN (t) :=

n∑
j=0

mjβaj
(t) (t ∈ R) .

θN is strictly increasing and θN (t + 2π) = θN (t) + 2Nπ . Therefore, for any
t0 ∈ I and k = 1, 2, · · · , N − 1 there exists exactly one tk ∈ (t0, t0 + 2π) for
which

(19) θN (tk) = 2πk + θN (t0) (k = 0, 1, · · · , N − 1)

holds.
Then the set of discretization TN and the weight function ρN in (16) are defined
as follows

TN := {eitk : k = 0, 1, · · · , N − 1} , ρN (eit) =
1

θ′N (t)
.

Then the following theorem holds for this discrete model and the rational func-
tions.

Theorem 2. The MT-system Φn (n = 0, 1, · · · , N − 1) is orthonormed
system with respect to the scalar product in (16), i.e.

[Φk,Φ
]N = δk
 (0 ≤ k, � < N) .

The Ψ
j , and φ
j (1 ≤ j ≤ m
, 0 ≤ � ≤ n) systems are biorthogonal to each
other with respect to the scalar product in (16), i.e.

[Ψ
r, φks]N = δk
δrs (1 ≤ r ≤ m
, 1 ≤ s ≤ mk, 0 ≤ k, � ≤ n) .
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Proof. For the proof we will use the following closed form the Dirichlet
kernels of the MT-systems [2] (or see e.g. [6], pp. 320, [4], pp. 82):

(20)
DN (t, τ) :=

N−1∑
j=0

Φj(e
it)Φj(e

iτ ) =
ei(θN (t)−θN (τ)) − 1

ei(t−τ) − 1

(t, τ ∈ R, t �= τ) .

By the definition of tk, see (19), we have

DN (tk, t
) = 0 (k �= �, 0 ≤ k, � < N) .

In the special case t = τ one can deduce from the continuity of the kernel and
from (20) that

DN (t, t) = lim
τ→t

Dn(t, τ) = lim
τ→t

(
eiτ

eiθN (τ)
· e

iθN (t) − eiθN (τ)

t− τ
·
(eit − eiτ

t− τ

)−1
)

=

= θ′N (t) .

This along with (20) imply

N−1∑
j=0

ujkuj
 =
DN (tk, t
)

DN (tk, tk)
= δk
 (0 ≤ k, � < N),

for the matrix

ujk :=
Φj(tk)√
DN (tk, tk)

(0 ≤ k, � < N) .

This means that the matrix is unitarian. Taking the adjoint matrix we have

N−1∑
j=0

ukju
j =

N−1∑
j=0

Φk(tj)Φ
(tj)

DN (tj , tj)
= [Φk,Φ
]N = δk
 (0 ≤ k, � < N) .

The first part of our theorem on the discrete orthogonality of the MT-sytems
is proved.

The proof of the second part of our theorem follows from the equivalence
of the scalar products 〈·, ·〉 and [·, ·]N in the subspace RN :

〈F,G〉 = [F,G]N (F,G ∈ RN ) .

Indeed, if F,G ∈ RN then they can be expressed as linear combinations of the
Φk (k = 0, 1, · · · , N − 1) MT-functions:

F =
N−1∑
k=0

λkΦk, G =

N−1∑
k=0

μkΦk.
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Since, as it has already been shown, the MT-functions are orthonormed with
respect to both scalar products we have

〈F,G〉 =
N−1∑
k=0

N−1∑

=0

λkμ
〈Φk,Φ
〉 =
N−1∑
k=0

λkμk =

=
N−1∑
k=0

N−1∑

=0

λkμ
[Φk,Φ
]N = [F,G]N .

Hence our statement on discrete biorthogonality follows by Theorem 1. �
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