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Abstract. This paper is concerned with the metrical property and fractal
structure of maximal run-length function in an infinite symbolic system:
continued fraction dynamical system. More precisely, let [a1(x), a2(x), . . .]
be the continued fraction expansion of x ∈ [0, 1). Call

Rn(x) := max
i≥1

{
k : aj+1(x) = · · · = aj+k(x) = i, for some 0 ≤ j ≤ n− k

}
the n-th maximal run-length function of x, which represents the longest
run of same symbol in the first n partial quotients of x. We show that

lim
n→∞

Rn(x)

log√5+1
2

n
=

1

2
, a.e. x ∈ [0, 1).

This extends a result of Erdős and Rényi in finite symbolic space. At
the same time, fractal structure of exceptional sets with respect to above
metrical result are also studied.
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1. Introduction

The run-length function was first raised in a teaching experiment in math-
ematics.The experiment goes like this [23]: The students are divided into two
groups in a class and are asked to get a sequence of 1s and 0s with length two
hundreds. In one group, the children obtain the sequence by tossing a cion
and record the resulting heads and tails. In the other group, the children just
write down a sequence as ”random” as they may feel. The result is that one
can easily distinguish the students from one group to another.

This is revealed by the following large number law given by Erdős and Rényi
[5]. Denote by

Zn := max
{
k ≥ 1 : εi+1 = · · · = εi+k = 1, 1 ≤ i ≤ n− k

}
for the longest run of 1 in a Bernoulli trials.

Theorem 1.1. Almost surely,

lim
n→∞

Zn
log2 n

= 1.

See, [23] and reference therein, for a thorough investigation of metrical
properties on above mentioned run-length function, and for the dimensional
result see [20].

Above large number law gives a criterion to discern a random sequence
from a non-random sequence. Similarly, we would like to ask what is a random
real number should be. Essentially, the result of Erdős and Rényi discloses a
property of a random number in dyadic expansion.

In this note, we consider the properties of run-length function in the con-
tinued fraction expansion of real numbers.

Let [a1(x), a2(x), · · · ] be the continued fraction expansion of x ∈ [0, 1). For
any n ≥ 1, define

Rn(x) := max
i≥1

{
k : aj+1 = · · · = aj+k = i, for some 0 ≤ j ≤ n− k

}
and call it the n-th maximal run-length function of x. We show

Theorem 1.2.

lim
n→∞

Rn(x)

log√5+1
2

n
=

1

2
, a.e. x ∈ [0, 1).
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It is obvious that there exist points violating from above law by assuming
on other asymptotic properties on Rn. At the same time, we study the size of
such sets.

Let {δn}∞n=1 be a nondecreasing integer sequence with δn →∞ as n→∞.
Write

E({δn}∞n=1) =
{
x ∈ [0, 1) : lim

n→∞

Rn(x)

δn
= 1
}
.

and

F ({δn}∞n=1) =
{
x ∈ [0, 1) : lim sup

n→∞

Rn(x)

δn
= 1
}
.

Theorem 1.3. Assume lim
n→∞

δn+δn

δn
= 1. Then

dimH E({δn}∞n=1) = 1.

Theorem 1.4. Write lim inf
n→∞

δn
n = α ∈ [0, 1]. The dimension of F ({δn}∞n=1)

is given by the solution to the pressure function

P

(
−s
(

log |T ′|+ α

1− α
log τ(1)

))
= 0,

where T is the Gauss map and P (φ) denotes the pressure function with the
potential φ is defined as

P (φ) = lim
n→∞

1

n
log

∑
y:Tny=x

exp
{
φ(y) + · · ·+ φ(Tn−1y)

}
.

Remark. We will see (Lemma 2.4) that, except a countable set, for all
x ∈ [0, 1),

lim inf
n→∞

Rn+Rn(x)(x)

Rn(x)
= 1.

Hence, the assumption in Theorem 1.3 is reasonable to some extent.

Remark. Theorem 1.4 can also serve as a complementary to Theorem 1.3,
which indicates that there exists {δn}∞n=1 such that dimH E({δn}∞n=1) is not
always 1. More precisely, take x0 ∈ F ({δn}∞n=1). Let δ′n = Rn(x0) and

E({δ′n}∞n=1) =
{
x ∈ [0, 1) : lim

n→∞

Rn(x)

δ′n
= 1
}
.

Then we have x0 ∈ E({δ′n}∞n=1) ⊂ F ({δn}∞n=1). So, we have E({δ′n}∞n=1) 6= ∅
and dimH E({δ′n}∞n=1) 6= 1 whenever dimH F ({δn}∞n=1) does not.
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The investigation on the fractal structure of sets arising in continued frac-
tions can be traced back to Jarnik [14] in 1928, where he studied the set of badly
approximable points, equivalently, the points with bounded partial quotients
in continued fraction expansion. In 1941, Good [10] presented a rather overall
exploration on the Hausdorff dimension of sets of numbers with general restric-
tions on their partial quotients. Within the last twenty years, with the flourish
of the theory of dynamical systems, great importance is attached on continued
fractions once again. Because continued fraction system can be viewed as a
classical dynamical system with infinite iterated branches (see [16, 17, 22] and
reference therein). For other dimensional results on the set arising in continued
fraction, see [4, 7, 8, 12, 13, 19, 27] and reference therein.

It should be also mentioned that, run-length function can also be defined
in other representations of numbers and maybe there will be more interesting
results. For a rich study of the representation of real numbers, we refer to the
monograph of J. Galambos [9].

2. Preliminaries

In this section, we collect some elementary properties shared by contin-
ued fractions and present some initial properties possessed by the run-length
function Rn.

Continued fraction expansion is induced by the Gauss map T : [0, 1)→ [0, 1)
given by

T (0) := 0, T (x) :=
1

x
(mod 1) for x ∈ (0, 1).(2.1)

Then every irrational number x ∈ [0, 1) can be uniquely expanded into an
infinite form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

(2.2)

where a1(x) = [ 1x ] and an(x) = a1(Tn−1(x)) for n ≥ 2 are called the partial
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quotients of x. For any n ≥ 1 and (a1, · · · , an) ∈ Nn, call

I(a1, · · · , an) =



[
pn
qn
,
pn + pn−1
qn + qn−1

)
, when n is even;

(
pn + pn−1
qn + qn−1

,
pn
qn

]
, when n is odd

an n-th order cylinder, where pk, qk, 1 ≤ k ≤ n, are determined by following
recursive relations

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, 1 ≤ k ≤ n(2.3)

with the conventions that p−1 = 1, p0 = 0, q−1 = 0, q0 = 1. It is well known,
see [18], that I(a1, · · · , an) just represents the set of points in [0, 1) which have
a continued fraction expansions begin with a1, · · · , an, i.e.,

I(a1, · · · , an) :=
{
x ∈ [0, 1) : a1(x) = a1, · · · , an(x) = an

}
.

Proposition 2.1. ([18]) For any n ≥ 1 and (a1, · · · , an) ∈ Nn, one has∣∣I(a1, · · · , an)
∣∣ =

1

qn(qn + qn−1)
,(2.4)

where |I(a1, · · · , an)| denotes the length of I(a1, · · · , an).

Proposition 2.2. ([28]) For any n ≥ 1 and 1 ≤ k ≤ n,

1 ≤ qn(a1, · · · , an)

q`(a1, · · · , ak)qn−k(ak+1, · · · , an)
≤ 2.(2.5)

ak + 1

2
≤ qn(a1, a2, · · · , an)

qn−1(a1, · · · , ak−1, ak+1, · · · , an)
≤ ak + 1.

If ak = i, for all 1 ≤ k ≤ n, then

τn(i) ≤ qn(i, · · · , i) =
τn+1(i)− ςn+1(i)

τ(i)− ς(i)
≤ 2τn(i),(2.6)

where τ(i) = i+
√
i2+4
2 and ς(i) = i−

√
i2+4
2 .

For the Gauss map T , it is known that Gauss measure µ given as

dµ =
1

log 2

1

1 + x
dx

is T -invariant and ergodic. Besides this, the following ψ-mixing properties is
quite essential in proving the metrical theory on the run-length function Rn.
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Lemma 2.3. ([1, 15]) For any k ≥ 1, let Bk1 = σ(a1, · · · , ak) and B∞k =
= σ(ak, ak+1 · · · ) denote by the σ-algebras generated by the random variables
a1, · · · , ak, respectively, ak, ak+1, · · · . One has, for any A ∈ Bk1 and B ∈ B∞k+n,

µ(A ∩B) = µ(A)µ(B)(1 + θρn),

with |θ| ≤ K, where K, ρ are positive constants, ρ < 1, independent of A,B, n, k.

For a wealth of classical results about continued fractions, we recommend
the books Khintchine [18], Hardy and Wright [11], Schmidt [24] and Bugeaud
[2]. The books of Billingsley [1], Cornfeld, Fomin and Sinai [3] and Schweiger
[25] contain an excellent introduction to the dynamics of the Gauss transfor-
mations and its connections with Diophantine approximation.

Now we present some feature possessed by the run-length function Rn.
Since Rn(x) depends only on the first n partial quotients, so sometimes we
write Rn(a1, · · · , an) for Rn(x) when necessary.

Write I = [0, 1). Denote by

U(I) = {x ∈ I : an(x) = an+1(x), ultimately}.

It is clear that U(I) is countable.

Lemma 2.4. For any x ∈ I \ U(I), we have

lim inf
n→∞

Rn+Rn(x)(x)

Rn(x)
= 1.

Proof. For any x ∈ I and n ≥ 1, if an(x) 6= an+1(x)

Rn+Rn(x) = max{Rn(a1(x), · · · , an(x)), RRn(an+1(x), · · · , an+Rn(x))}
≤ max{Rn(x), Rn} = Rn.

Thus we have, for any x ∈ I, Rn+Rn = Rn for infinitely many n’s. �

This serves the reason why we assume, in Theorem 1.3, that

lim
n→∞

δn+δn
δn

= 1.

The following is an equivalent condition to the assumption on {δn}∞n=1 in
Theorem 1.3.

Lemma 2.5. Let {δn}∞n=1 be an integer sequence with δn →∞ as n→∞
and lim

n→∞
δn+δn

δn
= 1. Then, for any M > 1, we have

lim
n→∞

δn+Mδn

δn
= 1.
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Proof. For any ε > 0, by the assumption, there exists an integer N such
that for any n ≥ N , δn+δn ≤ (1 + ε)δn. Note that δn is increasing, so, for any
0 ≤ j < M ,

δn+jδn+δn+jδ
≥ δn+(j+1)δ.

As a result, for any 0 ≤ j < M and n ≥ N , we have

δn+(j+1)δ ≤ (1 + ε)δn+jδ.

Therefore, for any n ≥ N ,

δn+Mδn

δn
=

M−1∏
j=0

δn+(j+1)δ

δn+jδ
≤ (1 + ε)M .

This gives the desired result. �

To end this section, we cite two tools to give a bound estimation on the
Hausdorff dimension of a fractal set, namely Hölder properties and Billingsley
Theorem [1, 6, 26].

Lemma 2.6. Let E ∈ Rn. If f : E → Rm is α-Hölder, i.e., there exists
constant c > 0 such that for all x, y ∈ E,

|f(x)− f(y)| ≤ c|x− y|α,

then dimH f(E) ≤ 1
α dimH E.

Lemma 2.7. Let E ⊂ (0, 1] be a Borel set and µ be a measure with µ(E) >
> 0. If for any x ∈ E,

lim inf
r→0

logµ(B(x, r))

log r
≥ s,

where B(x, r) denotes the ball with center x and radius r, then dimHE ≥ s.

3. Metric property on Rn

Proof of Theorem 1.2. We show Theorem 1.2 in this section by following
the ideas presented in [23] Page 71.

(1) We show that for almost all x ∈ [0, 1),

lim sup
n→∞

Rn(x)

logτ(1) n
<

1 + ε

2
, for all ε > 0.
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It suffices to show that

µ

{
x ∈ I : Rn(x) >

[1 + ε

2
logτ(1)n

]
+ 1 := un, i.o.

}
= 0

where µ is the Gauss measure, and i.o. means infinitely often.

Borel-Cantelli Lemma will be applied to present this assertion. So we will
estimate the measure of the set {Rn > un}.

Note that for any x ∈ [0, 1) with Rn(x) = k, there would exist integers i ≥ 1
and 0 ≤ j ≤ n− k such that aj+1(x) = · · · = aj+k(x) = i. Thus,

µ{Rn > un} =

∞∑
k=un+1

µ{Rn = k} ≤

≤
∞∑

k=un+1

∞∑
i=1

n−k∑
j=0

µ{x ∈ I : aj+1(x) = · · · = aj+k(x) = i} =

=

∞∑
k=un+1

∞∑
i=1

n−k∑
j=0

µ{x ∈ I : a1(x) = · · · = ak(x) = i} ≤

≤
∞∑

k=un+1

∞∑
i=1

n

τ2k(i)
≤
∞∑
i=1

∞∫
un

n

τ2x(i)
dx ≤

≤ n

2 logτ(1) n

∞∑
i=1

1

τ2un(i)
.

Choose N0 ∈ N such that N
1+ε

log τ(1)

0 ≥ 2e. For any n ≥ N0,

∞∑
i=1

n

τ2un(i)
≤ 3n

τ2un(1)
+

∞∑
i=4

1

τ2un(i)
≤

≤ 3n

n1+ε
+

∞∑
k=1

∑
ek<i≤ek+1

n

n
1+ε

log τ(1)
k
≤ 3

nε
+

∞∑
k=1

ek+1n

n
1+ε

log τ(1)
k
≤

≤ 3

nε
+

2ne2

n
1+ε

log τ(1)

≤ 3

nε
+

2ne2

n1+ε
≤ 21

nε
.

Thus, choose L > 0 such that Lε > 1, we have

∞∑
m=1

µ {RmL > umL} ≤ N0 +

∞∑
m=1

21

mLε
<∞.

So, for almost all x ∈ [0, 1), RmL ≤ umL ultimately. Thus,

lim sup
n→∞

Rn(x)

un
≤ lim sup

m→∞

R(m+1)L

umL
≤ lim sup

m→∞

u(m+1)L

umL
lim sup
m→∞

R(m+1)L

u(m+1)L
≤ 1.
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So, we get, for almost all x ∈ [0, 1),

lim sup
n→∞

Rn(x)

logτ(1) n
≤ 1

2
.

(2) We show that for almost all x ∈ [0, 1),

lim inf
n→∞

Rn(x)

logτ(1) n
≥ 1− ε

2
,

for any ε > 0.

It suffices to show that

µ

{
x ∈ I : Rn(x) <

[1− ε
2

logτ(1)n

]
− 1 := un, i.o.

}
= 0.

Borel-Cantelli Lemma is used again. We fix some notation at first. Write
Rm,n(x) = Rn−m(am+1, · · · , an) and kn = [ n

u1+ε
n

]. Then

{Rn < un} ⊂ {Riu1+ε
n , iu1+ε

n +un
, 0 ≤ i < kn} =

= {Riu1+ε
n , iu1+ε

n +un
< un, 0 ≤ i < kn − 1} ∩ {R(kn−1)u1+ε

n , (kn−1)u1+ε
n +un

< un}.

Apply Lemma 2.3, we have

µ{Rn < un} ≤

≤ µ
{
Riu1+ε

n , iu1+ε
n +un

< un, 0 ≤ i < kn − 1
}
µ
{
Run < un

}
(1 + θρu

1+ε
n −un) ≤

≤
(
µ{Run < un}

)kn
(1 + θρu

1+ε
n −un)kn =

=

(
1−

∞∑
i=1

µ(Iun(i, · · · , i))

)kn
(1 + θρu

1+ε
n −un)kn ≤

≤ e−knµ(Iun (1,··· ,1))eknθρ
u1+εn −un ≤ e

− 1
8

1
τ2un (1)

n

u
1+ε
n enθρ

u1+εn −un
=

= e
− 1

8
nε

u
1+ε
n enθρ

u1+εn −un ≤Me
− 1

8
nε

u
1+ε
n ,

where the last assertion follows from nθρu
1+ε
n −un → 0 as n→∞.

So,
∞∑
n=1

µ {Rn < un} ≤
∞∑
n=1

Me
− 1

8
nε

u
1+ε
n <∞.

Thus, we have, for almost all x ∈ [0, 1),

lim inf
n→∞

Rn(x)

logτ(1) n
≥ 1

2
.

This finishes the proof. �
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4. Dimensional results on run-length function

4.1. Proof of Theorem 1.3

We cite a lemma in [10] at first.

Lemma 4.1. Let {Cn, n ≥ 1} be a sequence of sets of positive integers. Let

C = {x ∈ I : an(x) ∈ Cn, for all n ≥ 1}.

Then dimH(C ∩ I(b1, · · · , bn)) = dimH C provided bk ∈ Ck for all 1 ≤ k ≤ n.

This lemma indicates that any finite change on the restrictions on the partial
quotients will not change the dimension. Recall that

E({δn}∞n=1) =
{
x ∈ [0, 1) : lim

n→∞

Rn(x)

δn
= 1
}
.

Since δn →∞ as n→∞, we assume δn ≥ 4 for all n ≥ 1.

Proof of Theorem 1.3. Fix M ∈ N. Define an integer sequence recursively
by setting

N0 = 0, δN0 = δ1, Nk+1 = Nk + (M + 1)δNk , for k ≥ 0.

For any B ≥ 2, define a subset EMB ({δn}∞n=1) of E({δn}∞n=1) as follows.

EMB ({δn}∞n=1) =

{
x ∈ I : (aNk+MδNk+4(x), . . . , aNk+1

(x)) = (1, . . . , 1),

(
aNk+iδNk+j(x)

)3
j=1

= (2, 1, 2), k ≥ 0, 1 ≤ i ≤M ;

1 ≤ an(x) ≤ B, for all other n ≥ 1

}
.

By Lemma 2.5, it is direct to check that

EMB ({δn}∞n=1) ⊂ E({δn}∞n=1).

In the sequel, we estimate the dimension of EMB ({δn}∞n=1).

For any k ≥ 0, write Ck = 3km+ δN0
+ δN1

+ · · ·+ δNk−1
. Lemma 2.5 also

implies

lim
k→∞

δNk
Nk

= 0, and lim
k→∞

Ck
Nk − Ck

=
1

M
.
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So, for any ε > 0, we can choose k0 large such that for any k ≥ k0,

δNk ≤
Nk − 1

2
ε, and

Ck
Nk − Ck − 1

<
2

M
.(4.1)

Take x0 ∈ EMB ({δn}∞n=1), write

EMB

(
{δn}∞n=1, x0, k0

)
= EMB

(
{δn}∞n=1

)
∩ I(a1(x0), . . . , aNk0 (x0)).

Define
fε : EMB ({δn}∞n=1, x0, k0)→ fε

(
EMB ({δn}∞n=1, x0, k0)

)
,

x = [a1, a2, · · · ]→ y = [b1, b2, · · · ],

where the sequence (b1, b2, · · · ) is obtained by eliminating the terms

Nk + iδNk + 1, Nk + iδNk + 2, Nk + iδNk + 3, and Nk +MδNk + 4, . . . , Nk+1

for all 0 ≤ i ≤M and k ≥ 1 in the sequence (a1, a2, · · · ).
Denote by

EB = {x ∈ I : 1 ≤ an(x) ≤ B, for all n ≥ 1}.

By Lemma 4.1, it follows directly that

dimH fε

(
EMB ({δn}∞n=1, x0, k0)

)
= dimH EB .

Write

α1 = 1 + ε(M + 1) log2(B + 1), α2 =
(
1 + 4M−1

)
log2(B + 1).

In the following we will check that fε is 1
α1α2

-Hölder, which will give, by
Lemma 2.7, that

(4.2) dimH E
M
B ({δn}∞n=1) ≥ 1

α1α2
dimH EB .

For any x1, x2 ∈ EMB ({δn}∞n=1), let y1 = fε(x1), y2 = fε(x2). Let n be the
smallest integer such that an+1(x1) 6= an+1(x2) and Nk ≤ n < Nk+1 with some
k ≥ k0. By the definition of fε, we know that

bj(y1) = bj(y2), 1 ≤ j ≤ Nk − Ck.

Since

xi ∈ I(a1(xi), . . . , an+1(xi), an+2(xi)) ⊂
⋃

1≤an+2≤B

I(a1(xi), . . . , an+1(xi), an+2)
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the difference of x1 and x2 is larger than the gap between⋃
1≤an+2≤B

I(a1(xi), · · · , an+1(xi), an+2), i = 1, 2.

Assume that x1 > x2, then

|x1 − x2| ≥
∣∣∣∣ (B + 1)pn+1(x1) + pn(x1)

(B + 1)qn+1(x1) + qn(x1)
− pn+1(x1)

qn+1(x1)

∣∣∣∣ ≥ 1

2(B + 1)q2Nk+1
(x1)

.

By Proposition 2.2, we have

qNk+1
(x1) ≤ (B + 1)(M+1)δNk qNk(x1) ≤ qαNk(x1)

qNk(x1) ≤ (B + 1)CkqNk−Ck(y1) ≤ qα2

Nk−Ck(y1).

So, we get

|x1 − x2| ≥
1

2(B + 1)

( 1

q2Nk−Ck

)α1α2

≥ 1

2(B + 1)

∣∣y1 − y2∣∣α1α2
,

this gives the assertion (4.2). Thus,

dimH E({δn}∞n=1) ≥ 1

α1α2
dimH EB .

Letting ε→ 0, then M →∞ and finally B →∞, we get

dimH E({δn}∞n=1) ≥ 1.

�

4.2. Proof of Theorem 1.4

We first define a sequence of real numbers so-called pre-dimensional number
as done in [27]. Let A ⊆ N be a finite or infinite subset. For any n ≥ 1,
0 < α < 1 and ρ ≥ 0, define

fn(ρ) =
∑

a1,··· ,an(1−α)∈A

(
1

qn(a1, · · · , an(1−α), 1, · · · , 1)

)2ρ

.

It is easy to see that fn(·) is decreasing. By Proposition 2.1, we have fn(ρ) < 1
when ρ is large enough, define

sn(A, α) = inf{ρ ≥ 0 : fn(ρ) ≤ 1}.
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Remark. If A ⊆ N is finite, we have fn(sn(A, α)) = 1, that is∑
a1,··· ,an∈A

1

q
2sn(A,α)
n (a1, · · · , an(1−α), 1, · · · , 1)

= 1.

If A ⊆ N is infinite, we have fn(sn(A)) ≤ 1, that is∑
a1,··· ,an∈A

1

q
2sn(A,α)
n (a1, · · · , an(1−α), 1, · · · , 1)

≤ 1.

Proposition 4.2. lim
n→∞

sn(A, α) exists.

Write lim
n→∞

sn(A, α) = s(A, α). From Proposition 2.1 and the definition of

sn(A, α), we have 0 ≤ s(A, α) ≤ 1. For any B ∈ N, take AB = {1, 2, · · · , B}.
For simplicity, write sn(B,α) for sn(AB, α), s(B,α) for s(AB, α), sn(α) for
sn(N, α) and s(α) for s(N, α).

Proposition 4.3. lim
B→∞

s(B,α) = s(α).

Now we list some properties shared by s(α), which will be used late.

Proposition 4.4. For any 0 < α < 1, s(α) > 1
2 . s(α) is non-decreasing

and continuous with respect to α. Moreover,

lim
α→0

s(α) =
1

2
and lim

α→1
s(α) = 1.

We remark that the original idea for the proof of above propositions is coming
from I. J. Good [10], and a detailed establishment of Good’s idea is presented
in [27], where a similar function is discussed. From a point of view of dynamical
system, s(α) can be also given as the solution to the pressure function

P

(
−s
(

log |T ′|+ α

1− α
log τ(1)

))
= 0,

where the pressure function P (φ) with the potential φ is defined as

P (φ) = lim
n→∞

1

n
log

∑
y:Tny=x

exp
{
φ(y) + · · ·+ φ(Tn−1y)

}
.

In such a way, the convergence of Proposition 4.3 comes from a result by
Mauldin and Ubránski [21].
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At last, we extend the definition of s(α) on (0, 1) to [0, 1] by :

S(α) =

 1, α = 0;
s(α), 0 < α < 1;
1
2 , α = 1.

We first study the dimension of

F (α) =

{
x ∈ I : lim sup

n→∞

Rn(x)

n
= α

}
, 0 ≤ α ≤ 1,

and then extend it to the general set F ({δn}∞n=1).

When α = 0, there is nothing to prove, since F (α) is a full set. So we only
care for the case 0 < α ≤ 1. We give the upper bound estimation first.

Lemma 4.5. For any 0 < α ≤ 1, we have dimH F (α) ≤ S(α).

Proof. Note that for any 0 < β < α,

F (α) ⊂ {x ∈ I : Rn(x) > βn, i.o.} =

∞⋂
m=1

∞⋃
n=m

{x ∈ I : Rn(x) > βn}.

Moreover,

{x ∈ I : Rn(x) > βn} ⊂
∞⋃
i=1

⋃
0≤j<n−βn

{x ∈ I : aj+1(x) = · · · = aj+βn(x) = i} ⊂

⊂
∞⋃
i=1

⋃
0≤j<n−βn

⋃
a1,··· ,aj ,aj+βn+1,··· ,an

I(a1, · · · , aj , i, · · · , i, aj+βn+1, · · · , an).

By Proposition 2.2, the following geometry structurer will used frequently.

1

8
≤ |I(a1, · · · , aj , i, · · · , i, aj+βn+1, · · · , an)|
|I(a1, · · · , aj , aj+βn+1, · · · , an, i, · · · , i)|

≤ 8.

For any s > S(β) > 1
2 , let ε = s−S(β)

2 . There exists n0 ≥ 2 such that for all

n ≥ n0, s > sn + ε and 2
n−1
2 ε > 32n. So,
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Hs(Fα) ≤ lim inf
m→∞

∞∑
n=m

∞∑
i=1

∑
0≤j<n−βn

∑
b1,··· ,bn−βn

8|I(b1, · · · , bn−βn, i, · · · , i|s ≤

≤ lim inf
m→∞

∞∑
n=m

∞∑
i=1

∑
b1,··· ,bn−βn

8n

(
1

qn(b1, · · · , bn−βn, i, · · · , i)

)2s

≤

≤ lim inf
m→∞

∞∑
n=m

∞∑
i=1

∑
b1,··· ,bn−βn

32n

(
1

qn(b1, · · · , bn−βn, 1, · · · , 1)

)2s

×

×
(
qnβ(1, · · · , 1)

qnβ(i, · · · , i)

)2s

≤

≤ lim inf
m→∞

∞∑
n=m

∞∑
i=1

(
qnβ(1, · · · , 1)

qnβ(i, · · · , i)

)2s

≤ lim inf
m→∞

∞∑
n=m

∞∑
i=1

qnβ(1, · · · , 1)

qnβ(i, · · · , i)
≤

≤ 3 + lim inf
m→∞

∞∑
n=m

∞∑
i=4

(
2

τ(i)

)n
<∞.

Thus, we get dimH F (α) ≤ S(β). Letting β → α, we have

dimH F (α) ≤ S(α).

�

For the lower bound, we will distinguish two cases according as α = 1 or
not.

Lemma 4.6. dimH F (1) ≥ 1
2 .

Proof. For any k ≥ 1, let Nk = k!, Bk = 2
√
Nk and Mk = Nk+1

logNk
. Set

F =

{
x ∈ I : an(x)

{
∈ [1, Bk], Nk < n ≤ Nk +Mk;
= 1, otherwise.

}
.

It is easy to see that F ⊂ F (α). First, we define a sequence of pre-dimensional
numbers {sk, k ≥ 1}: let sk be the real solution to the equation

∑
1≤a1,··· ,aMk≤Bk

(
1

qNk+1−Nk(a1, · · · , aMk
, 1, · · · , 1)

)2s

= 1.(4.3)

Let s = lim infk→∞ sk. We claim that s = 1
2 .

(i) It is evident that limk→∞
logBk
logNk

= 0. So for any ε > 0, we can choose k0

such that for all k ≥ k0, Bεk − 2ε > B
1
2 ε

k and 1
4B

1
2 εMk

k ≥ 2Nk+1 .
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Replace s in (4.3) by 1−ε
2 , we have∑

1≤a1,··· ,aMk≤Bk

(
1

qNk+1−Nk(a1, · · · , aMk
, 1, · · · , 1)

)1−ε

≥

≥ 1

4

∑
1≤a1,··· ,aMk≤Bk

(
1

qMk
(a1, · · · , aMk

)

)1−ε
1

qNk+1−Nk−Mk
(1, · · · , 1)

≥

≥ 1

4

(
Bk∑
i=1

1

(i+ 1)1−ε

)Mk

1

2Nk+1
≥ 1

4
(Bεk − 2ε)Mk

1

2Nk+1
≥ 1.

So, for all k ≥ k0, sk ≥ 1−ε
2 . Thus s ≥ 1

2 .

(ii) For any ε > 0, choose k0 large such that for all k ≥ k0, (1 + 1
ε )Mk <

< τ(1)Nk+1−Nk−Mk . Replace s in (4.3) by 1+ε
2 , we have∑

1≤a1,··· ,aMk≤Bk

(
1

qNk+1−Nk(a1, · · · , aMk
, 1, · · · , 1)

)1+ε

≤

≤
∑

1≤a1,··· ,aMk≤Bk

(
1

qMk
(a1, · · · , aMk

)

)1+ε
1

qNk+1−Nk−Mk
(1, · · · , 1)

≤

≤

( ∞∑
i=1

1

(i)1+ε

)Mk (
1

τ(1)

)Nk+1−Nk−Mk

≤

≤ (1 +
1

ε
)Mk

(
1

τ(1)

)Nk+1−Nk−Mk

≤ 1.

So, s ≤ 1
2 . This proves the claim.

For any n ≥ 1, set

Dn =

{
(a1, · · · , an) ∈ Nn : ai(x)

{
∈ [1, Bk], Nk < i ≤ Nk +Mk;
= 1, otherwise.

}
.

For any (a1, · · · , an) ∈ Dn, we call I(a1, · · · , an) is an n-th order admissible
interval (with respect to F ). Then it is evident that

F =

∞⋂
n=1

⋃
(a1,··· ,an)∈Dn

I(a1, · · · , an).

Now we define a probability measure µ supported on F . Since ]D1 = 1, we set
µ(I(1)) = 1. For any (a1, · · · aN2

) ∈ DN2
, let

µ
(
I(a1, · · · aN2)

)
=

(
1

qN2−N1
(a2, · · · , σN2

)

)s1
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and for any N1 < n < N2 and (σ1, · · ·σn) ∈ Dn, let

µ
(
I(a1, · · · , an)

)
=

∑
an+1,··· ,aN2

µ
(
I(a1, · · · , an, aN2

)
).

where the summation is taken over all (an+1, · · · , aN2
) such that (a1, · · · , aN2

) ∈
∈ DN2 . Suppose for some k ≥ 2, µ

(
I(a1, · · · , aNk)

)
has been defined for any

(a1, · · · , aNk) ∈ DNk . For any (a1, · · · , aNk+1
) ∈ DNk+1

, set

µ
(
I(σ1, · · · , σNk+1

)
)

=

(
1

qNk+1−Nk(aNk+1, · · · , aNk+1
)

)sk
µ
(
I(a1, · · · aNk)

)
,

and for any Nk < n < Nk+1 and (a1, · · · an) ∈ Dn, let

µ
(
I(a1, · · · , an)

)
=

∑
an+1,··· ,aNk+1

µ
(
I(a1, · · · , an, an+1, · · · , aNk+1

)
)
,

where the summation is over all (an+1, · · · , aNk+1
) with (a1, · · · , aNk+1

) ∈
∈ DNk+1

.

Until now, the set function µ : {I(a), a ∈ D\D0} → R+ is well defined. By
definition of sk, it is easy to check that for any n ≥ 1 and (a1, · · · , an) ∈ Dn,
we have

µ
(
I(a1, · · · , an)

)
=
∑
an+1

µ
(
I(a1, · · · , an+1)

)
,

where the summation is taken over all an+1 such that (a1, · · · , an, an+1) ∈
∈ Dn+1. Notice that ∑

a1∈D1

µ
(
J(a1)

)
= 1,

by Kolmogorov extension theorem, the set function µ can be extended into a
probability measure supported on F , which is still denoted by µ. From the
definition of µ, we have for any k ≥ 1 and (a1, · · · , aNk) ∈ DNk

µ
(
I(a1, · · · , aNk)

)
=

k−1∏
j=0

(
1

qNj+1−Nj (aNj+1, · · · , aNj+1)

)sj
.(4.4)

In order to apply the mass distribution principle to give a lower bound
estimation of dimH F , we will estimate the measure of arbitrary balls. We
estimate the measure of admissible intervals first.

For any ε > 0, there exists k0 such that for all k ≥ k0,

sk > s− ε, 22k ≤ 2
Nk−1

2 ε, 2k+32Mk ≤ 2(Nk−1)ε.
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Denote

c0 = 22k0+4(Bk0 + 1)Nk0+2 ≥

≥ max
{
q2Nk0+2(a1, . . . , aNk0+2) : (a1, . . . , aNk0 ∈ Dk0+2)

}
.

Then for any k ≥ k0 and (a1, . . . , aNk) ∈ DNk ,

µ
(
I(a1, . . . , aNk)

)
≤ c0

k−1∏
j=0

(
1

qNj+1−Nj (aNj+1, . . . , aNj+1)

)s−ε
≤

≤ c022k

(
1

q2Nk

)s−ε
≤ c0

(
1

q2Nk

)s−2ε
≤(4.5)

≤ 2c0|I(a1, . . . , aNk)|s−2ε.

When Nk < n < Nk+1 for some k ≥ k0 and (a1, . . . , an) ∈ Dn, we divide it
into two cases.

(i) Nk < n ≤ Nk + Mk for some k ≥ k0. By the definition µ and similar
estimation as (4.4), we have

µ(I(a1, . . . , an)) ≤

≤ c02k+1

(
1

q2n

)s−ε ∑
an+1,...,aNk+Mk

(
1

q2NK+1−n(an+1, . . . , aNk+Mk
, 1, . . . , 1)

)sk
.

Note that

1 =

=
∑

bNk+1,...,bn,
an+1,aNk+Mk

(
1

q2Nk+1−Nk(bNk+1, . . . , bn, an+1, . . . , aNk+Mk
, 1, . . . , 1)

)sk
≥

≥ 1

4

∑
bNk+1,...,bn

(
1

q2n−Nk(bNk+1, . . . , bn)

)sk
×

×
∑

an+1,...,aNk+Mk

(
1

q2Nk+1−n(an+1, . . . , aNk+Mk
, 1, . . . , 1)

)sk
≥

≥ 1

4

1

qn−Nk(1, . . . , 1)

∑
an+1,...,aNk+Mk

(
1

q2Nk+1−n(an+1, . . . , aNk+Mk
, 1, . . . , 1)

)sk
.

So, we have

µ(I(a1, . . . , an)) ≤ c02k+1

(
1

q2n

)s−ε
2n−Nk+2 ≤ c0

(
1

q2n

)s−2ε
.(4.6)



Maximal run-length in continued fractions 265

(ii) Nk +Mk < n < Nk+1. This case is simple, because for any (a1, . . . , an) ∈
∈ Dn

µ(I(a1, . . . , an)) = µ(I(a1, . . . , aNk+1
)).

So, by (4.5), for any (a1, . . . , an) ∈ Dn, it holds trivially that

µ(I(a1, . . . , an)) ≤ 2c0|I(a1, . . . , an)|s−2ε.(4.7)

Now we estimate the measure B(x, r) with x as center and r the radius. Let
r0 = 1

c0
. For any x ∈ F , there exist a1, a2, . . . such that x ∈ I(a1, . . . , an) and

(a1, . . . , an) ∈ Dn for all n ≥ 1. For any 0 < r < r0, there exist n ≥ Nk0 + 2
such that

I(a1, . . . , an, an+1) ≤ r < I(a1, . . . , an).

So, I(a1, . . . , an+1) ⊂ B(x, r) ⊂ I(a1, . . . , an−2). Thus, by (4.5) (4.6) and (4.7),
we have

µ(B(x, r)) ≤ µ(I(a1, . . . , an−2)) ≤ 2c0

(
1

q2n−2

)s−2ε
.

Then it is routine to check that q1+εn−2 ≥ qn+1. So we have

µ(B(x, r)) ≤ 2c0

(
1

q2n+1

)s−3ε
≤ 4c0r

s−3ε.

As a consequence, we get dimH F ≥ s. �

Lemma 4.7. For any 0 < α < 1, dimH F (α) ≥ S(α).

Proof. Given a sequence {Nk, k ≥ 1} with Nk << Nk+1. Write

Nk+1 =
α(Nk −Nk−1)`k

1− α
+Nk,Mk = α(Nk −Nk−1).

Define

F (α,B) =

= {x ∈ I : 1 ≤ an(x) ≤ B, aNk+1−Mk+1+1 = . . . = aNk+1
= 1,∀k ≥ 1, n ≥ 1}.

For any x ∈ F (α,B), we will construct an element x′ ∈ F (α): Insert the digit
string (2, 1, 2) after each position Nk+iMk, 0 ≤ i ≤ `k in the continued fraction
expansion of x. Denote by F ′(α,B) the collection of all elements got in this
way.

With a similar method established in Theorem 1.3, we can show that

dimH F
′(α,B) = dimH F (α,B).
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So, we only need to show

dimH F (α,B) ≥ S(α,B).

The proof is almost the same as given in [27], where we studied the dimension
of the set {

x ∈ I : an(x) ≥ φ(n), i.o. n ∈ N
}
.

So we refer to it with no details. �

Proof of Theorem 1.4. It is a consequence from the proof of Lemma

4.7 by choosing the sequence Nk such that limk→∞
δNk
Nk

= α. �

Also it can be checked with the same idea that

dimH{x ∈ I : Rn(x) ≥ δn, i.o. n ∈ N} = S(α),

where α = lim infn→∞
δn
n ∈ [0, 1].
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