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Abstract. This paper is concerned with the metrical property and fractal
structure of maximal run-length function in an infinite symbolic system:
continued fraction dynamical system. More precisely, let [a1(z), az2(z),. . ]
be the continued fraction expansion of € [0, 1). Call

Ry () := max {k:ajs1(z) = =ajsr(x) =i, for some 0 <j <n—k}

the n-th maximal run-length function of x, which represents the longest
run of same symbol in the first n partial quotients of x. We show that
R, (z)

1
lim ———— = -, ae.z€]0,1).
n—oo log 544 10
2

This extends a result of Erdés and Rényi in finite symbolic space. At
the same time, fractal structure of exceptional sets with respect to above
metrical result are also studied.
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1. Introduction

The run-length function was first raised in a teaching experiment in math-
ematics. The experiment goes like this [23]: The students are divided into two
groups in a class and are asked to get a sequence of 1s and Os with length two
hundreds. In one group, the children obtain the sequence by tossing a cion
and record the resulting heads and tails. In the other group, the children just
write down a sequence as "random” as they may feel. The result is that one
can easily distinguish the students from one group to another.

This is revealed by the following large number law given by Erdés and Rényi
[5]. Denote by

Zn ::max{kz 1:€41 :~--:ei+k:1,1§i§n—k}
for the longest run of 1 in a Bernoulli trials.
Theorem 1.1. Almost surely,

lim =1
n—oo logy N

See, [23] and reference therein, for a thorough investigation of metrical
properties on above mentioned run-length function, and for the dimensional
result see [20].

Above large number law gives a criterion to discern a random sequence
from a non-random sequence. Similarly, we would like to ask what is a random
real number should be. Essentially, the result of Erdés and Rényi discloses a
property of a random number in dyadic expansion.

In this note, we consider the properties of run-length function in the con-
tinued fraction expansion of real numbers.

Let [a1(x), a2(z),- - -] be the continued fraction expansion of z € [0,1). For
any n > 1, define

Ry(z) :=max {k:aj41 =+ = aj4 =i, for some 0 < j <n—k}
i>1
and call it the n-th maximal run-length function of z. We show

Theorem 1.2.

R, 1
lim @) =—, ae x€][0,1).
n—oo log 5.1 1

2
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It is obvious that there exist points violating from above law by assuming
on other asymptotic properties on R,. At the same time, we study the size of
such sets.

Let {6,}52; be a nondecreasing integer sequence with d,, — oo as n — oo.
Write

E({6,}22,) = {x c[0,1): lim &) _ 1}.

n—oo Oy

and

F({6,)22,) = {x € [0,1) : limsup 2% _ 1}.

n—oo 571

Theorem 1.3. Assume lim %ﬂ =1. Then
n—o0

n

dimp E({n}721) = 1.

Theorem 1.4. Writeliminf 2= = o € [0,1]. The dimension of F({6,}3%,)

n—oo
is given by the solution to the pressure function

(67

P (—s(log |T'| + T a

10g7'(1))) =0,
where T is the Gauss map and P(p) denotes the pressure function with the
potential ¢ is defined as

P(@)=lm log Y exp{o(y) 4+ 6Ty}
y:Tny=x

Remark. We will see (Lemma 2.4) that, except a countable set, for all
z €10,1),

Rn xT
lim inf Tt Ra @) )(z)

= 1.
n—00 Rn(x)

Hence, the assumption in Theorem 1.3 is reasonable to some extent.

Remark. Theorem 1.4 can also serve as a complementary to Theorem 1.3,
which indicates that there exists {0,}22; such that dimgy E({5,}5,) is not
always 1. More precisely, take zo € F({0,}22,). Let ], = R, (x) and

B({5l))) = {x €[0,1): lim R’;i‘””) = 1}.

n— 00

Then we have xg € E({d/,}52,) C F({6,}22,). So, we have E({8/,}22,) # 0
and dimy E ({0,152 ) # 1 whenever dimy F({0,}52 ) does not.
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The investigation on the fractal structure of sets arising in continued frac-
tions can be traced back to Jarnik [14] in 1928, where he studied the set of badly
approximable points, equivalently, the points with bounded partial quotients
in continued fraction expansion. In 1941, Good [10] presented a rather overall
exploration on the Hausdorff dimension of sets of numbers with general restric-
tions on their partial quotients. Within the last twenty years, with the flourish
of the theory of dynamical systems, great importance is attached on continued
fractions once again. Because continued fraction system can be viewed as a
classical dynamical system with infinite iterated branches (see [16, 17, 22] and
reference therein). For other dimensional results on the set arising in continued
fraction, see [4, 7, 8, 12, 13, 19, 27] and reference therein.

It should be also mentioned that, run-length function can also be defined
in other representations of numbers and maybe there will be more interesting
results. For a rich study of the representation of real numbers, we refer to the
monograph of J. Galambos [9].

2. Preliminaries

In this section, we collect some elementary properties shared by contin-
ued fractions and present some initial properties possessed by the run-length
function R,,.

Continued fraction expansion is induced by the Gauss map 7' : [0,1) — [0, 1)
given by

(2.1) T(0):=0, T(z):=~ (mod 1) for z € (0,1).

SHE

Then every irrational number = € [0,1) can be uniquely expanded into an
infinite form

(2.2) x =

where a1(z) = [2] and an(z) = a1 (T""*(2)) for n > 2 are called the partial
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quotients of z. For any n > 1 and (aq,--- ,a,) € N, call
{pn Pn +pn_1> . _
—,———— ), when nis even;
Gn qn + Gn-1
I(Cl,l,"' 7an) =
(pn + Pt , pn} , when nis odd
Gn + qn-1" qn

an n-th order cylinder, where pr, qx, 1 < k < n, are determined by following
recursive relations

(2.3) Dk = QkPk—1 + Dk—2, Qk = OkQk—1 + qr—2, 1 <k <n

with the conventions that p_1 = 1,p9 =0, ¢q_1 = 0,90 = 1. It is well known,
see [18], that I(ay,- - ,ay) just represents the set of points in [0, 1) which have
a continued fraction expansions begin with ay,--- ,an,, i.e.,

(a1, -+ ,a,) :={z €[0,1) 1 a1(x) = ay, - ,an(z) = an}.

Proposition 2.1. ([18]) For any n > 1 and (a1, - ,a,) € N, one has

1

2.4 I(ai, - ,ap)| = ——
( ) | (al “ )| qn(qn+qn—1)

where |I(a1, - ,an)| denotes the length of I(ay, - ,an).

Proposition 2.2. ([28]) For anyn >1 and 1 <k <n,

(2.5) 1< 4n(@1, ", an) <2
(Jz(a1,"' 7ak)ank(ak+17"’ ,an)
(lk—‘r—]_ S qn(a1;a2a"'7an) Sak+1~
2 qn—l(aflv"' y Ale—1, Q415" " 70/71)
If ap, =1, for all1 < k <mn, then
PG — )
2.6 (1) < guliy- - i) = : . < 27"(i),
(26) () < auliv- i) = 5= (i)
where 7(i) = @ and (i) = =YL

For the Gauss map T, it is known that Gauss measure p given as

1 1 d
~log21+x o

dp

is T-invariant and ergodic. Besides this, the following ¥-mixing properties is
quite essential in proving the metrical theory on the run-length function R,,.
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Lemma 2.3. ([1, 15]) For any k > 1, let BY = o(a1,--- ,ax) and B =
= o(ak,axt1---) denote by the o-algebras generated by the random variables
ai,--- ,ay, respectively, ag,apy1,---. One has, for any A € BY and B € B .

H(AN B) = p(A)yu(B)(1+6p"),
with |0] < K, where K, p are positive constants, p < 1, independent of A, B, n, k.

For a wealth of classical results about continued fractions, we recommend
the books Khintchine [18], Hardy and Wright [11], Schmidt [24] and Bugeaud
[2]. The books of Billingsley [1], Cornfeld, Fomin and Sinai [3] and Schweiger
[25] contain an excellent introduction to the dynamics of the Gauss transfor-
mations and its connections with Diophantine approximation.

Now we present some feature possessed by the run-length function R,.
Since R, (z) depends only on the first n partial quotients, so sometimes we
write Ry(a1,--- ,an) for R,(z) when necessary.

Write I = [0,1). Denote by
UlI)={zel:ay(z)=ani1(x), ultimately}.
It is clear that U(I) is countable.
Lemma 2.4. For any x € I\ U(I), we have

R .
lim inf —fn @17 (z)

=1
n—»00 R, (x)

Proof. For any x € T and n > 1, if a,(x) # ant1(2)

Rnir,(z) = max{Ry(ai(2),--an(2)); Br,(ans1(2), - anyr, (2))}
< max{R,(z),Rn} = R,.

Thus we have, for any x € I, R,+r, = R, for infinitely many n’s. ]

This serves the reason why we assume, in Theorem 1.3, that

lim On o,

n—oo O

=1

The following is an equivalent condition to the assumption on {6, }5%; in
Theorem 1.3.

Lemma 2.5. Let {§,}52, be an integer sequence with 6, — 0o as n — 0o

and lim % = 1. Then, for any M > 1, we have
n—oo n

lim 75"+M6”

n—oo

=1.

n
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Proof. For any € > 0, by the assumption, there exists an integer N such
that for any n > N, 0,45, < (14 €)d,. Note that §, is increasing, so, for any
Ot jon+6msss = Ont(j+1)s-

As a result, for any 0 < j < M and n > N, we have
5n+(j+1)6 < (1 + 6)6n+j5~

Therefore, for any n > N,

5 ML
n+Mé,, _ H n+(j3+1)8

<(1+ e)M .
on j=0 6n+j6
This gives the desired result. ]

To end this section, we cite two tools to give a bound estimation on the
Hausdorff dimension of a fractal set, namely Holder properties and Billingsley
Theorem [1, 6, 26].

Lemma 2.6. Let E ¢ R™. If f : E — R™ is a-Hélder, i.e., there exists
constant ¢ > 0 such that for all z,y € E,

|f(z) = f(y)] < clz—yl%,

then dimpg f(F) < = dimpg E.

1
«a

Lemma 2.7. Let E C (0,1] be a Borel set and u be a measure with p1(E) >
> 0. If for any x € E,

lim jnf 208 HB@ 1))

=0 logr ’

where B(x,r) denotes the ball with center x and radius r, then dimyg E > s.
3. Metric property on R,

Proof of Theorem 1.2. We show Theorem 1.2 in this section by following
the ideas presented in [23] Page 71.

(1) We show that for almost all z € [0, 1),

) R, (x) 1+e€
lim sup <
n—o00 logT(l) n 2

, for all € > 0.
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It suffices to show that
1
1 {x €l:Ry(z) > jlogr(l)n] +1:= un,i.o.} =0

where p is the Gauss measure, and i.0. means infinitely often.

Borel-Cantelli Lemma will be applied to present this assertion. So we will
estimate the measure of the set {R,, > u,}.

Note that for any « € [0,1) with R, (z) = k, there would exist integers i > 1

and 0 < j <n — k such that a;11(x) =+ = a;4x(x) = 4. Thus,
p{Rn > un} = Z p{Rn =k} <
k=un+1
oo n—k
< Z DY mfweT:aja(e) = - =ajn(x) =i} =
k=u,+1 i=1 j=0
oo n—k
= Z ZZu{xEI ar(z) = =ap(z) =i} <
k=u,+1 i=1 j=0
<Y > Z/T
=1

k=u,+1 i=1

o0

n 1
2log, (1) n ; 72n (7))

1+e€
Choose Ny € N such that N, ™" > 2e. For any n > Ny,

i n < 3n n = 1 <
2Un (5 — 2Up, Z 2Un () —
2 () S () T ()
n 3 = eftip
S S SED S T R
k=1ek<i<ekt+1 ntes () k=1 nlosTM
< 3 n 2ne? 3 2ne? < 21
- nc nlo;tfl) - ne nlte = ne’

Thus, choose L > 0 such that Le > 1, we have

Z/L{RmL >u

m=1

So, for almost all z € [0,1), R,z < up,r ultimately. Thus,

. R, (x . . U(m4+1)L .,
lim sup M < lim sup < lim sup —nH D" i sup
n—o00 Unp, m—o0o Uy L m—oo U L m— oo U(m+1)L

R(?n-{-l)L R(m+1)L

<1
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So, we get, for almost all z € [0, 1),

1
lim sup @) L1
n—00 log,,_(l) n 2

(2) We show that for almost all z € [0, 1),

R, 1-
lim inf (2) > 6,

n—oco log (1yn 2
for any € > 0.

It suffices to show that
1
7 {x €l:R,(x) < [TE log 1y, | —1:= un,i.o.} =0.

Borel-Cantelli Lemma is used again. We fix some notation at first. Write
Ryyn(z) = Ry—m(am1,- -+ ,a,) and ky, = [u%] Then

{R, <up} C {R,L-u};l»e, iu}ﬁe+un70 <i<k,}=

= {R Lre ikt u, <up,0<i < kn — 1} n {}%(kn—l)u1+57 (kn—Dub™ +u, < Un}

U2 n
Apply Lemma 2.3, we have
p{Ry <up} <
it < Uny0 < i <k — Upp{ R, < un b (14 0p" 7)<

7

< 'U’{Riusff R

kn €
< (1R, < wa})" (14 0T e =

0 kn
= (1 - Z:U/(Iun (7;7 e ,Z))) (1 + Hpu}fe—un)kn <
=1

1te oy, _ 1 1 n 1+
< e knilup (L,1)) ghnbp"n <e ST uiFe gnbptn =

€

1 _n® 1+e _1_n°
T g g T
= Sunicentetn < Me “un'",

where the last assertion follows from n@p“}ﬁe_“” — 0 asn — oo.

So,

1

o0 o0 1 _nf
S u{Ra <up} <D Me TuT < oo,
n=1 n=1

Thus, we have, for almost all z € [0, 1),

lim inf M > 1
n—oco log (jyn — 2

This finishes the proof. |
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4. Dimensional results on run-length function

4.1. Proof of Theorem 1.3

We cite a lemma in [10] at first.
Lemma 4.1. Let {C,,n > 1} be a sequence of sets of positive integers. Let
C={zel:ay(z)eC,, foralln>1}.
Then dimy (C N I(by, - ,b,)) = dimy C provided b, € Cy, for all 1 <k < n.

This lemma indicates that any finite change on the restrictions on the partial
quotients will not change the dimension. Recall that

E({6,}°2,) = {:c €10,1): lim () _ 1}.

n—oo O,
Since 6, — 0o as n — oo, we assume d,, > 4 for all n > 1.
Proof of Theorem 1.3. Fix M € N. Define an integer sequence recursively
by setting
Ny =0, 51\]0 =01, Niy1 = N + (M+ 1)6Nk’ for k> 0.

For any B > 2, define a subset E¥ ({6,,}°° ;) of E({,}5°,) as follows.

ng({fsn}%o:ﬁ = {.’L‘ el : (aNk+M6Nk+4(‘r)’ s ANy (x)) = (L sy 1)v

3
(ansinn, +s(2)) = (21.2), k>0, 1<i<M;

j=1

1 < a,(x) < B, for all other n > 1} .

By Lemma 2.5, it is direct to check that
By ({8n}021) € BE({0}721)-

In the sequel, we estimate the dimension of EY ({5, }22 ).
For any k > 0, write Cx = 3km +dn, + N, + -+ 0n,_,. Lemma 2.5 also
implies

0N : Gy 1
R R R T
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So, for any € > 0, we can choose kg large such that for any k > kg,

N, —1 Cy, 2
4.1 oy, < —— d ——M— —.
(4.1) NS —g—e and g <

Take 7o € EM ({6,}2,), write

BY ({0n}21, 20 ko) = B (10n}221) N 1@ (@0), - any, (20))-

Define
fet BY (1n}ey,m0, ko) = fo(BY ({0321, w0, ko) ),

T = [Cl]_,ClQ,"'] — Y= [b15b27"'],

where the sequence (b1, ba, -+ ) is obtained by eliminating the terms
N + N, + 1, Np +idn, + 2, Ni +idn, + 3, and N + Mén, +4,..., Ngy1

for all 0 <i < M and k > 1 in the sequence (a1,as,--).
Denote by

Eg={zel:1<a,(z)<B, foralln>1}.
By Lemma 4.1, it follows directly that
dimpr fo( EY ({01321, w0, ko) ) = dimp Ep.

Write
ap =1+ e(M+1)logy(B+1), az=(1+4M ")logy(B+1).

1 -
[e 5]

In the following we will check that f. is
Lemma 2.7, that

Holder, which will give, by

1
(4.2) dimpg E¥ ({6,}52,) > dimpy Ep.
Q1009

For any z1,75 € EM({6,}5,), let y1 = fe(21),y2 = fo(x2). Let n be the
smallest integer such that a,11(z1) # ant1(z2) and Ny < n < Ngi1 with some
k > ko. By the definition of f., we know that

bi(y1) = b;(y2), 1 < j < Np—Cy.
Since

xT; € I(al(mi),...,an+1(xi),an+2(xi)) C U I(al(xi),...,an+1(mi),an+2)
1<an+2<B
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the difference of x; and x5 is larger than the gap between

U e, anpa (@), anga), i=1,2.

1<an4+2<B
Assume that x1 > x5, then

(B + Dpps1(21) +pa(z1)  Paar(z)| 1
(B4 1Dans1(z1) + qn(r1)  gnia(z1)| — 2(B + 1)Q12v,€+1($1)'

|z — z2| > ’

By Proposition 2.2, we have
Ny (11) < (B4 1)MHDegy, (21) < gf, (21)

N, (1) < (B+1)%qn,—c, (1) < a8 _¢, (1)

So, we get

-l () 2w el
x1— —— |y — ,
FTRIEBID\E, ., “oB 1)t T

this gives the assertion (4.2). Thus,
. .
dimyg E({6,}22,) > —— dimy Fp.
Q102

Letting € — 0, then M — oo and finally B — oo, we get

dimg E({6,}02,) > 1.

4.2. Proof of Theorem 1.4

We first define a sequence of real numbers so-called pre-dimensional number
as done in [27]. Let A C N be a finite or infinite subset. For any n > 1,
0 <a<1and p >0, define

1 2
fn(p) = Z (Qn(alv'” 7an(1—a)71"" ,1)> .

a1, ,8n(1—a) €A

It is easy to see that f,(-) is decreasing. By Proposition 2.1, we have f,,(p) < 1
when p is large enough, define

sn(A,a) =inf{p > 0: fo(p) <1}.
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Remark. If A C N is finite, we have f,(s,(A,«)) =1, that is

1
Z 25, (A,a) =1

a1, ancA 4n (a17"' 7an(17a)717"' 71)

If A C N is infinite, we have f,(s,(A)) < 1, that is

1 <1
Z 25, (A,a) —

ay, - an€A dn (a'17"' 7an(17a)717"' 71)

Proposition 4.2. lim s, (A, «) ezists.
n—o0
Write lim s,(A,a) = s(A,«). From Proposition 2.1 and the definition of
n—oo

sn(A,a), we have 0 < s(A,a) < 1. For any B € N, take Ag = {1,2,---, B}.
For simplicity, write s, (B, ) for s,(Ag,a), s(B,a) for s(Ag,a), sp(a) for
sn(N, @) and s(a) for s(N, a).

Proposition 4.3. lim s(B,a) = s(a).

B—o0

Now we list some properties shared by s(«), which will be used late.

Proposition 4.4. For any 0 < a < 1, s(a) >
and continuous with respect to a. Moreover,

s(a) is non-decreasing

N

lim s(a) = 1 and lim s(a) = 1.
a—0 2 a—1

We remark that the original idea for the proof of above propositions is coming

from I. J. Good [10], and a detailed establishment of Good’s idea is presented

in [27], where a similar function is discussed. From a point of view of dynamical

system, s(a) can be also given as the solution to the pressure function

(67

P (—s(log IT| + log 7(1))> =0,

l-«a
where the pressure function P(¢) with the potential ¢ is defined as
: 1 n—1
P(¢) = lim_—log TZ oxp {$(y) +--- + (T 'y}
yImy=x

In such a way, the convergence of Proposition 4.3 comes from a result by
Mauldin and Ubranski [21].
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At last, we extend the definition of s(«) on (0,1) to [0,1] by :

1, a=0;
S(a)=1¢ s(a), 0<a<l;
%, a=1.

We first study the dimension of
R
F(a)z{xé]:limsupn(m)za}, 0<a<l,
n—00 n
and then extend it to the general set F({d,}22,).
When « = 0, there is nothing to prove, since F(«) is a full set. So we only

care for the case 0 < o < 1. We give the upper bound estimation first.

Lemma 4.5. For any 0 < a <1, we have dimpy F(a) < S(a).

Proof. Note that for any 0 < 8 < «,

o0

F(a)c{z €I:R,(z) > fn,io}= ﬂ U {z €I:R,(z)>pn}.

Moreover,

{mEI:Rn(x)>Bn}CU U {zel:ajpi(x)="-=ajipn(r) =1} C

i=10<j<n—PFn

U U U Hay, - i,

y b Qj4+Bn+1y 7a/n)~
i=10<j<n—PBn a1, ,a;,0;48n41,"" ,dn

By Proposition 2.2, the following geometry structurer will used frequently.

< |I(CL1,"' 7ajai7"' 7i7aj+ﬂn+17“' aan)
|I(a17"' aajvaj+ﬁn+17"' s Apyy e 7i

1
8~ )

For any s > S(8) > 3, let € = % There exists ng > 2 such that for all
n >ng, § > S, + € and 273 > 32n. So,

<
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Hs(Fa)SlirILIi}gfii Z Z 8|I(bla"'7bn76n7i,"'7i|s§

n=m i=1 0<j<n—pBn by, 7bn7ﬂn

1 2s
<1;£13£1on2 Z 8n(qn(bl j ,Z)) =

b_ Z...
n=m 1=1by, ,bp_gn »Un—pns b

< lim jnf Z Z Z 32n

n=m i=1 by, ,bn_gn

1 QSX
bl,"'vbn—ﬁmlv"'al)
(1,---,1) 25<
7...72‘) -

i 33 )

dn ,8

< 121;1513 Z Z <an3

n=m i=1

<3+1§§3§on2( )

n=m i=4

n=m i=1

Thus, we get dimy F'(a) < S(8). Letting § — a, we have
dimy F(a) < S(a).
[ |

For the lower bound, we will distinguish two cases according as a = 1 or
not.

Lemma 4.6. dimpy F(1) > 1.

Proof. For any k > 1, let Ny = k!, By = 2VNE and M, = li\;“]*\,l. Set

- . €[1,Br], Np<n< N+ My;
F = {x €l:ay(x) { =1, otherwise. '

It is easy to see that F' C F(«a). First, we define a sequence of pre-dimensional
numbers {sy, k > 1}: let si be the real solution to the equation

(4.3) > !

( : 1
_ a ...
1<a1, angy <Bp N TNkt =Nk 01

2s
7aMkala"' 31))

Let s = liminfy .. sg. We claim that s = %

log By
log Ny,

such that for all k > ko, Bf — 2¢ > B2 and 1326Mk > 9Nkt

(i) Tt is evident that limg_, oo

= 0. So for any € > 0, we can choose kg
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Replace s in (4.3) by 15¢, we have

1

> (e

1<ai,,am, <Bg

1—e
>1 3 ( 1 > 1
4 an, (a1, ,anr,) ANp oy Np—pp (Lo, 1)

1<ay,,an, <Bg

1(& 1 ey 1 1
> - > - € € ]\/Ik >
= <Z (Z'—|—1)1_5> INer1 = 4(Bk 2 ) ONkt1 — 1

i=1

>

1—e
7aM1€a]~a"' 71)>

>

|
N~

So, for all k& > kg, s > 156. Thus

(ii) For any € > 0, choose ko large such that for all k > ko, (1 + 1) <
< 7(1)Ne+1=Ne=Mi Replace s in (4.3) by 1<, we have

1 1+e
> )7
QNk+1—Nk(a1’-.. 7(]J]wk’l,... ,1)

1<ai,,am, <Bk

|

< 1 >1+5 1
> -
an, (a1, a,) ANp oy —Ne—pp (Lo, 1)

1<ai,,anm, <Bk

i=1

1 y 1 Nigy1—Nig—Mjy,
< (14 )" [ — < 1.
<0+ () =

So, s < % This proves the claim.

IN

For any n > 1, set

_ n. .. € [1,Bi], Ni <i< N+ My;
Dn = {(al’ yan) €N 2 ai(2) { =1, otherwise. )

For any (a1,--- ,a,) € Dy, we call I(ay,--- ,ay) is an n-th order admissible
interval (with respect to F'). Then it is evident that

F= ﬂ U I(ay, - ,an).

n=1 (a1, ,an)€Dx

Now we define a probability measure p supported on F'. Since §D; = 1, we set
w(I(1)) =1. For any (ai,---an,) € Dn,, let

p(I(ar, - -an,)) = (qNQ_Nl(azl,"' ,(;NZ))é1
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and for any N3 <n < Ny and (01, - 0,,) € Dy, let

p(I(ar, - an)) = Z p(I(ar, - an,an,)).

Ant1," ;N
where the summation is taken over all (a1, - ,an,) such that (a1, - ,an,) €
€ Dn,. Suppose for some k > 2, u([(al, e ,aNk)) has been defined for any
(a1,--- ,an,) € Dy, For any (a1,--- ,an,,,) € Dn,,, set
1 Sk
p(l(o1, -+ 0N ( > p(I(as, - -any,)),
( ( ) k+1)) qu+1*Nk(aNk+1?... 7aNk+1> ( ( s k))

and for any Ny < n < Nigy1 and (a1,---an) € Dy, let

N(I(al,"'aan)): Z N(I(al,"';anaan+1;"'7aNk+1)),
A1, ONy

where the summation is over all (an41,---,an,,,) with (a1, - ,an,,) €
S DNk+1'

Until now, the set function p : {I(a),a € D\Do} — R* is well defined. By
definition of sy, it is easy to check that for any n > 1 and (a1, - ,a,) € Dy,
we have

p(I(ar, -+ an) = D p(I(ar, - anta)),
Ant1
where the summation is taken over all a,y; such that (a1, - ,an,,an41) €

€ D,,+1. Notice that

Z u(J(ar)) =1,

a1€Dy

by Kolmogorov extension theorem, the set function p can be extended into a
probability measure supported on F', which is still denoted by p. From the

definition of p, we have for any & > 1 and (a1,--- ,an,) € Dn,
k—1 1 S5
(44) p(l(ar, - ,an,)) = < > .
( * ) j];[J qu+1—Nj(aNj+l7"' 7a'Nj+1)

In order to apply the mass distribution principle to give a lower bound
estimation of dimgy F', we will estimate the measure of arbitrary balls. We
estimate the measure of admissible intervals first.

For any € > 0, there exists kg such that for all & > kg,

Sk > 8 — 6,22k < 2Nk2—15’2k+32Mk < 2(Nk*1)6.
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Denote

co = 22k0+4(3k0 —+ l)Nk0+2 >
2
> max {quU+2(a1, cosan +2) 1 (ar,. . an, € Dk0+2)} .

Then for any k > ko and (ay,...,an,) € Dn,,

k—1 1 s5—¢€
p(l(ay,...,an,)) < co ( ) <
( ) k ) ]130 qu+17Nj(aNj+1?""aNj+1)
Ss—e€ s—2¢
ok 1 1
(45) S CO2 5 S Co 5 S
an, an,
< 2clI(ay,...,an,)|[E72C

When Ny < n < Niiq for some k > kg and (aq,...,a,) € D,, we divide it
into two cases.

(i) N, < n < Ny + My, for some k > ko. By the definition p and similar
estimation as (4.4), we have

w(l(ay, ... an)) <

1 s—e 1 Sk
< C02k+1 () )
qu Z q]2VK+1fn(an+17'"vaNkJervla”'vl)

Gn41, @GNy + My,

Note that
1:
Sk
1
= 2 b b 1.1 Z
ka+17---;bn; QNkJrl_Nk( Ni+1s-+ 500, Qni1y .o s AN +Myy Ly oo oy )
An4+1,0N + M),
1 1 .
> — X
= 2
4 kag,:...,bn (q"—Nk (b1, "b”)>
Sk
< Y ! >
quvk+1_n(an+1,...,aNk+Mk,1,...,1) -

An+1s--, AN+ My,

v

1 1 > 1 N
4qn_n,(1,...,1) q]2\/k+1—n(an+17""aNk+Mk717"'71) .

A1, ANy + M),
So, we have

s—¢€ 5—2€
1N\ 1\
(4.6) p(I(ar;...,a,)) < 2" <q2) 2" < g <q2> .

n n
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il) Ny + My < n < Niy1. This case is simple, because for any (ay,...,a,) €
€D,

p(I(ay, ... a,)) = p(I(ar,. .. ang,,))-
So, by (4.5), for any (a1,...,an) € Dy, it holds trivially that
(4.7 p(I(ay,. .. a,)) < 2co|I(ay,. .., a,)[E %

Now we estimate the measure B(x,r) with x as center and r the radius. Let
o = % For any x € F, there exist ay, as,... such that « € I(aq,...,a,) and
(a1,...,ayn) € Dy, for all n > 1. For any 0 < r < g, there exist n > Ny, + 2
such that

I(a1,...,an,any1) <7 < I(ay,...,an).

So, I(a1,...,ant1) C B(z,r) C I(ai,...,an—2). Thus, by (4.5) (4.6) and (4.7),
we have

H(B(a.r) < s an-2)) < 20 ( )

n—2

Then it is routine to check that g, ™% > gn41. So we have

1 s5—3¢
w(B(z,1) < 260 ( : ) < degre.
qn+1

As a consequence, we get dimy F > s. [ |
Lemma 4.7. For any 0 < a < 1, dimyg F(«a) > S(«).

Proof. Given a sequence {Ny, k > 1} with Ny << Ngy1. Write

a(Np — Np_1)f
Niy1 = (klf;l)k + Ni, My, = a(Ny, — Ni—1).
Define
F(a,B) =
={zel:1<ay(x) <B,an,, ,~Mp 141 =---=an,,, = 1,Vk>1,n>1}.

For any z € F(«, B), we will construct an element z’ € F(«): Insert the digit
string (2, 1, 2) after each position Ny+iMy, 0 < i < ¢ in the continued fraction
expansion of z. Denote by F’(«, B) the collection of all elements got in this
way.

With a similar method established in Theorem 1.3, we can show that

dimyg F'(a, B) = dimy F(a, B).
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So, we only need to show
dimy F(«, B) > S(a, B).

The proof is almost the same as given in [27], where we studied the dimension
of the set
{zel:a,(x)>¢(n), io.n e N}

So we refer to it with no details. [ |

Proof of Theorem 1.4. It is a consequence from the proof of Lemma
4.7 by choosing the sequence Nj such that limy_, (SNL: = a. |

Also it can be checked with the same idea that
dimg{x € I : R,(x) > 0y, 1.0. n € N} = S(«),

where o = liminf,,_, % €10,1].
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