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TAUBERIAN THEOREMS WITH APPLICATIONS

TO ARITHMETICAL SEMIGROUPS AND

PROBABILISTIC COMBINATORICS

K.-H. Indlekofer (Paderborn, Germany)

Dedicated to the 70-th birthday of Professor János Galambos

Abstract. In this paper we investigate functions Z and F holomor-
phic in the unit disk {y ∈ C : |y| < 1}, which can be represented

by Z(y) =
∞∑
n=0

γ(n)yn = exp

(
∞∑
m=1

λ(m)
m

ym
)

and F (y) =
∞∑
n=0

f(n)yn =

= exp

(
∞∑
m=1

λf (m)

m
ym
)

, respectively, where λ(m) ∈ R≥0 and λf (m) ∈ C

for all m ∈ N. We define a class F of functions Z and characterize the
asymptotic behaviour of the quotient f(n)/γ(n) as n→∞ if, for example,
|λf | ≤ λ. The results are applied to the generating functions of additive
arithmetical semigroups and of exp-log schemas in combinatorics. We no-
tice that the definition of the functions Z ∈ F does not require any analytic
continuation of Z(y) over the boundary |y| = 1.

1. Introduction

In some recent papers ([14]–[19]) we investigated the mean behaviour of

M(x, f) :=
∑
n≤x

f(n)
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for arithmetical functions f : N → C with f(1) = 1. The underlying idea was
to compare f with some function g, the mean behaviour of which is known. To
be specific, we start with

(1.1) M(x) := M(x, f −Axg) =
∑
n≤x

(f(n)−Axg(n)),

where Ax ∈ C and f is ”near” to g. To give an example, let f be multiplicative
and g(n) = nia for all n ∈ N with some a ∈ R. Define λf and λ by the
generating Dirichlet series (s = σ + it, σ > 1)

F (s) =

∞∑
n=1

f(n)n−s = exp

( ∞∑
n=2

λf (m)

logm
m−s

)

and

G(s) =

∞∑
n=1

g(n)n−s = ζ(s− ia) = exp

( ∞∑
m=2

λ(m)mia

logm
m−s

)
,

where ζ(s) =
∞∑
n=1

n−s is Dirichlet’s ζ-function. We assume

|λf (m)| ≤ λ(m)

(λ(m) = Λ(m) where Λ denotes von Mangoldt’s function) and arrive at (cf.
[14])

|M(x)|
x

≤

 1

log x

∞∫
−∞

|F (s)−Axζ(s− ia)|2

|s|2
dt

 1
2

+

+|Ax|
1

log x

∑
m≤x

|λf (m)− λ(m)mia|
m

+O

(
1

log x

)
,

where s = 1 + 1
log x + it. From this we conclude

Proposition. Let f be multiplicative and |f | ≤ 1. Then the following
assertions hold.

(i) Assume that the series

(1.2)

∞∑
m=2

λ(m)− Reλf (m)m−ia

m logm
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converges for some a ∈ R. Put

(1.3) Ax := exp

∑
m≤x

λf (m)m−ia − λ(m)

m logm

 .

Then

1

x

∑
n≤x

f(n) = Ax
1

x

∑
n≤x

nia + o(1) =

= Ax
xia

1 + ia
+ o(1)

as x→∞.

(ii) If the series (1.2) diverges for all a ∈ R then

1

x

∑
n≤x

f(n) = o(1)

as x→∞.

Remark 1. The Proposition is just a theorem of G. Halász [10]. The sum
in (1.2) converges if and only if the same holds for

∑
p

1− Re f(p)p−ia

p
.

In addition

Ax =
∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

f(pk)p−k(1+ia)

)
{1 + o(1)}

as x→∞.

The method used also leads to new proofs of the prime number theorem,
Wirsing’s theorem, etc. and to new quantitative estimates for multiplicative
functions [9], [14], [16] and [18].

In this paper we apply the same idea in the case that the generating function
is a power series.

Let us assume f : N0 → C with f(0) = 1 and let γ(n) ≥ 0 for n ∈ N and
γ(0) = 1. Further, we assume that

(1.4) F (y) :=

∞∑
n=0

f(n)yn = exp

( ∞∑
m=1

λf (m)

m
ym

)
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and

(1.5) Z(y) :=

∞∑
n=0

γ(n)yn = exp

( ∞∑
m=1

λ(m)

m
ym

)
converge for |y| < 1.

Analytically, the problem which we are confronted with here amounts to
extracting information on the coefficients {f(n)} by comparing it with the
coefficients {γ(n)}.

Example 1. Let (G, ∂) be an additive arithmetical semigroup that is, by
definition, G is a free abelian semigroup with identity element 1 such that G
has a countable free generating set P of ”primes” and ∂ : G→ N0 is a ”degree
mapping” satisfying

(i) ∂(g1g2) = ∂(g1) + ∂(g2) for all g1, g2 ∈ G,

(ii) the total number G(n) of elements of degree n in G is finite for each
n ≥ 0.

In particular, if we assume G(n)� qnn% with some % and q > 1 then

Ẑ(z) :=

∞∑
n=0

G(n)zn =

∞∏
m=1

(1− zm)−P (m)

is the zeta function associated with G, where P (m) denotes the total number
of primes of degree m in G. Obviously

log

∞∏
m=1

(1− zm)−P (m) =

∞∑
m=1

P (m)

∞∑
j=1

j−1zjm =

=

∞∑
m=1

1

m

∑
d|m

dP (d)zm =

∞∑
m=1

Λ̄(m)

m
zm,

where
Λ̄(m) =

∑
d|m

dP (d).

Then, since P (d) ≤ G(d)� qdd%,

Λ̄(m) = mP (m) +O

mG(m
2

) ∑
r≤m

1

r

 =

= mP (m) +O
(
mq

m
2

(m
2

)%
logm

)
.

(1.6)
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Putting y = qz, λ(m) = q−mΛ̄(m) and γ(n) = q−nG(n) leads to

(1.7) Z(y) := Ẑ(yq−1) =

∞∑
n=0

γ(n)yn = exp

( ∞∑
m=1

λ(m)

m
ym

)
.

Observe

(1.8)
λ(m)

m
= q−m

∑
p∈P

∂(p)=m

1 +O
(
q−m/2m% logm

)
.

Now, let f̃ : G→ C be multiplicative and let

(1.9) f(n) := q−n
∑
g∈G
∂(g)=n

f̃(g).

Then the generating function of f is given by

F (y) : =

∞∑
n=0

f(n)yn =

=
∑
g∈G

f̃(g)q−∂(g)y∂(g) =

=
∏
p

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)
=

= exp

( ∞∑
m=1

λf (m)

m
ym

)
.

This holds at least in a formal sense since f(0) = 1 ( 6= 0). It is also valid for
complex values y, |y| < 1 in terms of ordinary convergence if, for example, the
function f̃ is completely multiplicative of modulus ≤ 1. Then |λf (m)| ≤ λ(m)
and |f(n)| ≤ γ(n) for all m,n ∈ N.

Further

λf (m)

m
= q−m

∑
d|m

d
∑
p∈P
∂(p)=d

f̃(p) =

= q−m
∑
p∈P

∂(p)=m

f̃(p) +O
(
q−m/2m% logm

)
.

(1.10)

Example 2. In the field of combinatorial structures, for example,
multisets and selections (cf. [2], p. 45. ff) can be considered as additive arith-
metical semigroups and subsets of such semigroups, respectively. Many types
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of combinatorial objects decompose as sets of simpler basic objects known as
”prime”, ”irreducible” or ”connected” components. For instance, a permu-
tation decomposes as a set of cyclic permutations and a graph as a set of
connected components. Such situations are combinatorial analogues of the fact
that the elements of an additive arithmetical semigroup uniquely decompose
as products of prime elements.

Especially combinatorial structures which belong to the exp− log schemas
are of great interest. Following Flajolet and Soria [7], [8] we introduce

Definition 1 (see [23]). Let ∆(ν, θ) be the region |z| ≤ 1 + ν minus the
region |arg(z − 1)| ≤ θ, with ν > 0 and 0 < θ < π/2. We say that C(z) is of
logarithmic type with multiplicity constant δ > 0 if

C(z) = δ log

(
1

1− z/%

)
+R(z),

where R(z) is analytic in ∆(ν, θ), and as z → % in ∆(ν, θ),

R(z) = K +O

((
1− z

%

)α)
with 0 < α < 1 and K a complex constant. We say that L(z) = eC(z) describes
the exp-log schemas if C(z) is of logarithmic type. Hence,

L(z) = eR(z)

(
1

1− z/%

)δ
= eK

(
1

1− z/%

)δ
+O

((
1− z

%

)−δ+α)
.

For a more recent definition in the connection with exp-log schemas see [6],
p. 446.

Remark 2. Consider additive arithmetical semigroups satisfying Axiom
A# of Knopfmacher ([20]), i.e.

G(n) = Aqn +O(qαn),

where A > 0, 0 < α < 1, q > 1. Then

Z(z) =
H(z)

1− qz
,

where H(z) is holomorphic for |z| < q−α and H(q−1) = A.
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In [7], Example 3, and [23], Example 7, for instance, Flajolet-Soria and
Panario-Richmond, respectively, assert that the arithmetical semigroups give
a family of examples in the exp− log schemas. But this is not correct as it
stands. Indlekofer, Manstavicius and Warlimont [19] gave an example of an
additive arithmetical semigroup G with

Z(z) =
1 + qz

1− qz
H2(z),

where H2(z) is holomorphic and 6= 0 for |z| < q−
1
2 . Then

Z(z) = exp(C(z))

is obviously not in the class described above. Furthermore, Indlekofer, Manstavi-
cius and Warlimont showed, if H(z) = Z(z)(1−qz) is holomorphic for |z| ≤ q− 1

2

then Z(z) 6= 0 for |z| ≤ q−1 and logH(z) is holomorphic for |z| ≤ q−1+ε with
some ε > 0 and then Z(z) fits in the Definition 1. This ends Remark 2.

The basic conditions in this paper will be (see (1.4) and (1.5))

(1.11) 0 ≤ λ(m) = O(1) (m ∈ N)

and

(1.12) |Z(y)| � Z(|y|)
∣∣∣∣1− |y|1− y

∣∣∣∣ε (|y| < 1)

for some ε > 0. Let

(1.13) B(n) = exp

∑
m≤n

λ(m)

m

 .

Then we assume that

(1.14) nγ(n) � B(n)

and

(1.15) B(m) = o(B(n)) if m = o(n) (n→∞).

Definition 2. We say that the function Z given in (1.5) belongs to the
exp− log class F in case (1.11), (1.12), (1.14) and (1.15) hold.
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Example 3. Let Z(y), defined in (1.7), have the form

(1.16) Z(y) =

∞∑
n=0

γ(n)yn =
H(y)

(1− y)δ
(|y| < 1),

where γ(n) ≥ 0, δ > 0 and H(y) = O(1) for |y| < 1 and

(1.17) lim
y→1−

H(y) = A > 0.

Then, of course, the behaviour of H(y) as y → 1− dictates the behaviour of
the coefficients γ(n). For example, if (1.17) holds then, since γ(n) ≥ 0,

(1.18)
∑
n≤N

γ(n) ∼ ANδ

Γ(δ + 1)

by the Hardy-Littlewood Tauberian theorem.

Further, since

Z ′(y) ∼ δA

(1− y)δ+1
as y → 1−

we have
∞∑
m=1

λ(m)ym ∼ δ

1− y
as y → 1−

and again, since λ(m) ≥ 0,

(1.19)
∑
m≤N

λ(m) ∼ δN

and

(1.20)
∑
m≤N

λ(m)

m
∼ δ logN

as N →∞.

If in addition, it is assumed that H(y) is continuous on the closed disc and
the derivative of (H(y)−H(1))(1− y)−δ is bounded for |y| < 1, then

γ(n) ∼ Anδ−1

Γ(δ)
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which by summation yields the estimate (1.18). Therefore it is convenient to
assume

γ(n) � nδ−1.

Observe, that if Z(y) is defined by (1.5) and (1.16) with (1.17), respectively,
and 0 ≤ λ(m)� 1 then, for r = 1− 1/n,
(1.21)

B(n) = exp

∑
m≤n

λ(m)

m

 � exp

∑
m≤n

λ(m)

m
rm

 � Z(r) � (1− r)−δ = nδ,

which implies
B(m)

B(n)
�
(m
n

)δ
= o(1) if m = o(n)

as n→∞ and (1.15) is satisfied.

Example 4. Assume that

0 < c1 ≤ λ(m) ≤ c2 <∞ (m ∈ N).

Then, obviously

|Z(y)| = Z(|y|) exp

( ∞∑
m=1

λ(m)

m
|y|m(cos(mt)− 1)

)
≤

≤ Z(|y|) exp

(
c1

∞∑
m=1

|y|m

m
(cos(mt)− 1)

)
=

= Z(|y|)
∣∣∣∣1− |y|1− y

∣∣∣∣c1
and

B(m)

B(n)
= exp

− ∑
m<l≤n

λ(l)

l

� exp
(
c1 log

m

n

)
= o(1)

if m = o(n) (n→∞). Elementary estimates immediately yield

nγ(n) � B(n),

where the constants involved in � only depend on c1 and c2 (see Manstavicius
[22], Lemma 3.1).

Let us now come back to the coefficient asymptotics. To compare the
asymptotic behaviour of f(n) with γ(n) we shall use a Tauberian condition
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which says that {λf (m)} is “near” to {λ(m)}. To start with we shall assume
that λf splits into

(1.22) λf = λf,1 + λf,2

such that

(1.23) |λf,1(m)| ≤ λ(m) (m ≤ n) and

∞∑
m=1

|λf,2(m)|
m

≤ c1 <∞.

We may assume that λf,1(m) = 0 if m > n since these values do not influence
f(n). Put (cf. (1.4))

(1.24) F (y) := Fn(y) = FI(y)FII(y),

where
(1.25)

FI(y) := exp

(
n∑

m=1

λf,1(m)

m
ym

)
, FII(y) := exp

( ∞∑
m=1

λf,2(m)

m
ym

)
.

With these notations we prove

Theorem 1. Let Z be an element of the exp-log class F and let F (y) in
(1.4) satisfy (1.24) and (1.25). Further assume λf (m) = O(1) (m ∈ N). Then
the following two assertions hold.

(i) Let, for some a ∈ R, and every n ∈ N

(1.26)
∑
m≤n

λ(m)− Reλf,1(m)eima

m
≤ c2 <∞

and

(1.27)
∑
m≤n

|λ(m)− λf,1(m)eima| = o(n)

as n→∞. Put

An := exp

−ina+
∑
m≤n

λf,1(m)eima − λ(m)

m

FII(1).

Then
f(n) = Anγ(n) + o(γ(n)) as n→∞,
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where o(·) depends only on c1 and c2.

(ii) Assume that

∑
m≤n

λ(m)− Reλf,1(m)eima

m
=: c2(n)→∞ (n→∞)

uniformly in a ∈ R. Then
f(n) = o(γ(n))

as n→∞, where o(·) depends only on c1 and c2(n).

Since

yF ′(y) =

( ∞∑
m=1

λf (m)ym

)
F (y) =: Λf (y)F (y)

and

yZ ′(y) =

( ∞∑
m=1

λ(m)ym

)
Z(y) =: Λ(y)Z(y)

we get

H1(y) : =

∞∑
m=0

h1(m)ym :=

: = yF ′(y)−AnyZ ′(y) =

= Λf (y)(F (y)−AnZ(y))+

+AnZ(y)(Λf (y)− Λ(y))

(1.28)

and because of λf (m) = O(1) (m ∈ N)

|h1(n)| = |nf(n)−Annγ(n)| =
∣∣∣ ∑
m≤n

λf (m){f(n−m)−Anγ(n−m)}+

+An
∑
m≤n

(λf (m)− λ(m))γ(n−m)
∣∣∣�

�
∑
m≤n

|f(m)−Anγ(m)|+ |An|
∑
m≤n

|λf (m)−

− λ(m)|γ(n−m) =:

=: Σ1 + Σ2.

(1.29)
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Our aim is to establish the estimates Σ1 = o(B(n)) and Σ2 = o(Bn) as
n→∞. This will prove Theorem 1.

We observe that, in Theorem 1, f and λf , respectively, may depend on n
or on other parameters. If we turn away from this general situation we can
formulate the following

Theorem 2. Let Z be an element of the exp-log class F and let F (y) in
(1.4) satisfy (1.22), (1.23) and (1.24) with

λf (m) = O(1), |λf,1(m)| ≤ λ(m) for all m ∈ N

and
∞∑
m=1

|λf,2(m)|
m

<∞.

Put

F (y) = FI(y)FII(y),

where

FI(y) := exp

( ∞∑
m=1

λf,1(m)

m
ym

)
, FII(y) := exp

( ∞∑
m=1

λf,2(m)

m
ym

)

for |y| < 1. Then the following two assertions hold.

(i) Let

(1.30)

∞∑
m=1

λ(m)− Reλf,1(m)eima

m

converge for some a ∈ R. Put

An = exp

−ina+
∑
m≤n

λf,1(m)eima − λ(m)

m

FII(1).

Then

f(n) = Anγ(n) + o(γ(n)) as n→∞.

(ii) Let (1.30) diverge for all a ∈ R. Then

(1.31) f(n) = o(γ(n)) as n→∞.
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Remark 3. Obviously

lim
n→∞

f(n)

γ(n)
exists and is 6= 0

if and only if
∞∑
m=1

λf (m)− λ(m)

m
converges.

If (1.30) converges for some a ∈ R then we may write

(1.32) exp

∑
m≤n

λf,1(m)eima − λ(m)

m

 = c(a)La(n) + o(1),

where

(1.33) c(a) := exp

( ∞∑
m=1

Reλf,1(m)eima − λ(m)

m

)

and

(1.34) La(n) := exp

i∑
m≤n

Imλf,1(m)eima

m

 .

With these notations we have

Theorem 3. Assume that the conditions of Theorem 2 hold. Then either

(i) there exists a ∈ R such that,

(1.35) F (y) = c(a)La

(
1

1− |y|

)
FII(1)Z(e−iay) + o(Z(|y|))

uniformly as |y| → 1−, where c(a), La are given by (1.33), (1.34) and La(u)
is slowly varying as u→∞,

or

(ii)
F (y) = o(Z(|y|)).

Remark 4. The conclusion (i) of Theorem 3 shows that there can be
at most one real number a for which the series (1.30) is convergent. Indeed,
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assume that to the contrary there are two distinct values a1 and a2, say, for
which this series is convergent. Then there are (non-zero) constants c(a1) and
c(a2) such that, uniformly as |y| → 1−

|c(a1)||Z(e−ia1y)| = |c(a2)||Z(e−ia2y)|+ o(Z(|y|))

and the choice y = |y|eia1 leads to an impossible situation as |y| → 1−.

We remark, that we consider functions Z(y) =
∞∑
n=0

γ(n)yn satisfying the

conditions of Theorem 1 because of their connections with the generating func-
tions of additive arithmetical semigroups and of combinatorial structures from
the exp-log schemas, respectively. In the first case (see §5) we obtain new
and known results (see [4], [17] and [21]) for a much wider class of additive
arithmetical semigroups and in the second case (see §6) we generalize the most
popular “singularity analysis” by Flajolet and Odlydzko [5], since we do not
require analytic continuation of the generating functions outside the disk of
convergence.

Moreover, our method is differing, since we do not prove an asymptotic
formula for nf(n) via Cauchy’s theorem

nf(n) =
1

2π

∫
|y|=r<1

F ′(y)

yn+1
dy

but compare nf(n) with nγ(n) as formulated in (1.29). This leads via Par-
seval’s equality to an estimate of the distance between nf(n) and Annγ(n),
a procedure which is also effective for quantitative investigations of occuring
remainder terms.

Remark 5. Recently E. Manstavicius [22] obtained the assertion (i) of
Theorem 1 for a = 0 in the case of Example 4 and under the restriction
|λf (m)| ≤ λ(m) (m ∈ N).

Remark 6. The assumption λf (m) = O(1) is essentially used in the esti-
mate (1.29) and in the proof of Theorem 1 (cf. Lemma 4 and Lemma 5). The
possibility to omit this condition is shortly discussed in Remark 9 of 5.

2. Some lemmas

The technical details of the proof of Theorem 1 (and Theorem 2) will be
collected in several Lemmata. In the following we assume that (1.26) and (1.27)
hold for a = 0.
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Lemma 1. There exist ε1(n) ↘ 0, ε2(n) ↘ 0 (n → ∞) such that
ε1(n) ≤ ε2(n) and

(2.1)
∑
m≤n

|λ(m)− λf,1(m)| ≤ ε1(n)n

and

(2.2)
∑
m≤n

|λ(m)− λf (m)| ≤ ε2(n)n

as n→∞.

Proof. We observe that (1.23) implies∑
m≤n

|λf,2(m)| = o(n)

which together with (1.27) proves Lemma 1. �

Let us define ε(n) by

ε(n) = (ε2(n))
1
2

and prove

Lemma 2. If ε(n)n ≤ u ≤ n then

An −Au = o(1) as n→∞.

Proof. Let ε(n)n ≤ u ≤ n. Then

An
Au

= exp

 ∑
u<m≤n

λf,1(m)− λ(m)

m


and ∣∣∣∣∣∣

∑
u<m≤n

λf,1(m)− λ(m)

m

∣∣∣∣∣∣ ≤ u−1ε1(n)n ≤ ε(n).

Thus
An = Au(1 + o(1)) = Au + o(1).
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Without loss of generality we can take λf,1(m) = λ(m) = 0 if m > n. Then
we introduce, for 2 ≤ u ≤ n, the functions

(2.3) Fu(y) = exp

∑
m≤u

λf,1(m)

m
ym

 · FII(y)

and

(2.4) Zu(y) = exp

∑
m≤u

λ(m)

m
ym

 .

Lemma 3. For u ≥ 2 put y =
(
1− 1

u

)
eit. Then

max
|t|≤π

|Fu(y)−AnZu(y)| � Zu(|y|) ≤ B(u) uniformly for 2 ≤ u ≤ n

and, if ε(n)n ≤ u ≤ n,

max
|t|≤π

|Fu(y)−AnZu(y)| = o(Zu(|y|)) = o(B(u)) as u→∞.

Proof. The first assertion is obvious since

|Fu(y)| � Zu(|y|)|FII(y)| � B(u).

In the other case, we assume first that |t| ≤ K
u with K > 0. Then with r = 1− 1

u

Fu(y)AnZu(y) = exp

( ∑
m≤u

λf,1(m)− λ(m)

m
(rmeimt − 1)−

−
∑

u<m≤n

λf,1(m)− λ(m)

m

)
FII(y)

FII(1)
=

= exp(Σ′ + Σ′′)
FII(y)

FII(1)
.

It is wellknown that FII(y)→ FII(1) in the Stoltz angle
{
reit : |t| ≤ K

u

}
as

n→∞. Further

Σ′ ≤
∑
m≤u

|λf,1(m)− λ(m)|
m

(|rm − 1|+ |eitm − 1|).
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Now

|rm − 1|+ |eimt − 1| ≤ m

u
+m

K

u
if m ≤ u

and

Σ′ ≤
(

1

u
+
K

u

)
· ε2(n)n = o(1).

Obviously

Σ′′ ≤ u−1
∑
m≤n

|λf,1(m)− λ(m)| = o(1)

which implies

(2.5) |Fu(y)−AnZu(y)| = o(1)Zu(|y|) = o(B(u)) for |t| ≤ K

u
.

Assume now that |t| ≥ K
u . Then

|Fu(y)|2

Zu(|y|)|Zu(ȳ)|
=

∣∣∣∣ Fu(y)

Zu(|y|)

∣∣∣∣2 · Zu(|y|)
|Zu(ȳ)|

�

� exp

(
− 2

u∑
m=1

λ(m)6=0

λ(m)

m

(
1− Re(λf,1(m)eimt)

λ(m)

)
rm+

+

u∑
m=1

λ(m)

m

(
1− Re e−imt

)
rm

)
�

� exp

(
2

u∑
m=1

λ(m)− Reλf,1(m)

m
rm

)
�

� 1

because of (1.26) (for a = 0) and since, if λ(m) 6= 0,

2(1− Re e−itm) = |1− e−itm|2 ≤

≤ 2

∣∣∣∣1− λf,1(m)

λ(m)

∣∣∣∣2 + 2

∣∣∣∣λf,1(m)

λ(m)
− e−itm

∣∣∣∣2 ≤
≤ 4

(
1− Reλf,1(m)

λ(m)

)
+ 4

(
1− Re(λf,1(m)eitm)

λ(m)

)
.
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Thus, by (1.12)

|Fu(y)−AnZu(y)| � |Fu(y)|+ |Zu(y)| �

� (Zu(|y|)|Zu(y)|) 1
2 + |Zu(y)| �

� (K−ε/2 +K−ε)Zu(|y|)�
� K−ε/2B(u)

(2.6)

for |t| ≥ K
u . Collecting (2.5) and (2.6) gives

max
|t|≤π

|Fu(y)−AnZu(y)| = o(Zu(|y|)) = o(B(u))

which ends the proof of Lemma 3. �

Lemma 4. As n→∞

(2.7)
∑
m≤n

γ(m)|λf (n−m)− λ(n−m)| = o(B(n)).

Proof. We first observe

Σ : =
∑
m≤u

B(m)|λf (n−m)− λ(n−m)| =

= B(u)
∑
m≤u

|λf (n−m)− λ(n−m)|−

−
u∫

1

∑
m≤t

|λf (n−m)− λ(n−m)| dB(t) =

= O(uB(u)) uniformly for 2 ≤ u ≤ n.

(2.8)

Further, if ε(n)n ≤ u ≤ n,

Σ� ε2(n)nB(u) ≤

≤ ε2(n)
u

ε(n)
B(u) =

= o(uB(u)).
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Now∑
m≤n

γ(m)|λf (n−m)− λ(n−m)| �
∑
m≤n

B(m)
|λf (n−m)− λ(n−m)|

m
=

=
1

n

∑
m≤n

B(m)|λf (n−m)− λ(n−m)|+

+

ε(n)n∫
1

O(uB(u))

u2
du+

n∫
ε(n)n

o(uB(u))

u2
du =

= o(B(n)) +O

 ε(n)n∫
1

γ([u]) du

+

+ o(1)

n∫
ε(n)n

γ([u]) du =

= o(B(n)) +O(B(ε(n)n)) + o(B(n)) =

= o(B(n))

because of (1.15). Thus Lemma 4 holds. �

Lemma 5. Let 0 < r < 1. Then

π∫
−π

|Λf (reit)|2dt = O

(
1

1− r

)

and
π∫
−π

|Λf (reit)− Λ(reit)|2dt = o

(
1

1− r

)
as r → 1−.

Proof. Using Parseval’s equality gives the proof of Lemma 5 by (2.2) of
Lemma 1 and since λf (m) = O(1). �
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3. Proof of Theorem 1

We shall prove that Σ1 and Σ2 in (1.29) satisfy Σ1 = o(B(n)) and Σ2 =
= o(B(n)) as n→∞. Obviously

(3.1) Σ2 = o(B(n))

by Lemma 4. Further, using the notation of (1.28)

∑
m≤n

|f(m)−Anγ(m)| =
∑
m≤n

|h1(m)|
m

=

=
1

n

∑
m≤n

|h1(m)|+
n∫

1

∑
m≤u
|h1(m)|

u2
du.

(3.2)

Putting r = 1− 1
u (2 ≤ u ≤ n) we get

∑
m≤u

|h1(m)| ≤ u1/2
∑
m≤u

|h1(m)|2
 1

2

�

� u1/2

( ∞∑
m=1

|h1(m)|2r2m
) 1

2

�

� u1/2

 π∫
−π

|H1,u(reit)|2dt

 1
2

,

where we may choose (cf. (2.3) and (2.4))

H1,u(y) = Λf (y)(Fu(y)−AnZu(y)) +AnZu(y)(Λf (y)− Λ(y)).

Since

|H1,u(reit)|2 ≤ 2|Λf (reit)|2|Fu(reit)−AnZu(reit)|2+

+2|Zu(reit)|2|Λf (reit)− Λ(reit)|2,
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we have

π∫
−π

|H1,u(reit)|2dt� max
|t|≤π

|Fu(reit)−AnZu(reit)|2
π∫
−π

|Λf (reit)|2dt+

+ max
|t|≤π

|Zu(reit)|2
π∫
−π

|Λf (reit)− Λ(reit)|2dt.

Thus, by Lemma 5∑
m≤u

|h1(m)|2 �u ·max
|t|≤π

|Fu(reit)−AnZu(reit)|2+

+ o
(
uB2(u)

)
.

This implies, by Lemma 3

(3.3)
∑
m≤u

|h1(m)| = o(uB(u)) if ε(n)n ≤ u ≤ n

and

(3.4)
∑
m≤u

|h1(m)| = O(uB(u)) if 2 ≤ u ≤ n.

Using (3.2), (3.3) and (3.4) give∑
m≤n

|f(m)−Anγ(m)| =

=o(B(n)) +

ε(u)·n∫
1

O

(
B(u)

u

)
du+

n∫
ε(u)n

o

(
B(u)

u

)
du =

=o(B(n)) as n→∞

by (1.15) which proves (i) of Theorem 1 for a = 0. In the case a 6= 0 we replace
λf (n) by λf (n)eina to end the proof of assertion (i) in Theorem 1.

If ∑
m≤n

λ(m)− Reλf,1(m)eima

m
= c2(n)→∞ (n→∞)
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uniformly in a ∈ R, then

Fu(reit)

Zu(r)
= o(1) uniformly in t as r → 1−.

For |y| = r = 1− 1
u we choose

H1,u(y) := Λf (y)Fu(y)

and conclude as above∑
m≤u

|h1(m)| = o(uB(u)) as u→∞

which implies
f(n) = o(B(n)n−1) = o(γ(n)).

This ends the proof of Theorem 1. �

4. Proofs of Theorem 2 and Theorem 3

If the series (1.30) converges then obviously (1.26) is valid. Further∑
m≤n

|λ(m)− λf,1(m)eima| =

=
∑
m≤n
λ(m) 6=0

λ(m)

∣∣∣∣1− λf,1(m)eima

λ(m)

∣∣∣∣ ≤
≤

∑
m≤n

λ2(m)

∣∣∣∣1− λf,1(m)eima

λ(m)

∣∣∣∣2
1/2

n1/2 �

�

 ∑
m≤n
λ(m)6=0

λ(m)

(
1− Reλf,1(m)eima

λ(m)

)2


1/2

n1/2 =

= o(n)

(4.1)

since (1.30) converges. Thus, (1.27) holds and assertion (i) of Theorem 2 follows
from (i) of Theorem 1.
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Now, if (1.30) diverges for all a ∈ R, then, by Dini’s theorem, the divergence
is uniform for all a and thus the conclusion (ii) of Theorem 2 is an immediate
consequence of Theorem 1.

Let the series (1.20) be convergent for a = 0. Then, similarly to Lemma 3
one can prove

Lemma 6. Let |y| = 1− 1
n . Then

F (y) = AnFII(1)Z(y) + o(Z(y))

uniformly as |y| → 1−.

In the case a 6= 0 we replace f(n) by f(n)eina and λf (m) by λf (m)eima and
the proof of Lemma 3 shows, using the notations of (1.32), (1.33) and (1.34),

F (y)− c(a)La

(
1

1− |y|

)
Z(e−iay) = o(Z(|y|)).

We only have to prove that, if c > 0

La(cu)

La(u)
→ 1 as u→∞.

Without loss of generality we may assume c > 1. Then

La(cu)

La(u)
= exp

i ∑
u<m≤cu

Im λf,1(m)eima

m

 .

Obviously

∑
u<m≤cu

Im λf,1(m)eima

m
≤ u−1

∑
u<m<≤cu

|Im λf,1(m)eima| �

� u−1

 ∑
m≤cu

(λ(m)− Reλf,1(m)eima) +
∑
m≤cu

|λf,1(m)eima − λ(m)|

 ,

and as in (4.1) the right hand side may be estimated by

u−1o(cu) = o(1)

which proves Theorem 3. �
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5. Applications to additive arithmetical semigroups

An immediate consequence of Theorem 2 is

Theorem 4. Let (G, ∂) be an additive arithmetical semigroup such that

Ẑ(z) =

∞∑
n=0

G(n)zn = exp

( ∞∑
m=1

Λ̄(m)

m
zm

)
=

Ĥ(z)

(1− qz)δ
,

where Ĥ(z) = O(1) for |z| < q−1, Ĥ(r) � 1 for 0 < r < q−1 and δ > 0.
Assume that Λ̄(m) = O(qm) and G(n) � qnnδ−1. Suppose |f̃(g)| ≤ 1 for all
g ∈ G and either

(i) f̃ is a completely multiplicative function on G, or

(ii) f̃ is a multiplicative function such that f̃(pk) = 0 for each prime power
pk with ∂(p) ≤ log 2

log q .

If there exists a real number a such that

(5.1)
∑
p∈P

q−∂(p)
(

1− Re(f̃(p)q−iϑ∂(p))
)

converges for ϑ = a, then ∑
g∈G
∂(g)=n

f̃(g) =

= qina
∏

∂(p)≤n

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)(1+ia)

)
G(n) + o(G(n)).

If (5.1) diverges for all ϑ ∈ R then∑
g∈G
∂(g)=n

f̃(g) = o(G(n)).

Proof. We use Theorem 2. The case (i) of completely multiplicative func-
tions is obvious (see (1.10)). If f̃ is described by (ii) we write

F (y) =
∏
p

∂(p)>
log 2
log q

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)
.
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Put
F (y) = Π1(y)Π2(y),

where

Π1(y) :=
∏

∂(p)> log 2
log q

(1− f̃(p)(q−1y)∂(p))−1,

Π2(y) :=
∏

∂(p)> log 2
log q

(
1 +

∞∑
k=2

(f̃(pk)− f̃(pk−1))f̃(p)(q−1y)k∂(p)

)

and define λf,1 and λf,2, respectively, by

Π1(y) = exp

( ∞∑
m=1

λf,1(m)

m
ym

)
,

Π2(y) = exp

( ∞∑
m=1

λf,2(m)

m
ym

)
.

(5.2)

Obviously (cf. (1.10)), |λf,1(m)| ≤ λ(m) (m ∈ N), and we show

(5.3)

∞∑
m=1

|λf,2(m)|
m

<∞.

Consider the product Π2(y) for |y| < q1/2. We have

∑
∂(p)> log 2

log q

∞∑
k=2

∣∣∣(f̃(pk)− f̃(pk−1))f̃(p)(q−1y)k∂(p)
∣∣∣ =: Σ1 + Σ2,

where

Σ1 :=
∑

log 2
log q<∂(p)<

log 3
log q

∞∑
k=2

∣∣∣(f̃(pk)− f̃(pk−1))f̃(p)(q−1y)k∂(p)
∣∣∣

and

Σ2 :=
∑

∂(p)≥ log 3
log q

∞∑
k=2

∣∣∣(f̃(pk)− f̃(pk−1))f̃(p)(q−1y)k∂(p)
∣∣∣ .
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The sum Σ1 can be estimated by

Σ1 �
∞∑
k=2

(q−1|y|)k � 1

1− (q−1|y|)
<∞

if |y| < q1/2 since there are only finitely many primes p with log 2
log q < ∂(p) < log 3

log q .

Concerning Σ2 we have

Σ2 ≤
∑

∂(p)≥ log 3
log q

2(q−1|y|)2∂(p)

1− 3−1/2
�

∞∑
n=0

G(n)q−2n|y|2n � 1

for |y| < q1/2. Hence the infinite product Π2(y) converges absolutely for |y| <
< q1/2. Further Π2(y) 6= 0 for |y| ≤ 1, since∣∣∣∣∣1 +

∞∑
k=2

(f̃(pk)− f̃(pk−1))f̃(p)(q−1y)k∂(p)

∣∣∣∣∣ ≥ 1− 2

∞∑
k=2

(q−1|y|)k∂(p) > 0

if ∂(p) > log 2
log q and |y| ≤ 1. Thus (5.3) holds. Applying Theorem 2 gives

Theorem 4. �

Remark 7. The condition in (ii) may be weakened. Then we arrive at

Corollary 1. Let (G, ∂) be as in Theorem 4. Put γ(n) := G(n)q−n and
assume γ(n)− γ(n− 1) = o(γ(n)) as n→∞. Then, if |f̃ | ≤ 1 is multiplicative
and f̃(pk) 6= 0 for some prime power pk with ∂(p) ≤ log 2

log q , the assertions of
Theorem 4 hold.

Since the (finite) product

∏
p

∂(p)≤ log 2
log q

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)

is holomorphic for |y| < q the assertion of Corollary 1 follows immediately.

Let now g̃ : G → R be a (real-valued) additive function. Then, by the
continuity theorem of Lévy, the distribution functions

(5.4) Gn(x) :=
1

G(n)
#{g ∈ G : ∂(g) = n, g̃(g) ≤ x}
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tend to a limit distribution G(x),

(5.5) Gn ⇒ G,

if and only if there exists a function ϕ(t) which is continuous at t = 0 such that

1

G(n)

∑
g∈G
∂(g)=n

eitg̃(g) → ϕ(t)

as n→∞ for t ∈ R. Moreover, ϕ(t) is the characteristic function of G(x). We
note that the function f̃(g) := eitg̃(g) is multiplicative and |f̃(g)| = 1 since g̃(g)
is real-valued and additive.

A direct application of Theorem 4 will lead to an analogue of the Erdős-
Wintner theorem giving necessary and sufficient conditions for the weak con-
vergence (5.5).

Here we consider the problem to determine when a given additive function
g̃ may be renormalised by sequences α(n) and β(n) so that as n → ∞ the
frequencies

1

G(n)
#

{
g ∈ G, ∂(g) = n :

g̃(g)− α(n)

β(n)
≤ x

}
possess a weak limit. In particular we obtain an analogue of the celebrated
theorem of Erdős and Kac.

Remark 8. A simpler and a little bit easier problem is to characterize
all additive functions g̃ which, after a suitable translation, possess a limiting
distribution. Indeed, in order that there exists a sequence {α(n)}, n ∈ N, for
which the frequencies

1

G(n)
#{g ∈ G, ∂(g) = n : g̃(g)− α(n) ≤ n}

converge to a weak limit as n → ∞ one can give necessary and sufficient
conditions. This result can be used, for example, to describe the class of mul-
tiplicative functions which are uniformly summable (cf. Remark 11). We shall
come back to this topic at a different place.

Put

(5.6) α(n) :=
∑
p∈P
∂(p)≤n

g̃(p)q−∂(p)
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and

(5.7) β2(n) :=
∑
p∈P
∂(p)≤n

g̃2(p)q−∂(p).

We shall assume that the Feller-Lindeberg condition holds, i.e. for each fixed
ε > 0, assume

(5.8)
1

β2(n)

∑
∂(p)≤n

|g̃(p)|≥εβ(n)

g̃2(p)q−∂(p) → 0 as n→∞.

To ease notational difficulties we shall confine ourselves to the case of com-
pletely additive functions, so that we can apply Theorem 1 with the condition
λf = λf,1. The general case can easily be done following the proof of Theorem 1.
We show

Theorem 5. Let (G, ∂) be an additive arithmetical semigroup satisfying the
conditions of Theorem 4. Let g̃ be a real-valued completely additive function on
G such that (5.8) holds. Then

1

G(n)
#

{
g ∈ G, ∂(g) = n :

g̃(g)− α(n)

β(n)
≤ x

}
→ 1√

2π

x∫
−∞

e−t
2/2 dt

as n→∞.

First we prove some properties of β(n).

Lemma 7. The following two assertions are equivalent.

(i) There exists ε(n)↘ 0 such that, if ε(n)n ≤ u ≤ n,

β(u)

β(n)
→ 1 as n→∞.

(ii) For each fixed positive number c

β(cn)

β(n)
→ 1 as n→∞.

Proof. Assume (i). Since β(n) is non-decreasing and if 0 < c ≤ 1 choose u
such that ε(n)n ≤ u < cn ≤ n. Then

β(u)

β(n)
≤ β(cn)

β(n)
≤ 1,
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and (ii) follows. If 1 < c, then 0 < 1/c < 1, and we have

β(cn)

β(n)
=

(
β( 1

c (cn))

β(cn)

)−1
→ 1

as n→∞.

Next, assume (ii). Then for each k ≤ n there exist xk such that

1− 1

k
<
β( 1

kx)

β(x)
≤ 1.

Let 1 ≤ x1 < x2 < . . . and xk → ∞ as k → ∞. Put n0 = 1, nk = xk + xk+1

(k ∈ N) and

ε(n) =
1

k
if nk−1 ≤ n < nk.

Then, if nk−1 ≤ n < nk and ε(n)n ≤ u ≤ n

1− 1

k
≤
β( 1

knk−1)

β(n)
≤ β(u)

β(n)
≤ 1

which proves (i). �

Next we obtain

Lemma 8. Assume that the Feller-Lindeberg condition (5.8) holds. Then
assertion (i) of Lemma 7 is valid.

Proof. It is enough to show that (ii) of Lemma 7 holds for 0 < c ≤ 1. Let
ε > 0 be fixed. Then

0 ≤ 1− β2(cn)

β2(n)
=

1

β2(n)

∑
p∈P

cn<∂(p)≤n
|g̃(p)|≤εβ(n)

g̃2(p)q−∂(p)+

+
1

β2(n)

∑
p∈P

cn<∂(p)≤n
|g̃(p)|>εβ(n)

g̃2(p)q−∂(p) ≤

≤ ε2
∑

cn<∂(p)≤n

q−∂(p) + oε(1) =

= ε2
∑

cn<m≤n

q−nP (n) + oε(1).

Since q−mP (m) = O(1/m) the last sum can be estimated by

�
∑

cn<m≤n

1

m
= log

1

c
+O((cn)−1).
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Therefore

lim sup
n→∞

(
1− β2(cn)

β2(n)

)
� ε2 log

1

c
.

Letting ε→ 0 shows

lim
n→∞

(
1− β2(cn)

β2(n)

)
= 0

which ends the proof of Lemma 8. �

Put, if m ≤ n,

(5.9) fn(m) = q−m
∑
g∈G

∂(g)=m

eitg̃(g)/β(n).

We shall show that

(5.10)
fn(n)

G(n)
= exp

(
it
α(n)

β(n)
− t2

2

)
{1 + o(1)} as n→∞

which proves Theorem 5. �

Since g̃(g) is completely additive the function eitg̃(g)/β(n) is completely mul-
tiplicative and

(5.11) Fn(y) :=

∞∑
m=1

fn(m)ym = exp

( ∞∑
m=1

λf,n(m)

m
ym

)

implies

An : = exp

(
n∑

m=1

λf,n(m)− λ(m)

m

)
=

= exp

 ∑
∂(p)≤n

q−∂(p)(eitg̃(p)/β(n) − 1) +

+
∑
m≤n

q−m
∑
d|m
d≤m

2

d
∑

∂(p)=d

(eitg̃(p)/β(n) − 1)

 =

= exp(Σ1 + Σ2).

(5.12)
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Split the sum Σ2 into two parts, where m ≤ m0 and m > m0, respectively.
The sum over m ≥ m0 can be estimated by

�
∑
m>m0

q−m/2m% logm ≤ ε

if m0 is big enough. Concerning m ≤ m0 observe that

eitg̃(p)/β(n) − 1→ 0 as n→∞

if ∂(p) ≤ m0. Thus

Σ2 = o(1).

By Lemma 7 and Lemma 8

Σ1 = it
α(n)

β(n)
− t2

2
+ o(1) as n→∞

uniformly in |t| ≤ T. Then (5.12) gives

An = exp

∑
m≤n

λf,n(m)− λ(m)

m

 =

= exp

(
it
α(n)

β(n)
− t2

2
+ o(1)

)
.

(5.13)

In the generating function (5.11) we may choose

λf,n(m) = λ(m) = 0 if m > n

since these values do not influence fn(n).

Now by (5.13) condition (1.26) is satisfied for a = 0 where we choose λf,1 =
= λf,n. Again by (5.13)∑

m≤n

(λ(m)− Reλf,n(m)) = o(n)

which implies (see (4.1))∑
m≤n

|λ(m)− λf,n(m)| = o(n)

and this implies (1.27). Thus Theorem 1 gives (5.10) and Theorem 5 holds. �
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Corollary 2. Let (G, ∂) be an additive arithmetical semigroup satisfying
the conditions of Theorem 3. Let g̃ be a completely additive function on G such
that |g̃(p)| = O(1) for all primes p, and such that β(n)→∞ as n→∞. Then

1

G(n)
#{g ∈ G, ∂(g) = n : g̃(g)− α(n) ≤ xβ(n)} → 1√

2π

x∫
−∞

e−t
2/2 dt

uniformly as n→∞.

Indeed, in the case of Corollary 2, εβ(n) → ∞ as n → ∞ for each ε > 0,
and hence ∑

∂(p)≤n
|g̃(p)|≥εβ(n)

g̃2(p)q−∂(p) = 0

for n sufficiently large. As an interesting application of Corollary 2, we consider
the function given by

g̃(g) = Ω̄(g) =
∑
p∈P
pk||g

k,

the total number of prime divisors of g. Then

α(n) = β2(n) =
∑

∂(p)≤n

q−∂(p) =
∑
m≤n

q−mP (m),

and by (1.8) and (1.20),

α(n) = β2(n) = δ log n+ o(log n).

Thus Corollary 2 for g̃(g) = Ω̄(g) is just the analogue result of the Erdős-Kac
theorem in probabilistic number theory.

Remark 9. If the power series

(5.14) logH(y) =

∞∑
n=0

dny
n |y| < 1

converges for y = 1 then, as n→∞,

α(n) = β2(n) =
∑
m≤n

q−mP (m) = δ log n+ c+ o(1)

and the following result holds true.
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Corollary 3. Assume that (G, ∂) satisfies the conditions of Theorem 4
such that the series (5.14) converges for y = 1. Then

1

G(n)
#

{
g ∈ G, ∂(g) = n :

Ω̄(g)− log n√
log n

≤ x
}
→ 1√

2π

x∫
−∞

e−t
2/2 dt.

Remark 10. The condition λf (m) = O(1) can be omitted if γ(n) � nρ

with ρ ≥ 0. For, let (see (1.22))

F (y) = FI(y) exp

 ∞∑
m=1

|λf,2(m)|≤K

λf,2(m)

m
ym

 exp

 ∞∑
m=1

|λf,2(m)|>K

λf,2(m)

m
ym

 =

=

∞∑
n=0

fK(n)yn exp

 ∞∑
m=1

|λf,2(m)|>K

λf,2(m)

m
ym

 =:

=

∞∑
n=0

fK(n)yn
∞∑
n=0

any
n.

Then Theorem 1 and Theorem 2, respectively, may be applied to fK(n).

Let ε > 0 and choose K > 0 such that

exp

 ∞∑
m=1

|λf,2(m)|>K

|λf,2(m)|
m

 = 1 + ϑε,

where 0 ≤ ϑ ≤ 1. Then, since a0 = 1 and am = 0 for 1 < m ≤ m0(K) and∑
m>m0

|am| ≤ ε,

|f(n)− fK(n)| =

∣∣∣∣∣
n∑

m=m0

amfK(n−m)

∣∣∣∣∣ ≤ ε max
m≤n−m0

|fK(m)| � εγ(n).

Thus the following result holds.

Corollary 4. Let Z be an element of the exp-log class F where

γ(n) � n% (% ≥ 0)
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as n → ∞. Let F (y) in (1.4) satisfy (1.22), (1.23). Then the assertions of
Theorem 1 and Theorem 2 are valid.

Remark 11. For a function f̃ : G 7→ C we introduce

M(n, f̃) :=
1

G(n)

∑
g∈G
∂(g)=n

f̃(g)

and define, if 1 ≤ α <∞ the seminorm

||f̃ ||α :=

(
lim sup
n→∞

M(n, |f̃ |α)

)1/α

.

Let
Lα := {f̃ : G 7→ C; ||f̃ ||α <∞}

denote the linear space of functions on G with bounded seminorm ||f̃ ||α. If

`∞(G) :=

{
f̃ : G 7→ C; sup

g∈G
|f̃(g)| <∞

}
is the space of all bounded functions on G then we introduce the space L∗(G)
of uniformly summable functions on G as the || · ||1-closure of `∞(G). Obviously
f̃ ∈ L∗ if and only if

lim
K→∞

sup
n≥1

M(n, |f̃K |) = 0,

where

f̃K(g) =

f̃(g) if |f̃(g)| ≥ K,

0 otherwise.

It is easy to show that if 1 < α <∞

`∞(G) $ Lα $ L∗ $ L1.

It is worthwhile to give a characterization of multiplicative functions on G
corresponding to that which was proved in the case of multiplicative functions
on N (see Indlekofer [11], [12] and [13]). A description of multiplicative func-
tions f̃ ∈ L∗ on arithmetical semigroups G satisfying G(n) ∼ Aqn was done by
Wehmeier in his thesis [24].

Here we show how our method can be used to deal with multiplicative
functions which are bounded on prime powers.
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For this let f̃ : G 7→ C be multiplicative such that, for some constant c > 1,

(5.15) |f̃(pk)| ≤ c for all prime powers pk.

Then we prove

Lemma 9. Let (G, ∂) be an additive arithmetical semigroup satisfying
G(n)� nρqn where q > 1 and ρ ∈ R. Assume that f̃ is multiplicative satisfying
(5.15). Then there exists m0 ∈ N such that

Π(y) =
∏
p

∂(p)≥m0

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)
=

= exp

( ∞∑
m=m0

λf (m)

m
ym

)
(|y| < 1),

where
λf (m)

m
=

∑
p

∂(p)=m

f̃(p)q−m +O
(
q−

m
4

)
as m→∞.

Proof. Put

Π(y) =
∏
p

∂(p)≥m0

(1− f̃(p)q−∂(p)y∂(p))−1×

×
∏
p

∂(p)≥m0

(
1 +

∞∑
k=2

(f̃(pk)− f̃(p)f̃(pk−1))q−k∂(p)yk∂(p)

)
=:

=: Π1(y)Π2(y).

Obviously

log Π1(y) =
∑
p

∂(p)≥m0

f̃(p)q−∂(p)y∂(p) +
∑
p

∂(p)≥m0

∞∑
k=2

(f̃(p))k

k
q−k∂(p)yk∂(p) =

=

∞∑
m=m0


∑
p

∂(p)=m

f̃(p) +
∑
k|m

2≤k≤ m
m0

1

k

∑
p

∂(p)=m
k

(f̃(p))k

 q−mym.

(5.16)
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The last sum can be estimated by

�
∑
k|m

2≤k≤ m
m0

ck

k
m|ρ|q

m
2 �

� q
3
4m

(5.17)

if m0 is large enough.

Now, we may choose m0 such that Π2(y) is different from zero and holo-
morphic for |y| < q1/2. Then log Π2(y) is holomorphic for |y| < q1/2, too, and
obviously

(5.18) log Π2(y) =
∑
m≥m0

O
(
q−m( 1

2−ε)
)
ym

for every ε > 0. Collecting (5.16), (5.17) and (5.18) gives the assertion of
Lemma 9.

Motivated by the above mentioned results for multiplicative functions on N
(see [11]) we shall assume that

(5.19)
∑
p

(|f̃(p)| − 1)2

q∂(p)
<∞

and f̃ ∈ L1, i.e.

(5.20) M(n, |f̃ |)� 1.

Using the notation of Lemma 9 we define the multiplicative function f̃1 by

(5.21) f̃1(pk) =

f̃(pk) if ∂(p) ≥ m0,

0 if ∂(p) < m0.

Clearly M(n, |f̃1|) ≤M(n, |f̃ |), and (5.20) implies

∞∑
n=0

∑
g∈G
∂(g)=n

|f̃1(g)|q−n|y|n � Z(|y|)
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which shows, by Lemma 9 and (1.6),

(5.22)
∑
p

|f̃(p)| − 1

q∂(p)
r∂(p) ≤ c1 with some c1 > 0

uniformly as r → 1−.

Under these conditions we have

Theorem 6. Let (G, ∂) be as in Theorem 4. Let f̃ be multiplicative and
assume (5.19) and (5.20). Let f̃1 satisfy (5.21) and (5.22). Then, as n→∞,

M(n, |f̃1|) = c2 exp

 ∑
m0≤∂(p)≤n

|f̃(p)| − 1

q∂(p)

+ o(1)

with some positive constant c2.

The proof is the same as that for Theorem 1. We observe that Lemma 1
holds because of (5.19), and that the estimate of Lemma 3 is valid, since

− 2
∑
p

∂(p)≥m0

1− |f̃(p)|Re eit∂(p)

q∂(p)
r∂(p)+

+
∑
p

∂(p)≥m0

1− Re eit∂(p)

q∂(p)
r∂(p) ≤

≤ 2
∑
p

∂(p)≥m0

|f̃(p)| − 1

q∂(p)
r∂(p) �

� 1.

Here we made use of the relations

1− Re e−it∂(p) =
1

2
|1− e−it∂(p)|2 ≤

≤ |1− |f̃(p)||2 + |1− |f̃(p)|eit∂(p)|2

and
|1− |f̃(p)|eit∂(p)|2 = |f̃(p)|2 − 1 + 2(1− |f̃(p)|Re eit∂(p)).

The further details are left to the reader.

Combining Theorem 2 and Theorem 6 will give
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Theorem 7. Let (G, ∂) and f̃1 as in Theorem 6. Then the following two
assertions hold.

(i) Let

(5.23)
∑
p

∂(p)≥m0

|f̃(p)| − Re f̃(p)ei∂(p)a

q∂(p)

converge for some a ∈ R. Then

M(n, f̃1) = c(a) exp

−ina+
∑
p

m0≤∂(p)≤n

f̃(p)ei∂(p)a − 1

q∂(p)

+ o(1)

with some c(a) which can be given explicitly.

(ii) Let (5.23) diverge for all a ∈ R. Then

M(n, f̃1) = o(1) as n→∞.

The proof is left to the reader.

An easy consequence is the following

Corollary 5. Let (G, ∂) and f̃1 as in Theorem 7. Assume in addition
γ(n)− γ(n− 1) = o(γ(n)). Then, if the mean value of f̃1 exists the same holds
for f̃ .

Since the (finite) product

∏
p

∂(p)<m0

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)

is holomorphic for |y| < q and therefore absolutely convergent for |y| ≤ q 1
2 , say,

then the assertion of Corollary 5 follows immediately.

6. Applications to decomposable combinatorial structures

In this chapter we use the notation of [2]. Let P be a class of combinatorial
structures. A class A is said to be decomposable over P if each of its elements
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may be uniquely decomposed into components of elements of P. Given an
instance of size n, the most basic description reports only the number k of
components. We are interested in the full component spectrum, specifying
how many components there are of size one, two, three and so on. For a given
combinatorial structure A, the natural model assumes that size n = |α|, α ∈ A
is given and that all p(n) instances α ∈ A of size n are equally likely. For such
a random instance, we write Ci for the number of components of size i, so that
the stochastic process

(6.1) C(n) := (C1, C2, . . . , Cn)

specifies the entire component size counting process and the random variable

(6.2) Ω(n) := C1 + C2 + . . .+ Cn

is the total number of components.

In the case of labelled structures, an element of A is formed by taking a
multiset of (labelled) elements of P and performing all consistent relabellings.
If there are mi possible structures of size i in P then the combinatorial structure
is determined by the sequence m1,m2, . . . . In general, with

(6.3) M(y) :=

∞∑
i=1

miy
i/i!, P (y) :=

∞∑
n=0

p(n)yn/n!

labelled structures (or assemblies) are characterized by the exponential formula

(6.4) P (y) = exp(M(y)).

For unlabelled structures, we have the multiset construction, where elements
of A are obtained by taking arbitrary sets (with repetitions allowed) of elements
of P. If p(n) being the number of multisets of weight n,

(6.5) P (y) :=

∞∑
n=0

p(n)yn and M(y) :=

∞∑
i=1

miy
i

we have

(6.6) P (y) =

∞∏
i=1

(1− yi)−mi = exp

 ∞∑
j=1

M(yj)/j

 .

The class of selections is like multisets, as described above, except that all
components must be distinct. Since multisets can be seen as arithmetical semi-
groups, a natural description of selections would be “the subset of all squarefree
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elements in an additive arithmetical semigroup”. With p(n) being the number
of sets of weight n

(6.7) P (y) :=

∞∑
n=0

p(n)yn and M(y) :=

∞∑
i=1

miy
i

we have

(6.8) P (y) =

∞∏
i=1

(1 + yi)mi = exp

 ∞∑
j=1

M(−yj)/j

 .

For more details see [2], Chapter 2.

We define a completely multiplicative function f̃ : A → C as follows: Let
{bj} be a sequence of complex numbers. For α ∈ A of size n we put

(6.9) f̃(α) =

n∏
j=1

b
Cj(α)
j .

Then f̃ is called completely multiplicative.

In a corresponding way we define completely additive functions g̃ by the
linear combination

(6.10) g̃(α) :=

n∑
j=1

ajCj(α) if α is of sizen,

where {aj} is a sequence of complex numbers. The special choice aj = 1, j ∈ N,
leads to g̃ = Ω and

Ω(α) = Ω(n)(α) =

n∑
j=1

Cj(α) if α is of sizen.

Put
p(n; f̃) :=

∑
α∈A
|α|=n

f̃(α).

(i) In the case of assemblies we put

M(y; f̃) :=

∞∑
i=1

mibiy
i/i!
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and obtain

P (y; f̃) =

∞∑
n=0

p(n; f̃)yn/n! = exp(M(y; f̃)).

(ii) For multisets we put

M(y; f̃) :=

∞∑
i=1

mibiy
i

and conclude

P (y; f̃) =

∞∑
n=0

p(n; f̃)yn =

=

∞∏
i=1

(1− biyi)−mi =

= exp

 ∞∑
j=1

M(yj ; f̃)/j

 .

(iii) Correspondingly for selections we have

M(y; f̃) :=

∞∑
i=1

mibiy
i

and

P (y; f̃) =

∞∏
i=1

(1 + biy
i)mi =

= exp

 ∞∑
j=1

M(−yj ; f̃)/j

 .

Assume that P belongs to the exp-log class F . Then the results of The-
orems 1-5 may be applied to investigate the behaviour p(n, f)/p(n) as
n→∞. Especially, corresponding to Corollaries 1 and 2 we shall obtain
generalizations of Proposition IX.14 et al. from [6]. As a typical result
we formulate

Theorem 8. Let P be a function of the exp-log class F and g̃ be a real-
valued additive function. In order that the distribution functions

1

p(n)
#{α ∈ A, |α| = n : g̃(α) ≤ x}
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tend to a limit law as n→∞ it is necessary and sufficient that the series

∞∑
m=1
|am|≤1

amλ(m)

m
,

∞∑
m=1
|am|≤1

am
2λ(m)

m
,

∞∑
m=1
|am|>1

λ(m)

m

converge.

The remarks given in §5 may be transferred cum grano salis to investigations
of exp-log schemas. We shall come back to this topic somewhere else.
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