FOURIER-VILENKIN SERIES AND ANALOGS OF BESOV AND SOBOLEV CLASSES

S.S. Volosivets (Saratov, Russia)
Dedicated to professor Ferenc Schipp on his 70th birthday and to professor Péter Simon on his 60th birthday

Abstract

In this work we prove several theorems connected with embeddings of \mathbf{P}-adic generalized Besov spaces and Sobolev spaces in each other. The sharpness of these results in a certain sense is shown. Trigonometrical analogs of two main results were previously proved by M.K. Potapov.

1. Introduction

Let $\mathbf{P}=\left\{p_{n}\right\}_{n=1}^{\infty}$ be a sequence of natural numbers such that $2 \leq p_{n} \leq N$, $m_{0}=1$ and $m_{n}=p_{1} \ldots p_{n}$ for $n \in \mathbf{N}=\{1,2, \ldots\}$. Every number $x \in[0,1)$ can be represented as

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} x_{n} / m_{n}, \quad x_{n} \in \mathbb{Z}, \quad 0 \leq x_{n}<p_{n} \tag{1}
\end{equation*}
$$

If $x=k / m_{i}, k, i \in \mathbb{N}$, then we take extension with finite number of nonzero x_{n}. Every $k \in \mathbf{Z}_{+}=\{0,1, \ldots\}$ can be expressed uniquely in the form

$$
\begin{equation*}
k=\sum_{i=1}^{\infty} k_{i} m_{i-1}, \quad k_{i} \in \mathbb{Z}, \quad 0 \leq k_{i}<p_{i} . \tag{2}
\end{equation*}
$$

For $x \in[0,1)$ and $k \in \mathbb{Z}_{+}$, let us define $\chi_{k}(x)$ by the formula

$$
\chi_{k}(x)=\exp \left(2 \pi i\left(\sum_{j=1}^{\infty} x_{j} k_{j} / p_{j}\right)\right)
$$

It is well known that the Vilenkin system $\left\{\chi_{k}(x)\right\}_{k=0}^{\infty}$ is an orthonormal and complete system in $L[0,1)$ (see $[5, \S 1.5]$). In the case $p_{n} \equiv 2$ it coincides with the Walsh system. Let by definition for $f \in L[0,1)$

$$
\begin{gathered}
\hat{f}(n)=\int_{0}^{1} f(t) \overline{\chi_{n}(t)} d t, \quad n \in \mathbb{Z}_{+}, \quad S_{n}(f)(x)=\sum_{k=0}^{n-1} \hat{f}(k) \chi_{k}(x), \quad n \in \mathbb{N} \\
\Delta_{n}(f)(x)=S_{m_{n}}(f)(x)-S_{m_{n-1}}(f)(x), \quad n \in \mathbb{N}, \quad \Delta_{0}(f)(x)=\hat{f}(0)
\end{gathered}
$$

The sum $\sum_{k=0}^{n-1} \chi_{k}(x)=: D_{n}(x)$ is called the n-th Dirichlet kernel. By the generalized Paley lemma $D_{m_{n}}(x)=m_{n} X_{\left[0,1 / m_{n}\right)}$, where $n \in \mathbb{Z}_{+}$and X_{E} is the indicator of the set E. From this identity we deduce that

$$
S_{m_{n}}(f)(x)=m_{n} \int_{I_{k}^{n}} f(t) d t
$$

$$
\text { for } \quad x \in I_{k}^{n}=\left[k / m_{n},(k+1) / m_{n}\right), \quad n \in \mathbb{N}, \quad k=0,1, \ldots, m_{n}-1
$$

In addition, $\left|D_{n}(x)\right| \leq C_{1} \min (n, 1 / x)$ for $x \in(0,1)$ (see $[5, \S 1.5]$ or $[1, \mathrm{Ch}$. $4, \S 3])$. If $\|f\|_{p}=\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / p}$ is the usual norm in $L^{p}[0,1), 1 \leq p<\infty$, then we have for $n \in \mathbb{Z}_{+}$and $1<p<\infty$

$$
\begin{equation*}
\left\|D_{n}\right\|_{p}^{p} \leq C_{1}\left(\int_{0}^{1 / n} n^{p} d t+\int_{1 / n}^{1} t^{-p} d t\right) \leq C_{2} n^{p-1} \tag{3}
\end{equation*}
$$

The maximal function $M(f)$ is defined for $f \in L^{1}[0,1)$ by $M(f)(x)=$ $=\sup _{n \in \mathbb{Z}_{+}}\left|S_{m_{n}}(f)(x)\right|$. The \mathbf{P}-adic Hardy space $H(\mathbf{P},[0,1))$ consists of functions $f \in L^{1}[0,1)$ such that $\|f\|_{H}=\|M(f)\|_{1}<\infty$. If $x, y \in[0,1)$ are represented in the form (1), then $x \oplus y=z=\sum_{i=1}^{\infty} z_{i} / m_{i}$, where $z_{i} \in \mathbb{Z}, 0 \leq z_{i}<p_{i}$
and $z_{i}=x_{i}+y_{i} \quad\left(\bmod p_{i}\right)$. The inverse operation \ominus is defined similarly. Let us introduce a modulus of continuity in $L^{p}[0,1), 1 \leq p<\infty$, by the formula $\omega^{*}(f, t)_{p}=\sup \left\{\|f(x \ominus h)-f(x)\|_{p}: 0<h<t\right\}, t \in[0,1]$. In addition, we will denote $\omega^{*}\left(f, 1 / m_{n}\right)_{p}$ by $\omega_{n}(f)_{p}$. If $\left\{\omega_{n}\right\}_{n=0}^{\infty}$ is decreasing to zero, then we define $H_{p}^{\omega}=\left\{f \in L^{p}[0,1): \omega_{n}(f)_{p} \leq C \omega_{n}, n \in \mathbb{Z}_{+}\right\}$. Let $\mathcal{P}_{n}=\{f \in L[0,1): \hat{f}(k)=0, k \geq n\}, E_{n}(f)_{p}=\inf \left\{\left\|f-t_{n}\right\|_{p}: t_{n} \in \mathcal{P}_{n}\right\}$ for $n \in \mathbb{N}$. Further, we will often use A.V. Efimov's inequality [5, §10.5]

$$
\begin{equation*}
E_{m_{n}}(f)_{p} \leq\left\|f-S_{m_{n}}(f)\right\|_{p} \leq \omega_{n}(f)_{p} \leq 2 E_{m_{n}}(f)_{p}, \quad 1 \leq p<\infty, \quad n \in \mathbb{Z}_{+} \tag{4}
\end{equation*}
$$

In a similar way we define $\omega^{*}(f, t)_{H}, \omega_{n}(f)_{H}, H_{H}^{\omega}$ and $E_{n}(f)_{H}$, and have (see [18])

$$
E_{m_{n}}(f)_{H} \leq\left\|f-S_{m_{n}}(f)\right\|_{H} \leq \omega_{n}(f)_{H} \leq 2 E_{m_{n}}(f)_{H}, \quad n \in \mathbb{Z}_{+}
$$

Let $\alpha(t)$ be a measurable and positive function on $(0,1)$ such that $\alpha \in$ $\in L[\delta, 1)$ for all $0<\delta<1$. Then we can introduce two sequences $\{\beta(n)\}_{n=0}^{\infty}$, $\{\mu(n)\}_{n=1}^{\infty}$ by formulas $\beta(n)=\int_{1 /(n+1)}^{1} \alpha(t) d t$ for $n \in \mathbb{N}, \beta(0)=1$, and $\mu(n)=\int_{1 / m_{n}}^{1 / m_{n-1}} \alpha(t) d t, n \in \mathbb{N}$. If $f \in L^{p}[0,1), 1 \leq p, \theta<\infty$ and the series $\sum_{n=1}^{\infty} \beta^{1 / \theta}(n) \hat{f}(n) \chi_{n}(x)$ is Fourier-Vilenkin series of a function $\varphi(f)=\varphi(\theta, f) \in$ $\in L^{p}[0,1)$, then $f \in W(\theta, p, \alpha)=W(\theta, p, \alpha, \mathbf{P})$. Similarly, if $f \in H(\mathbf{P},[0,1))$ and the series $\sum_{n=1}^{\infty} \beta^{1 / \theta}\left(m_{n}-1\right) \sum_{k=m_{n}}^{m_{n+1}-1} \hat{f}(k) \chi_{k}(x)$ is the Fourier-Vilenkin series of a function $\psi(f) \in H(\mathbf{P},[0,1))$, then $f \in W(\theta, H, \alpha)$. By definition, for $p, \theta \in[1, \infty)$

$$
B(\theta, p, \alpha)=\left\{f \in L^{p}[0,1): I_{\theta, p, \alpha}:=\left(\int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t\right)^{1 / \theta}<\infty\right\}
$$

The quantity $I_{\theta, H, \alpha}$ and the space $B(\theta, H, \alpha)$ are introduced in a similar way.
Further we assume that for $\alpha(t)$ the δ_{2}-condition

$$
\begin{equation*}
\int_{\delta / 2}^{\delta} \alpha(t) d t \leq C \int_{\delta}^{2 \delta} \alpha(t) d t \leq C \int_{\delta}^{1} \alpha(t) d t, \quad \delta \in(0,1 / 2), C>0 \tag{5}
\end{equation*}
$$

is satisfied. If $p_{n} \leq N \leq 2^{a}, n \in \mathbb{N}$, then it is easy to see that the δ_{2}-condition (5) implies the inequality

$$
\begin{equation*}
\mu(n+1) \leq \int_{2^{-a} / m_{n}}^{1 / m_{n}} \alpha(t) d t \leq \sum_{i=1}^{a} C^{i} \int_{1 / m_{n}}^{2 / m_{n}} \alpha(t) d t \leq A(C) \mu(n) \tag{6}
\end{equation*}
$$

Finally, from (6) one can deduce that for $m_{k} \leq n<m_{k+1}, k \in \mathbb{Z}_{+}$,

$$
\begin{align*}
\beta(n) & <\beta\left(m_{k+1}\right) \leq\left(A^{k}+\ldots+1\right) \mu(1) \leq C_{1} A^{k} \leq \\
& \leq C_{1} 2^{k \gamma} \leq C_{1} m_{k}^{\gamma} \leq C_{1} n^{\gamma}, \quad \gamma=\log _{2} A \tag{7}
\end{align*}
$$

We will consider several classes of generalized monotone sequences. If $\lim _{n \rightarrow \infty} a_{n}=0$ and $a_{n} n^{-\tau}$ decreases for some $\tau \geq 0$ and for all $n \geq 1$, then $\left\{a_{n}\right\}_{n=0}^{\infty}$ is called quasi-monotone $\left(\left\{a_{n}\right\}_{n=0}^{\infty} \in A_{\tau}\right)$. If $\lim _{n \rightarrow \infty} a_{n}=0$ and $a_{n} n^{\tau}$ increases for some $\tau>0$ and for all $n \in \mathbb{Z}_{+}$, then $\left\{a_{n}\right\}_{n=0}^{\infty} \in A_{-\tau}$. The classes A_{τ} were introduced by O. Szász [17] and A.A. Konyushkov [8] in the case $\tau \geq 0$ and by G.K. Lebed' [9] in the case $\tau<0$. If $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right| \leq C a_{n}$ for all $n \in \mathbb{Z}_{+}$, then $\left\{a_{n}\right\}_{n=0}^{\infty}$ belongs to the class $R B V S$ introduced by L. Leindler [10]. It is easy to see that condition $\left\{a_{n}\right\}_{n=0}^{\infty} \in R B V S$ implies the inequality $a_{n} \leq C a_{m}$ for all $m \leq n$.

The trigonometric counterparts of $B(\theta, p, \alpha)$ and $W(\theta, p, \alpha)$ are generalizations of O.V. Besov and S.L. Sobolev classes of 2π-periodic functions. These classes were studied by M.K. Potapov [12], [13]. So, in [12] he investigated embeddings between generalized Besov and Sobolev classes while interrelations between generalized Besov classes may be found in [13]. In this paper we obtain sufficient conditions for embeddings of $B(\theta, p, \alpha)$ and $W(\theta, p, \alpha)$ in each other and show that these conditions are sharp in a certain sense. A criterion for functions with generalized monotone Fourier-Vilenkin coefficients to be in $B\left(\theta, p, t^{-r \theta-1}\right)$ is also given. Note that δ_{2}-condition in the present paper replaces two conditions used by M.K. Potapov.

1. Auxiliary propositions

The first lemma has been proved by C. Watari [21] and generalizes the famous Paley theorem for the Walsh system.

Lemma 1. 1) Let $f \in L^{p}[0,1), 1<p<\infty, \hat{f}(0)=0$ and $Q(f)=$ $=\left(\sum_{n=1}^{\infty}\left|\Delta_{n}(f)(x)\right|^{2}\right)^{1 / 2}$. Then

$$
C_{1}\|Q(f)\|_{p} \leq\|f\|_{p} \leq C_{2}\|Q(f)\|_{p}
$$

2) If for $p \in(1, \infty)$ and for the series $\sum_{n=1}^{\infty} a_{n} \chi_{n}(x)$ it is true that

$$
I_{p}=\left\|\left(\sum_{n=1}^{\infty}\left|\sum_{j=m_{n-1}}^{m_{n}-1} a_{j} \chi_{j}(x)\right|^{2}\right)^{1 / 2}\right\|_{p}<\infty
$$

then this series is the Fourier-Vilenkin series of a function $f \in L^{p}[0,1)$. Moreover, $\|f\|_{p} \leq C_{3} I_{p}$.

Lemma 1^{\prime} extends Lemma 1 to the \mathbf{P}-adic Hardy space corresponding to the case $p=1$. In the dyadic case Lemma 1^{\prime} may be found in $[16, \mathrm{p} .101$, Corollary 4].

Lemma 1^{\prime}. If $f \in L^{1}[0,1), \hat{f}(0)=0$, then

$$
C_{1}\|Q(f)\|_{1} \leq\|f\|_{H} \leq C_{2}\|Q(f)\|_{1}
$$

The following Lemma is an analog of the Marcinkiewicz theorem on multiplicators.

Lemma 2 ([3]). If $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \subset \mathbb{C}$ and there exists $M>0$ with the property

$$
\text { 1) } \left.\quad\left|\lambda_{n}\right| \leq M, \quad 2\right) \quad \sum_{k=m_{n}}^{m_{n+1}-1}\left|\lambda_{k}-\lambda_{k+1}\right| \leq M, \quad n \in \mathbb{Z}_{+}
$$

then for every function $f \in L^{p}[0,1), 1<p<\infty$, the series $\sum_{k=0}^{\infty} \lambda_{k} \hat{f}(k) \chi_{k}(x)$ is the Fourier-Vilenkin series of a function $f_{\lambda} \in L^{p}[0,1)$. Moreover,

$$
\left\|f_{\lambda}\right\|_{p} \leq C(p, N)\|f\|_{p}
$$

Corollary 1. Set $\lambda_{k}=\left(\beta(k) / \beta\left(m_{n-1}-1\right)\right)^{1 / \theta}$ and $\gamma_{k}=\left(\beta\left(m_{n-1}-\right.\right.$ $-1) / \beta(k))^{1 / \theta}$ for $m_{n-1} \leq k<m_{n}, n \in \mathbb{N}$ with λ_{0}, γ_{0} arbitrary. Then the sequences $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ and $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ satisfy the conditions of Lemma 2. In particular, functions $\varphi(f)$ and $\psi(f)$ belong to $L^{p}[0,1), 1<p<\infty$, simultaneously.

Proof. Since $\alpha(t)>0$ and $\{\beta(k)\}_{k=1}^{\infty}$ increases, we see that $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ increases and $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ increases in every interval of the form $\left[m_{n-1}, m_{n}\right)$, $n \in \mathbb{N}$. The boundedness of $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ follows from the δ_{2}-condition, while the boundedness of $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ is evident. The boundedness and monotonicity imply the fulfilment of property 2) in Lemma 2 . The Corollary is proved.

There are different forms of Minkowski inequality in the spaces L^{p} and l^{p}. The two following statements will be used later.

Lemma 3 ([14]). Let $1 \leq p<\infty, a_{n k} \geq 0, n, k \in \mathbb{N}$. Then the inequalities

$$
\begin{align*}
& \left(\sum_{k=1}^{\infty}\left(\sum_{n=1}^{k} a_{n k}\right)^{p}\right)^{1 / p} \leq \sum_{n=1}^{\infty}\left(\sum_{k=n}^{\infty} a_{n k}^{p}\right)^{1 / p} \tag{8}\\
& \left(\sum_{k=1}^{\infty}\left(\sum_{n=k}^{\infty} a_{n k}\right)^{p}\right)^{1 / p} \leq \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} a_{n k}^{p}\right)^{1 / p}
\end{align*}
$$

are valid.
Lemma 4 ([4]). Let $\mathbf{g}=\left\{g_{k}\right\}_{k=1}^{\infty}$, where $g_{k} \in L^{p}[0,1), k \in \mathbb{N}$, and

$$
\|\mathbf{g}\|_{L^{p}(l q)}=\left\|\left(\sum_{k=1}^{\infty}\left|g_{k}\right|^{q}\right)^{1 / q}\right\|_{p}, \quad\|\mathbf{g}\|_{l q\left(L^{p}\right)}=\left(\sum_{k=1}^{\infty}\left\|g_{k}\right\|_{p}^{q}\right)^{1 / q} .
$$

Then the inequality $\|\mathbf{g}\|_{L^{p}\left(l^{2}\right)} \geq\|\mathbf{g}\|_{l^{2}\left(L^{p}\right)}$ is valid for $1<p \leq 2$. If $p \geq 2$, then we have

$$
\|\mathbf{g}\|_{L^{p}\left(l^{2}\right)} \leq\|\mathbf{g}\|_{L^{2}\left(L^{p}\right)}, \quad\|\Delta(f)\|_{L^{p}\left(l^{p}\right)} \leq\|f\|_{p}, \quad \Delta(f)=\left\{\Delta_{n}(f)\right\}_{n=1}^{\infty} .
$$

Remark 1. The last inequality of Lemma 4 is proved in [4] for the Walsh system with help of interpolation and its proof is translated to the case of an arbitrary system $\left\{\chi_{n}\right\}_{n=0}^{\infty}$ of bounded type.

Lemma 5. Let $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ be a subsystem of $\left\{\chi_{k}\right\}_{k=0}^{\infty}$ such that $\varphi_{n}=\chi_{k_{n}}$, $m_{n} \leq k_{n}<m_{n+1}$ and $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. Then the series $\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)$ converges
in every $L^{p}[0,1), 1 \leq p<\infty$, to a function f and the following two double inequalities are valid:

$$
\begin{gather*}
C_{1}\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\|f\|_{p} \leq C_{2}\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}, \tag{10}\\
C_{1}\left(\sum_{n=m_{k}}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq \omega_{k}(f)_{p} \leq 2 C_{2}\left(\sum_{n=m_{k}}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}, \quad k \in \mathbb{N} .
\end{gather*}
$$

Proof. The inequality (10) has been proved by N.Ya. Vilenkin [19]. According to (10) and (4) we have

$$
\omega_{k}(f)_{p} \leq 2\left\|f-S_{m_{k}}(f)\right\|_{p} \leq 2 C_{2}\left(\sum_{n=m_{k}}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

The left inequality in (11) is obtained in a similar way. The lemma is proved.
Lemma 6. Let $1<p<\infty, f \in L^{p}[0,1)$ and either $\{\hat{f}(n)\}_{n=0}^{\infty} \in A_{\tau}$, $\tau \in \mathbb{R}$, or $\{\hat{f}(n)\}_{n=0}^{\infty} \in R B V S$. Then

$$
C_{1} \sum_{i=m_{n+1}}^{\infty}|\hat{f}(i)|^{p} i^{p-2} \leq \omega_{n}^{p}(f)_{p} \leq
$$

$$
\begin{equation*}
\leq C_{2}\left(m_{n}^{p-1}\left|\hat{f}\left(m_{n}\right)\right|^{p}+\sum_{i=m_{n}}^{\infty}|\hat{f}(i)| i^{p-2}\right), \quad n \in \mathbb{N} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
C_{3}\left(|\hat{f}(0)|^{p}+\sum_{i=1}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right) \leq\|f\|_{p}^{p} \leq C_{4}\left(|\hat{f}(0)|^{p}+\sum_{i=1}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right) \tag{13}
\end{equation*}
$$

Proof. The right inequality in (12) has been proved by N.Yu. Agafonova [2]. If $1<p \leq 2$, then the left inequality (12) follows from the famous Paley theorem (see [7, Theorem [6.3.2]]). If $p \geq 2$, then by Lemma 4 we have
$\left\|f-S_{m_{n}}(f)\right\|_{p}^{p} \geq \sum_{k=n+1}^{\infty}\left\|\Delta_{k}\right\|_{p}^{p}$. From conditions $\{\hat{f}(n)\}_{n=0}^{\infty} \in A_{\tau}, \tau \geq 0$, or $\{\hat{f}(n)\}_{n=0}^{\infty} \in R B V S$ we deduce that $(k \in \mathbb{N})$

$$
\begin{aligned}
& \left\|\Delta_{k}(f)\right\|_{p}^{p} \geq \int_{0}^{1 / m_{k}}\left|\Delta_{k}(f)(x)\right|^{p} d x= \\
= & \int_{0}^{1 / m_{k}}\left|\sum_{i=m_{k-1}}^{m_{k}-1} \hat{f}(i)\right|^{p} d x \geq C_{5} m_{k}^{p-1}\left|\hat{f}\left(m_{k}\right)\right|^{p} .
\end{aligned}
$$

Summing these inequalities over k from $n+1$ to ∞, we obtain

$$
\left\|f-S_{m_{n}}(f)\right\|_{p}^{p} \geq C_{5} \sum_{k=n+1}^{\infty} m_{k}^{p-1}\left|\hat{f}\left(m_{k}\right)\right|^{p} \geq C_{6} \sum_{i=m_{n+1}}^{\infty}|\hat{f}(i)|^{p} i^{p-2}
$$

For $\{\hat{f}(n)\}_{n=0}^{\infty} \in A_{\tau}, \tau<0$, we have similarly $\left\|\Delta_{k}(f)\right\|_{p}^{p} \geq C_{7} m_{k}^{p-1}\left|\hat{f}\left(m_{k-1}\right)\right|^{p}$ and $\left\|f-S_{m_{n}}(f)\right\|_{p}^{p} \geq C_{8} \sum_{i=m_{n}}^{\infty}|\hat{f}(i)|^{p} i^{p-2}$. Since $|\hat{f}(i)| \leq\|f\|_{p}, i \in \mathbb{Z}_{+}, p \in$ $\in[1, \infty)$, the inequality (13) is obtained in a similar way. The lemma is proved.

Lemma 7. Let $1 \leq p, \theta<\infty, f \in L^{p}[0,1)$. Then for $n, q \in \mathbb{Z}_{+}, n<q$, the inequality

$$
\begin{equation*}
\sum_{k=n+1}^{q} \mu(k) E_{m_{k}}^{\theta}(f)_{p} \leq \int_{1 / m_{q}}^{1 / m_{n}} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t \leq C_{1} \sum_{k=n}^{q-1} \mu(k) E_{m_{k}}^{\theta}(f)_{p} \tag{14}
\end{equation*}
$$

holds. This statement is also valid for $E_{n}(f)_{H}$ and $\omega^{*}(f, t)_{H}$.
Proof. By (4) and by the fact that $\omega^{*}(f, t)_{p}$ increasing we obtain

$$
\mu(k) E_{m_{k}}^{\theta}(f)_{p} \leq \int_{1 / m_{k}}^{1 / m_{k-1}} \alpha(t)\left(\omega^{*}\left(f, 1 / m_{k}\right)_{p}\right)^{\theta} d t \leq \int_{1 / m_{k}}^{1 / m_{k-1}} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t
$$

Summing these inequalities over k from $n+1$ to q yields the left inequality from (14). Using (4) and (6), we have for all $k \geq 0$

$$
\mu(k) E_{m_{k}}^{\theta}(f)_{p} \geq C_{2} \mu(k+1)\left(\omega^{*}\left(f, 1 / m_{k}\right)_{p}\right)^{\theta} \geq C_{2} \int_{1 / m_{k+1}}^{1 / m_{k}} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t
$$

Summing these inequalities over k from n to $q-1$ we establish the right inequality from (14). The lemma is proved.

Corollary 2. If the conditions of Lemma 7 are valid, then

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \mu(k) E_{m_{k}}^{\theta}(f)_{p} \leq \int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t \leq C_{1} \sum_{k=0}^{\infty} \mu(k) E_{m_{k}}^{\theta}(f)_{p} \\
& 2^{-\theta} \sum_{k=1}^{\infty} \mu(k) \omega_{k}^{\theta}(f)_{p} \leq \int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t \leq C_{1} \sum_{k=0}^{\infty} \mu(k) \omega_{k}^{\theta}(f)_{p}
\end{aligned}
$$

Similar results are valid for $E_{n}(f)_{H}$ and $\omega^{*}(f, t)_{H}$.
Lemma 8. 1) Let $n \in \mathbb{N}, \tau>0,1<p<\infty$. Then

$$
\begin{aligned}
& \left\|\sum_{k=0}^{n-1} k^{\tau} a_{k} \chi_{k}(x)\right\|_{p} \leq C(p) n^{\tau}\left\|\sum_{k=0}^{n-1} a_{k} \chi_{k}(x)\right\|_{p} \\
& \left\|\sum_{k=0}^{n-1} k^{\tau} a_{k} \chi_{k}(x)\right\|_{H} \leq C(p) n^{\tau}\left\|\sum_{k=0}^{n-1} a_{k} \chi_{k}(x)\right\|_{H} .
\end{aligned}
$$

2) Let $n \in \mathbb{N}, \tau>0,1<p<\infty, i \in\left[m_{n}, m_{n+1}\right)$. Then

$$
\left\|\sum_{k=m_{n}}^{i} k^{-\tau} \chi_{k}(x)\right\|_{p} \leq C(p) m_{n}^{1-1 / p-\tau}
$$

Proof. 1) Both inequalities may be proved by the method of [20]. In the case $1<p<\infty$ the proof is simpler. Set $t_{n}=\sum_{k=0}^{n-1} a_{k} \chi_{k}$. By analog of M.Riesz theorem $\left\|S_{n}(f)\right\|_{p} \leq C_{1}(p)\|f\|_{p}$ (see $[16, \S 3.3$, Corollary 6$]$ in the dyadic case) and summation by parts we find that

$$
\begin{aligned}
\left\|\sum_{k=0}^{n-1} k^{\tau} a_{k} \chi_{k}\right\|_{p} & \leq \sum_{k=0}^{n-2}\left((k+1)^{\tau}-k^{\tau}\right)\left\|S_{k+1}\left(t_{n}\right)\right\|_{p}+(n-1)^{\tau}\left\|S_{n}\left(t_{n}\right)\right\|_{p} \leq \\
& \leq C_{2}(p) n^{\tau}\left\|t_{n}\right\|_{p}
\end{aligned}
$$

2) Using (3), we obtain $\left\|D_{i}-D_{m_{n}}\right\|_{p} \leq C_{3} m_{n}^{1-1 / p}$ for $i \in\left[m_{n}, m_{n+1}\right]$ and $1<p<\infty$. Summation by parts yields

$$
\begin{gathered}
\left\|\sum_{k=m_{n}}^{i} k^{-\tau} \chi_{k}\right\|_{p} \leq \sum_{k=m_{n}}^{i-1}\left(k^{-\tau}-(k+1)^{-\tau}\right)\left\|D_{k+1}-D_{m_{n}}\right\|_{p}+ \\
+i^{-\tau}\left\|D_{i+1}-D_{m_{n}}\right\|_{p} \leq C_{3} m_{n}^{1-1 / p} m_{n}^{-\tau}
\end{gathered}
$$

The lemma is proved.

2. Embeddings between generalized Besov and Sobolev classes

Theorem 1.

1) Let $1<p<\infty, \theta=\min (2, p), f \in B(\theta, p, \alpha)$. Then $f \in W(\theta, p, \alpha)$ and

$$
\|\varphi(f)\|_{p} \leq C\left(I_{\theta, p, \alpha}(f)+E_{1}(f)_{p}\right) \leq C\left(I_{\theta, p, \alpha}(f)+\|f\|_{p}\right)
$$

2) If $f \in B(1, H, \alpha)$, then $f \in W(1, H, \alpha)$ and $\|\psi(f)\|_{H} \leq C I_{1, H, \alpha}$.

Proof. 1) Remember that $\psi(f)=\sum_{n=1}^{\infty} \beta^{1 / \theta}\left(m_{n}-1\right) \Delta_{n+1}(f)(x)$. Set $\Delta_{n}(x):=\Delta_{n}(f)(x)$. Since $\theta=p$ for $1<p \leq 2$ and $\beta\left(m_{n}-1\right)=\sum_{\nu=1}^{n} \mu(\nu)$, we obtain

$$
S_{1}(x)=\left(\sum_{n=1}^{\infty} \beta^{2 / p}\left(m_{n}-1\right)\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2} \leq \sum_{\nu=1}^{\infty} \mu(\nu)\left(\sum_{n=\nu}^{\infty}\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2}
$$

according to (8). From Lemma 1 we deduce that

$$
\begin{align*}
J_{1}:=\int_{0}^{1} S_{1}(x) d x & \leq \sum_{\nu=1}^{\infty} \mu(\nu) \int_{0}^{1}\left(\sum_{n=\nu+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x \leq \tag{15}\\
& \leq C_{1} \sum_{\nu=1}^{\infty} \mu(\nu)\left\|f-S_{m_{\nu}}(f)\right\|_{p}^{p} .
\end{align*}
$$

Using Corollary 2, (4) and Lemma 1, we find that $J_{1} \leq C_{2} \int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{p} d t$ and $\psi(f) \in L^{p}[0,1)$. If $2 \leq p<\infty$, then $\theta=2$ and

$$
\begin{aligned}
J_{2} & =\left\{\int_{0}^{1}\left(\sum_{n=1}^{\infty} \beta\left(m_{n}-1\right)\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2} d x\right\}^{2 / p}= \\
& =\left\{\int_{0}^{1}\left(\sum_{n=1}^{\infty} \sum_{\nu=1}^{n} \mu(\nu)\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2} d x\right\}^{2 / p}= \\
& =\left\{\int_{0}^{1}\left(\sum_{\nu=1}^{\infty} \mu(\nu) \sum_{n=\nu+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x\right\}^{2 / p} .
\end{aligned}
$$

Applying the triangle inequality in $L_{p / 2}[0,1), p \geq 2$, Lemma 1 and Corollary 2, we obtain

$$
\begin{aligned}
J_{2} & \leq \sum_{\nu=1}^{\infty} \mu(\nu)\left\|\sum_{n=\nu+1}^{\infty}\left|\Delta_{n}\right|^{2}\right\|_{p / 2} \leq C_{3} \sum_{\nu=1}^{\infty} \mu(\nu) E_{m_{\nu}}^{2}(f)_{p} \leq \\
& \leq C_{3} \int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{2} d t
\end{aligned}
$$

Thus, the function $\psi(f)$ belongs to $L^{p}[0,1)$ and $\|\psi(f)\|_{p} \leq C_{4} I_{\theta, p, \alpha}$. By Corollary 1 and inequalities $|\hat{f}(k)| \leq E_{k}(f)_{p}, 1 \leq k<m_{1}$, we conclude that $\varphi(f)$ belongs to $L^{p}[0,1)$ and $\|\varphi(f)\|_{p} \leq C_{5}\left(I_{\theta, p, \alpha}+E_{1}(f)_{p}\right)$.
2) As in 1) (see (15)) we have, due to Lemma 1^{\prime}

$$
\begin{gathered}
J_{1}:=\int_{0}^{1}\left(\sum_{n=1}^{\infty} \beta^{2}\left(m_{n}-1\right)\left|\Delta_{n+1}\right|^{2}\right)^{1 / 2} d x \leq \\
\leq C_{1} \sum_{\nu=1}^{\infty} \mu(\nu) \int_{0}^{1}\left(\sum_{n=\nu+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{1 / 2} d x \leq C_{1} \sum_{\nu=1}^{\infty} \mu(\nu)\left\|f-S_{m_{\nu}}\right\|_{H} .
\end{gathered}
$$

Using $\left(4^{\prime}\right)$, Lemma 1^{\prime} and Corollary 2, we obtain that $\psi(f) \in H(\mathbf{P},[0,1))$ and $\|\psi(f)\|_{H} \leq C_{6} I_{1, H, \alpha}$. The theorem is proved.

Theorem 2.

1) Let $1<p<\infty, \theta=\max (2, p), f \in W(\theta, p, \alpha)$. Then $f \in B(\theta, p, \alpha)$ and

$$
\left(\int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{p}\right)^{\theta} d t\right)^{1 / \theta} \leq C\left(\|\varphi(f)\|_{p}+\|f\|_{p}\right)
$$

2) Let $f \in W(2, H, \alpha)$. Then $f \in B(2, H, \alpha)$ and

$$
\left(\int_{0}^{1} \alpha(t)\left(\omega^{*}(f, t)_{H}\right)^{2} d t\right)^{1 / 2} \leq C\left(\|\psi(f)\|_{H}+\|f\|_{H}\right)
$$

Proof. 1) Set $J=\sum_{k=1}^{\infty} \mu(k) E_{m_{k}}^{\theta}(f)_{p}$. Using Lemma 1 and (4), we find that

$$
J \leq C_{1}(p) \sum_{k=1}^{\infty} \mu(k)\left(\int_{0}^{1}\left(\sum_{n=k+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x\right)^{\theta / p}
$$

In the case $2 \leq p<\infty(\theta=p)$ by (9) we have

$$
\begin{align*}
& J \leq C_{1} \sum_{k=1}^{\infty} \mu(k) \int_{0}^{1}\left(\sum_{n=k+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x= \\
& =C_{1} \int_{0}^{1} \sum_{k=1}^{\infty}\left(\sum_{n=k}^{\infty} \mu^{2 / p}(k)\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2} d x \leq \\
& \leq C_{1} \int_{0}^{1}\left(\sum_{k=1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\left\{\sum_{k=1}^{n} \mu(k)\right\}^{2 / p}\right)^{p / 2} d x= \tag{16}\\
& =C_{1} \int_{0}^{1}\left(\sum_{n=1}^{\infty}\left|\Delta_{n+1}(x)\right|^{2} \beta^{2 / p}\left(m_{n}-1\right)\right)^{p / 2} d x .
\end{align*}
$$

In the case $1<p \leq 2$ we use the converse of the triangle inequality

$$
\|f+g\|_{p / 2} \geq\|f\|_{p / 2}+\|g\|_{p / 2}, \quad 0<p / 2 \leq 1, \quad f, g \geq 0
$$

and change of the summation order:

$$
\begin{gathered}
J=\sum_{k=1}^{\infty} \mu(k) E_{m_{k}}^{2}(f)_{p} \leq C_{2} \sum_{k=1}^{\infty} \mu(k)\left(\int_{0}^{1}\left(\sum_{n=k+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x\right)^{2 / p}= \\
=C_{2} \sum_{k=1}^{\infty}\left(\int_{0}^{1}\left(\sum_{n=k}^{\infty} \mu(k)\left|\Delta_{n+1}(x)\right|^{2}\right)^{p / 2} d x\right)^{2 / p} \leq \\
\leq C_{2}\left(\int_{0}^{1}\left(\sum_{k=1}^{\infty} \sum_{n=k+1}^{\infty} \mu(k)\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x\right)^{2 / p}= \\
7
\end{gathered} \begin{aligned}
& =C_{2}\left(\int_{0}^{1}\left(\sum_{n=1}^{\infty}\left|\Delta_{n+1}(x)\right|^{2} \beta\left(m_{n}-1\right)\right)^{p / 2} d x\right)^{2 / p}
\end{aligned}
$$

From (16), (17) and Lemma 1 it follows that $J \leq C_{3}(p)\|\psi(f)\|_{p}^{\theta}$. By Lemma 2 and Corollary 1 we have $\|\psi(f)\|_{p} \leq C_{4}(p)\|\varphi(f)\|_{p}$. Applying Corollary 2 and inequality $E_{1}(f)_{p} \leq\|f\|_{p}$, we finish the proof of 1).
2) Using Lemma 1^{\prime} we obtain similarly to (17)

$$
\begin{aligned}
J= & \sum_{k=1}^{\infty} \mu(k) E_{m_{k}}^{2}(f)_{H} \leq C_{2} \sum_{k=1}^{\infty} \mu(k)\left(\int_{0}^{1}\left(\sum_{n=k+1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{1 / 2} d x\right)^{2}= \\
& =C_{2}\left(\int_{0}^{1}\left(\sum_{n=1}^{\infty}\left|\Delta_{n+1}(x)\right|^{2} \beta\left(m_{n}-1\right)\right)^{1 / 2} d x\right)^{2} \leq C_{5}\|\psi(f)\|_{H}^{2}
\end{aligned}
$$

Applying Corollary 2, we finish the proof of 2). The theorem is proved.
Corollary 3. For $f \in L^{2}[0,1)$ conditions $f \in B(2,2, \alpha)$ and $f \in$ $W(2,2, \alpha)$, are equivalent.

Some particular cases of our results are connected with the Butzer-WagnerOnneweer \mathbf{P}-adic derivative (see [16, Appendix 0.7]). Let $\gamma>0, r \in \mathbb{Z}_{+}$, $T_{r}^{(\gamma)}(x)=\sum_{k=0}^{m_{r}-1} k^{\gamma} \chi_{k}(x), f * g(x)=\int_{0}^{1} f(x \ominus t) g(t) d t$ is the \mathbf{P}-adic convolution of f and g. If for $f \in L^{p}[0,1), 1 \leq p<\infty$, there exists $g \in L^{p}[0,1)$ such
that $\lim _{r \rightarrow \infty}\left\|T_{r}^{(\gamma)} * f-g\right\|_{p}=0$, then function g is called the strong derivative of order γ in $L^{p}[0,1)$ for function $f\left(g=I^{(\gamma)} f\right)$. It is easy to see that $\left(I^{(\gamma)} f\right)(k)=k^{\gamma} \hat{f}(k)$ if $k \in \mathbb{Z}_{+}$. This definition comes from to He Zelin [20]. Since $\beta(n)=\left((n+1)^{p r}-1\right) / p r$ for $\alpha(t)=t^{-p r-1}, r>0, p \geq 1$, and $\lambda_{n}=\left(n^{p r} /\left((n+1)^{p r}-1\right)\right)^{1 / p}$ is increasing, it follows by Lemma 2 that in this case the condition $\varphi(p, f) \in L^{p}[0,1), 1<p<\infty$, is equivalent to the existence of $\eta(f) \in L^{p}[0,1)$ with Fourier series $\sum_{n=1}^{\infty} n^{r} \hat{f}(n) \chi_{n}(x)$, that is to the existence of $I^{(r)} f \in L^{p}[0,1)$. Hence, the conditions $f \in W\left(p, p, t^{-p r-1}\right)$ and $I^{(r)} f \in L^{p}[0,1)$ are also equivalent.

Corollary 4. Let $1<p \leq 2, r>0$ and $f \in L^{p}[0,1)$ be such that $\int_{0}^{1}\left(\omega^{*}(f, t)_{p}\right)^{p} t^{-p r-1} d t<\infty$. Then $I^{(r)} f$ exists and

$$
\left\|I^{(r)} f\right\|_{p} \leq C(p)\left(\left(\int_{0}^{1}\left(\omega^{*}(f, t)_{p}\right)^{p} t^{-r p-1} d t\right)^{1 / p}+\|f\|_{p}\right)
$$

Corollary 5. Let $p \geq 2, r>0$ and suppose that for $f \in L^{p}[0,1)$ there exists $I^{(r)} f \in L^{p}[0,1)$. Then $f \in B\left(p, p, t^{-p r-1}\right)$ and

$$
\left(\int_{0}^{1}\left(\omega^{*}(f, t)_{p}\right)^{p} t^{-r p-1} d t\right)^{1 / p} \leq C(p)\left(\left\|I^{(r)} f\right\|_{p}+\|f\|_{p}\right)
$$

Remark 2. Using Corollary 2, we can replace $\int_{0}^{1}\left(\omega^{*}(f, t)_{p}\right)^{p} t^{-r p-1} d t$ by $\sum_{k=0}^{\infty} m_{k}^{r p} E_{m_{k}}^{p}(f)_{p}$ in Corollaries 3 and 4.

3. The sharpness of the embedding conditions

Theorem 3. 1) Let $p \in(1, \infty), \alpha(t)$ and $\omega_{n} \downarrow 0$ satisfy the condition
$\sum_{n=1}^{\infty} \mu(n) \omega_{n}^{\theta}<\infty$ for $\theta=\min (p, 2)$. Then there exists $h \in H_{p}^{\omega}$ such that

$$
\begin{equation*}
\|\varphi(h)\|_{p} \geq C\left(\sum_{n=1}^{\infty} \mu(n) \omega_{n}^{\theta}\right)^{1 / \theta} \tag{18}
\end{equation*}
$$

2) If $\alpha(t)$ and $\omega_{n} \downarrow 0$ satisfy the condition $\sum_{n=1}^{\infty} \mu(n) \omega_{n}<\infty$, then there exists $h \in H_{H}^{\omega}$ such that

$$
\|\psi(h)\|_{p} \geq C \sum_{n=1}^{\infty} \mu(n) \omega_{n}
$$

Proof. 1) In the case $1<p \leq 2(\theta=p)$ we consider the function

$$
h(x)=\sum_{k=1}^{\infty}\left(\omega_{k}^{p}-\omega_{k+1}^{p}\right)^{1 / p} m_{k}^{1 / p / 1}\left(D_{m_{k+1}}(x)-D_{m_{k}}(x)\right) .
$$

(see [1, Chapter 4, §9]). According to (4), Lemma 1, Lemma 4, (3) and the Jensen inequality we obtain

$$
\begin{align*}
\omega_{n}(h)_{p} & \leq 2\left\|h-S_{m_{n}}(h)\right\|_{p} \leq C_{1}\left\|\left(\sum_{k=n+1}^{\infty}\left|\Delta_{k}(h)\right|^{2}\right)^{1 / 2}\right\|_{p} \leq \\
& \leq C_{1}\left(\sum_{k=n+1}^{\infty}\left\|\Delta_{k}(h)\right\|_{p}^{2}\right)^{1 / 2} \leq C_{2}\left(\sum_{k=n}^{\infty}\left(\omega_{k}^{p}-\omega_{k+1}^{p}\right)^{2 / p}\right)^{1 / 2} \leq \tag{19}\\
& \leq C_{2}\left(\left(\sum_{k=n}^{\infty}\left(\omega_{k}^{p}-\omega_{k+1}^{p}\right)\right)^{2 / p}\right)^{1 / 2}=C_{2} \omega_{n}, \quad n \in \mathbb{N}
\end{align*}
$$

By (19) we get $h \in H_{p}^{\omega}$. If

$$
\psi(h)=\sum_{k=1}^{\infty}\left(\omega_{k}^{p}-\omega_{k+1}^{p}\right)^{1 / p} m_{k}^{1 / p-1} \beta^{1 / p}\left(m_{k}-1\right)\left(D_{m_{k+1}}(x)-D_{m_{k}}(x)\right)
$$

then according to Corollary $1\|\psi(h)\|_{p} \leq C_{3}\|\varphi(h)\|_{p}$. By Paley theorem (see [7, Theorem [6.3.2]])

$$
\begin{align*}
& \|\psi(h)\|_{p} \geq C_{4}\left(\sum_{k=1}^{\infty}\left(\omega_{k}^{p}-\omega_{k+1}^{p}\right) m_{k}^{p-1} \beta\left(m_{k}-1\right) m_{k}^{1-p}\right)^{1 / p}= \\
= & C_{4}\left(\sum_{k=2}^{\infty} \omega_{k}^{p}\left(\beta\left(m_{k}-1\right)-\beta\left(m_{k-1}-1\right)\right)+\omega_{1}^{p} \beta\left(m_{1}-1\right)\right)^{1 / p}= \tag{20}\\
= & C_{4}\left(\sum_{k=1}^{\infty} \omega_{k}^{p} \mu(k)\right)^{1 / p} .
\end{align*}
$$

From (20) it follows (18) in the case $1<p \leq 2$. If $p \geq 2$, then $\theta=2$ and $h(x):=\sum_{k=1}^{\infty}\left(\omega_{k}^{2}-\omega_{k+1}^{2}\right)^{1 / 2} \chi_{m_{k}-1}(x)$. By Lemma 5 we have $h \in H_{p}^{\omega}$ for all $p \geq 1$. Applying (20) for $p=2$ and Lemma 5, we obtain

$$
\|\varphi(h)\|_{p}=\geq C_{5}\left(\sum_{k=1}^{\infty}\left(\omega_{k}^{2}-\omega_{k+1}^{2}\right) \beta\left(m_{k}-1\right)\right)^{1 / 2} \geq C_{6}\left(\sum_{k=1}^{\infty} \omega_{k}^{2} \mu(k)\right)^{1 / 2}
$$

2) Let us consider the function $h(x)=\sum_{k=1}^{\infty}\left(\omega_{k}-\omega_{k+1}\right)\left(D_{m_{k+1}}(x)-D_{m_{k}}(x)\right)$. Using Lemma 1^{\prime} similarly to (19) we find that $h \in H_{H}^{\omega}$. Instead of the Paley theorem we apply the analog of the Hardy inequality $\sum_{n=1}^{\infty} \mid \hat{f}(n) / n \leq C_{7}\|f\|_{H}$ (see [16, p. 109] in the dyadic case). As in (20) we obtain $\|\psi(h)\|_{H} \geq C_{8} \sum_{k=1}^{\infty} \omega_{k} \mu(k)$. The theorem is proved.

Theorem 4. 1) If one of the following conditions
(i) $p \geq 2, \quad h(t) \in W(p, p, \alpha), \quad\{\hat{h}(n)\}_{n=0}^{\infty} \in A_{\tau}, \tau \in \mathbb{R}$, or $\{\hat{h}(n)\}_{n=0}^{\infty} \in$ $\in R B V S$;
(ii) $1<p<2, h \in W(2, p, \alpha)$, and $\hat{h}(n)=0$ for all $n \neq m_{k}-1, k \in \mathbb{N}$ holds, then for $\gamma=\max (p, 2)$ the inequality

$$
\|\varphi(h)\|_{p}^{\gamma} \leq C\left(\int_{0}^{1} \alpha(t)\left(\omega^{*}(h, t)_{p}\right)^{\gamma} d t+\|h\|_{p}^{\gamma}\right)
$$

is valid.
2) If $h \in W(2, H, \alpha)$ and $\hat{h}(n)=0$ for all $n \neq m_{k}-1, k \in \mathbb{N}$, then

$$
\|\psi(h)\|_{H}^{2} \leq C\left(\int_{0}^{1} \alpha(t)\left(\omega^{*}(h, t)_{p}\right)^{2} d t+\|h\|_{p}^{\gamma}\right)
$$

Proof. 1) Let $p \geq 2$ and $h \in W(p, p, \alpha)$. By Paley theorem ([7, Theorem [6.3.2]]) and summation by parts we conclude that

$$
\begin{aligned}
& \|\psi(h)\|_{p}^{p} \leq C_{1} \sum_{n=1}^{\infty} \beta\left(m_{n}-1\right) \sum_{k=m_{n}}^{m_{n+1}-1}|\hat{h}(k)|^{p} k^{p-2}= \\
= & C_{1}\left(\sum_{n=2}^{\infty}\left(\beta\left(m_{n}-1\right)-\beta\left(m_{n-1}-1\right)\right) \sum_{k=m_{n}}^{\infty}|\hat{h}(k)|^{p} k^{p-2}\right)+ \\
& +C_{1} \beta\left(m_{1}-1\right) \sum_{k=m_{1}}^{\infty}|\hat{h}(k)|^{p} k^{p-2} .
\end{aligned}
$$

Using generalized monotonicity of $\{\hat{h}(n)\}_{n=0}^{\infty}$, Lemma 6, (6) and Corollary 2, we obtain

$$
\begin{align*}
\|\psi(h)\|_{p}^{p} & \leq C_{2} \sum_{k=1}^{\infty} \mu(n) \omega_{n-1}^{p}(h) \leq C_{3}\left(\mu(1)\|h\|_{p}+\sum_{n=1}^{\infty} \mu(n) \omega_{n}^{p}(h)_{p}\right) \leq \\
& \leq C_{4}\left(\|h\|_{p}+\int_{0}^{1} \alpha(t)\left(\omega^{*}(h, t)_{p}\right)^{p} d t\right) \tag{21}
\end{align*}
$$

Since $|\hat{h}(k)| \leq\|h\|_{p}$ for all $k \in \mathbb{Z}_{+}, p \in[1, \infty)$, the inequality

$$
\|\varphi(h)\|_{p} \leq C_{5}\left(\|h\|_{p}+\int_{0}^{1} \alpha(t)\left(\omega^{*}(h, t)_{p}\right)^{p} d t\right)
$$

is also valid due to Lemma 2 and Corollary 1. If $1<p<2$, then by Lemma 5

$$
\begin{align*}
& \|\varphi(h)\|_{p} \leq C_{6}\left(\sum_{n=1}^{\infty} \beta\left(m_{n}-1\right)\left|\hat{h}\left(m_{n}-1\right)\right|^{2}\right)^{1 / 2}= \\
= & C_{6} \sum_{n=2}^{\infty}\left(\beta\left(m_{n}-1\right)-\beta\left(m_{n-1}-1\right)\right) \sum_{k=n}^{\infty}\left|\hat{h}\left(m_{k}-1\right)\right|^{2}+ \tag{22}\\
& \left.\left.+C_{6} \beta\left(m_{1}\right) \sum_{k=1}^{\infty}\left|\hat{h}\left(m_{k}-1\right)\right|^{2}\right)^{1 / 2}\right) \leq C_{7}\left(\sum_{n=1}^{\infty} \mu(n) \omega_{n}^{2}(h)_{p}\right)^{1 / 2} .
\end{align*}
$$

Using (6) and Corollary 2, we finish the proof of 1).
2) Since $\|g\|_{1} \leq\|g\|_{H} \leq C_{7}\|f\|_{p}$ for all $p>1$, from Lemma 5 we obtain $\omega_{n-1}^{2}(f)_{H} \geq \omega_{n-1}^{2}(f)_{1} \geq \sum_{k=n}^{\infty}\left|\hat{h}\left(m_{k}-1\right)\right|^{2}$ and $\|\psi(h)\|_{H}^{2} \leq C_{8} \sum_{n=1}^{\infty} \mu(n) \omega_{n}^{2}(h)_{H}$ (see (22)). Using (6) and Corollary 2 we prove 2). The theorem is proved.

Theorems 3 and 4 show that Theorems 1 and 2 are sharp in a certain sense.

The last theorem gives a criterion of $f \in B_{p, \theta}^{r}:=B\left(p, \theta, t^{-r \theta-1}\right)$ for functions f with generalized monotone Fourier-Vilenkin coefficients. One can find trigonometric analogs of the Theorem 5 in [15] for decreasing Fourier coefficients and in [11] for cosine and sine coefficients from the class $R B V S$.

Theorem 5. Let $1<p<\infty, \theta \geq 1, r>0$ and $f \in L^{p}[0,1)$ be such that either $\{\hat{f}(k)\}_{k=0}^{\infty} \in A_{\tau}, \tau \in \mathbb{R}$, or $\{\hat{f}(k)\}_{k=0}^{\infty} \in R B V S$. Then $f \in B_{p, \theta}^{r}$ if and only if

$$
J:=\sum_{n=1}^{\infty}|\hat{f}(n)|^{\theta} n^{r \theta+\theta-\theta / p-1}<\infty .
$$

Proof. According to Corollary 2 we can consider $\sum_{n=1}^{\infty} m_{n}^{r \theta} \omega_{n}^{\theta}(f)_{p}$ instead of $\int_{0}^{1} t^{-r \theta-1} \omega^{\theta}(f, t)_{p} d t$. By Lemma 6

$$
\begin{aligned}
\sum_{n=1}^{\infty} m_{n}^{r \theta} \omega_{n}^{\theta}(f)_{p} & \leq C_{1}\left(\sum_{n=1}^{\infty} m_{n}^{r \theta+\theta(1-1 / p)}\left|\hat{f}\left(m_{n}\right)\right|^{\theta}+\right. \\
& \left.+\sum_{n=1}^{\infty} m_{n}^{r \theta}\left(\sum_{i=m_{n}}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right)^{\theta / p}\right)=C_{1}\left(I_{1}+I_{2}\right)
\end{aligned}
$$

If either $\{\hat{f}(k)\}_{k=0}^{\infty} \in A_{\tau}, \tau \geq 0$, or $\{\hat{f}(k)\}_{k=0}^{\infty} \in R B V S$, then $\hat{f}\left(m_{n+1}\right) \leq$ $\leq C_{2} \hat{f}(k), m_{n} \leq k<m_{n+1}$, and we obtain that the convergence of I_{1} is equivalent to convergence of the series $\sum_{n=1}^{\infty}|\hat{f}(n)|^{\theta} n^{r \theta+\theta-\theta / p-1}$. If $\{\hat{f}(k)\}_{k=0}^{\infty} \in$ $A_{\tau}, \tau<0$, then $\hat{f}\left(m_{n}\right) \leq C_{3} \hat{f}(k), m_{n} \leq k<m_{n+1}$, and we obtain the same conclusion. To estimate I_{2} we must consider two cases. In the first case $\theta / p \leq 1$ we use Jensen inequality and change the order of summation:

$$
\sum_{n=1}^{\infty} m_{n}^{r \theta}\left(\sum_{k=n}^{\infty}\left|\hat{f}\left(m_{k}\right)\right|^{p} m_{k}^{p-1}\right)^{\theta / p} \leq \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} m_{n}^{r \theta} m_{k}^{\theta(1-1 / p)}\left|\hat{f}\left(m_{k}\right)\right|^{\theta} \leq
$$

$$
\leq \sum_{k=1}^{\infty} m_{k}^{r \theta+\theta(1-1 / p)}\left|\hat{f}\left(m_{k}\right)\right|^{\theta}
$$

Similarly to the case of I_{1}, convergence of the last series is equivalent to inequality $J<\infty$. In the second case $\theta / p>1$ the inequality $I_{2}<\infty$ is equivalent to

$$
I_{3}=\sum_{n=1}^{\infty} n^{r \theta-1}\left(\sum_{k=n}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right)^{\theta / p}<\infty
$$

According to Hardy-Littlewood inequality [6, Theorem 346]

$$
I_{3} \leq C_{4} \sum_{n=1}^{\infty}\left(|\hat{f}(n)|^{p} n^{p-2} n\right)^{\theta / p}=C_{4} \sum_{n=1}^{\infty}|\hat{f}(n)|^{\theta} n^{r \theta+\theta(1-/ p)-1}=C_{4} J
$$

Thus, the condition $f \in B_{p, \theta}^{r}$ follows from the finiteness of J in all cases.
Conversely, if $f \in B_{p, \theta}^{r}$, then the series $\sum_{n=1}^{\infty} m_{n}^{r \theta} \omega_{n}^{\theta}(f)_{p}$ converges. By Lemma 6 and by the conditions on $\hat{f}(i)$ we have

$$
\begin{align*}
\sum_{n=1}^{\infty} m_{n}^{r \theta} \omega_{n}^{\theta}(f)_{p} & \geq C_{5} \sum_{n=2}^{\infty} m_{n}^{r \theta}\left(\sum_{i=m_{n}}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right)^{\theta / p} \geq \\
& \geq C_{6} \sum_{n=2}^{\infty} m_{n}^{r \theta}\left(\sum_{k=n+1}^{\infty}\left|\hat{f}\left(m_{k}\right)\right|^{p} m_{k}^{p-1}\right)^{\theta / p} \tag{23}
\end{align*}
$$

In the case $\theta / p \geq 1$ we obtain by Jensen inequality

$$
\begin{gathered}
\quad \sum_{n=1}^{\infty} m_{n}^{r \theta} \omega_{n}^{\theta}(f)_{p} \geq C_{7} \sum_{n=2}^{\infty} \sum_{k=n+1}^{\infty}\left|\hat{f}\left(m_{k}\right)\right|^{\theta} m_{k}^{\theta(1-1 / p)} m_{n}^{r \theta}= \\
=C_{7} \sum_{k=3}^{\infty} \sum_{n=2}^{k-1}\left|\hat{f}\left(m_{k}\right)\right|^{\theta} m_{k}^{\theta(1-1 / p)} m_{n}^{r \theta} \geq C_{8} \sum_{k=3}^{\infty}\left|\hat{f}\left(m_{k}\right)\right|^{\theta} m_{k}^{\theta(1-1 / p)+r \theta},
\end{gathered}
$$

whence the finiteness of J easily follows. In the case $\theta / p<1$ we use Theorem 346 from [6] as follows

$$
\begin{gathered}
\sum_{n=m_{3}}^{\infty} n^{r \theta-1}\left(\hat{f}(n) n^{p-1}\right)^{\theta / p} \leq C_{9} \sum_{n=m_{3}}^{\infty} n^{r \theta-1}\left(\sum_{k=n}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right)^{\theta / p} \leq \\
\leq C_{10} \sum_{n=2}^{\infty} m_{n}^{r \theta}\left(\sum_{i=m_{n}}^{\infty}|\hat{f}(i)|^{p} i^{p-2}\right)^{\theta / p}
\end{gathered}
$$

The last inequality and (21) imply $j<\infty$ in the case $\theta / p<1$. The theorem is proved.

References

[1] Агаев Г.Н., Виленкин Н.Я., Джафарли Г.М. и Рубинштейн А.И., Мультипликативные системы функиий и гармонический анализ на нульмерных группах, ЭЛМ, Баку, 1981.
[2] Агафонова Н.Ю., О наилучших приближениях функций по мультипликативным системам и свойства их коэффициентов Фурье, Analysis Math., 33 (2007), 247-262.
[3] Блюмин С.Л., Некоторые свойства одного класса мультипликативных систем и вопросы приближения функций полиномами по этим системам, Известия вузов. Математика, 4 (1968), 13-22.
[4] Fridli, S., On the rate of convergence of Cesàro means of Walsh-Fourier series, J. Approx. Theory, 76 (1994), 31-53.
[5] Golubov, B.I., Efimov, A.V. and Skvortsov, V.A., Walsh series and transforms, Kluwer, Dordrecht, 1991.
[6] Hardy, G.H., Littlewood, J.E. and Pólya, G., Inequalities, Cambridge University Press, New York, 1934.
[7] Kaczmarz, S. and Steinhaus, H., Theorie der Orthogonalreihen, Warszawa-Lwow, 1935.
[8] Конюшков А.А., Наилучшие приближения тригонометрическими полиномами и коэффициенты Фурье, Maт. сборник, 44 (1958), 53-84.
[9] Лебедь Г.К., О тригонометрических рядах с коэффициентами, удовлетворяющими некоторым условиям, Мaт. сборник, 74 (1967), 100-118.
[10] Leindler, L., On the uniform convergence and boundedness of a certain class of sine series, Analysis Math., 27 (2001), 279-285.
[11] Leindler, L., Generalization of embedding relations of Besov classes, Analysis Math., 31 (2005), 1-12.
[12] Potapov, M.K., Interconnection between certain classes of functions, Math. Notes, 2 (1967), 706-714.
[13] Potapov, M.K., On embedding and coincidence of certain functional classes, Math. USSR-Izvestiya, 3 (1969), 795-813.
[14] Потапов М.К., К вопросу об эквивалентности условий сходомости рядов Фурье, Мат. сборник, 68 (1965), 111-127.
[15] Потапов М.К. и Бериша М., Модули гладкости и коэффициенты Фурье периодических функций одного переменного, Publ. Inst. Math. (Beograd), 26 (40) (1979), 215-228.
[16] Schipp, F., Wade, W. and Simon, P., Walsh series. An introduction to dyadic harmonic analysis, Akadémiai Kiadó, Budapest, 1990.
[17] Szász, O., Quasi-monotone series, Amer. J. Math., 70 (1948), 203-206.
[18] Tateoka, J., The modulus of continuity and the best approximation over dyadic group, Acta Math. Hungar., 59 (1992), 115-120.
[19] Виленкин Н.Я., К теории лакунарных ортогональных систем, Известия АН СССР. Сер. мат., 13 (1949), 245-252.
[20] Волосивец С.С., Приближение функций ограниченной p-флуктуации полиномами по мультипликативным системам, Analysis Math., 21 (1995), 61-77.
[21] Watari, C., On generalized Walsh-Fourier series, Tohoku Math. J., 10 (1958), 211-241.
[22] Zelin, He, The derivatives and integrals of fractional order in WalshFourier analysis with applications to approximation theory, J. Approx. Theory, 39 (1983), 361-373.
[23] Zygmund, A., Trigonometric series V. 1,2, Cambridge University Press, New York, 1959.

S.S. Volosivets

Department of Mechanics and Mathematics
Saratov State University
Astrakhanskaya St. 83.
410028 Saratov, Russia
VolosivetsSS@mail.ru

