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Abstract. In this work we prove several theorems connected with

embeddings of P-adic generalized Besov spaces and Sobolev spaces in

each other. The sharpness of these results in a certain sense is shown.

Trigonometrical analogs of two main results were previously proved by M.K.

Potapov.

1. Introduction

Let P = {pn}∞n=1 be a sequence of natural numbers such that 2 ≤ pn ≤ N ,
m0 = 1 and mn = p1 . . . pn for n ∈ N = {1, 2, . . .}. Every number x ∈ [0, 1)
can be represented as

(1) x =
∞∑

n=1

xn/mn, xn ∈ Z, 0 ≤ xn < pn.

If x = k/mi, k, i ∈ N, then we take extension with finite number of nonzero
xn. Every k ∈ Z+ = {0, 1, . . .} can be expressed uniquely in the form

(2) k =
∞∑

i=1

kimi−1, ki ∈ Z, 0 ≤ ki < pi.



344 S.S. Volosivets

For x ∈ [0, 1) and k ∈ Z+, let us define χk(x) by the formula

χk(x) = exp


2πi

( ∞∑

j=1

xjkj/pj

)
 .

It is well known that the Vilenkin system {χk(x)}∞k=0 is an orthonormal and
complete system in L[0, 1) (see [5, §1.5]). In the case pn ≡ 2 it coincides with
the Walsh system. Let by definition for f ∈ L[0, 1)

f̂(n) =

1∫

0

f(t)χn(t) dt, n ∈ Z+, Sn(f)(x) =
n−1∑

k=0

f̂(k)χk(x), n ∈ N,

∆n(f)(x) = Smn
(f)(x)− Smn−1(f)(x), n ∈ N, ∆0(f)(x) = f̂(0).

The sum
n−1∑
k=0

χk(x) =: Dn(x) is called the n-th Dirichlet kernel. By the

generalized Paley lemma Dmn(x) = mnX[0,1/mn), where n ∈ Z+ and XE is the
indicator of the set E. From this identity we deduce that

Smn(f)(x) = mn

∫

In
k

f(t) dt

for x ∈ In
k = [k/mn, (k + 1)/mn), n ∈ N, k = 0, 1, . . . ,mn − 1.

In addition, |Dn(x)| ≤ C1 min(n, 1/x) for x ∈ (0, 1) (see [5, §1.5] or [1, Ch.

4, §3]). If ‖f‖p =
(

1∫
0

|f(t)|p dt

)1/p

is the usual norm in Lp[0, 1), 1 ≤ p < ∞,

then we have for n ∈ Z+ and 1 < p < ∞

(3) ‖Dn‖p
p ≤ C1




1/n∫

0

npdt +

1∫

1/n

t−pdt


 ≤ C2n

p−1.

The maximal function M(f) is defined for f ∈ L1[0, 1) by M(f)(x) =
= sup

n∈Z+

|Smn(f)(x)|. The P-adic Hardy space H(P, [0, 1)) consists of functions

f ∈ L1[0, 1) such that ‖f‖H = ‖M(f)‖1 < ∞. If x, y ∈ [0, 1) are represented

in the form (1), then x ⊕ y = z =
∞∑

i=1

zi/mi, where zi ∈ Z, 0 ≤ zi < pi
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and zi = xi + yi (mod pi). The inverse operation ª is defined similarly.
Let us introduce a modulus of continuity in Lp[0, 1), 1 ≤ p < ∞, by the
formula ω∗(f, t)p = sup{‖f(x ª h) − f(x)‖p : 0 < h < t}, t ∈ [0, 1]. In
addition, we will denote ω∗(f, 1/mn)p by ωn(f)p. If {ωn}∞n=0 is decreasing
to zero, then we define Hω

p = {f ∈ Lp[0, 1) : ωn(f)p ≤ Cωn, n ∈ Z+}. Let

Pn = {f ∈ L[0, 1) : f̂(k) = 0, k ≥ n}, En(f)p = inf{‖f − tn‖p : tn ∈ Pn} for
n ∈ N. Further, we will often use A.V. Efimov’s inequality [5, §10.5]
(4)

Emn
(f)p ≤ ‖f − Smn

(f)‖p ≤ ωn(f)p ≤ 2Emn
(f)p, 1 ≤ p < ∞, n ∈ Z+.

In a similar way we define ω∗(f, t)H , ωn(f)H , Hω
H and En(f)H , and have (see

[18])

(4′) Emn
(f)H ≤ ‖f − Smn

(f)‖H ≤ ωn(f)H ≤ 2Emn
(f)H , n ∈ Z+.

Let α(t) be a measurable and positive function on (0, 1) such that α ∈
∈ L[δ, 1) for all 0 < δ < 1. Then we can introduce two sequences {β(n)}∞n=0,

{µ(n)}∞n=1 by formulas β(n) =
1∫

1/(n+1)

α(t)dt for n ∈ N, β(0) = 1, and

µ(n) =
1/mn−1∫
1/mn

α(t)dt, n ∈ N. If f ∈ Lp[0, 1), 1 ≤ p, θ < ∞ and the series

∞∑
n=1

β1/θ(n)f̂(n)χn(x) is Fourier–Vilenkin series of a function ϕ(f) = ϕ(θ, f) ∈
∈ Lp[0, 1), then f ∈ W (θ, p, α) = W (θ, p, α,P). Similarly, if f ∈ H(P, [0, 1))

and the series
∞∑

n=1
β1/θ(mn−1)

mn+1−1∑
k=mn

f̂(k)χk(x) is the Fourier–Vilenkin series

of a function ψ(f) ∈ H(P, [0, 1)), then f ∈ W (θ, H, α). By definition, for
p, θ ∈ [1,∞)

B(θ, p, α) =





f ∈ Lp[0, 1) : Iθ,p,α :=




1∫

0

α(t)(ω∗(f, t)p)θ dt




1/θ

< ∞





.

The quantity Iθ,H,α and the space B(θ, H, α) are introduced in a similar way.
Further we assume that for α(t) the δ2-condition

(5)

δ∫

δ/2

α(t)dt ≤ C

2δ∫

δ

α(t)dt ≤ C

1∫

δ

α(t)dt, δ ∈ (0, 1/2), C > 0,
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is satisfied. If pn ≤ N ≤ 2a, n ∈ N, then it is easy to see that the δ2-condition
(5) implies the inequality

(6) µ(n + 1) ≤
1/mn∫

2−a/mn

α(t)dt ≤
a∑

i=1

Ci

2/mn∫

1/mn

α(t)dt ≤ A(C)µ(n).

Finally, from (6) one can deduce that for mk ≤ n < mk+1, k ∈ Z+,

(7)
β(n) < β(mk+1) ≤ (Ak + . . . + 1)µ(1) ≤ C1A

k ≤
≤ C12kγ ≤ C1m

γ
k ≤ C1n

γ , γ = log2 A.

We will consider several classes of generalized monotone sequences. If
lim

n→∞
an = 0 and ann−τ decreases for some τ ≥ 0 and for all n ≥ 1, then

{an}∞n=0 is called quasi-monotone ({an}∞n=0 ∈ Aτ ). If lim
n→∞

an = 0 and annτ

increases for some τ > 0 and for all n ∈ Z+, then {an}∞n=0 ∈ A−τ . The
classes Aτ were introduced by O. Szász [17] and A.A. Konyushkov [8] in the
case τ ≥ 0 and by G.K. Lebed’ [9] in the case τ < 0. If lim

n→∞
an = 0 and

∞∑
k=n

|ak−ak+1| ≤ Can for all n ∈ Z+, then {an}∞n=0 belongs to the class RBV S

introduced by L. Leindler [10]. It is easy to see that condition {an}∞n=0 ∈ RBV S
implies the inequality an ≤ Cam for all m ≤ n.

The trigonometric counterparts of B(θ, p, α) and W (θ, p, α) are general-
izations of O.V. Besov and S.L. Sobolev classes of 2π-periodic functions. These
classes were studied by M.K. Potapov [12], [13]. So, in [12] he investigated
embeddings between generalized Besov and Sobolev classes while interrelations
between generalized Besov classes may be found in [13]. In this paper we
obtain sufficient conditions for embeddings of B(θ, p, α) and W (θ, p, α) in each
other and show that these conditions are sharp in a certain sense. A criterion
for functions with generalized monotone Fourier-Vilenkin coefficients to be
in B(θ, p, t−rθ−1) is also given. Note that δ2-condition in the present paper
replaces two conditions used by M.K. Potapov.

1. Auxiliary propositions

The first lemma has been proved by C. Watari [21] and generalizes the
famous Paley theorem for the Walsh system.
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Lemma 1. 1) Let f ∈ Lp[0, 1), 1 < p < ∞, f̂(0) = 0 and Q(f) =

=
( ∞∑

n=1
|∆n(f)(x)|2

)1/2

. Then

C1‖Q(f)‖p ≤ ‖f‖p ≤ C2‖Q(f)‖p.

2) If for p ∈ (1,∞) and for the series
∞∑

n=1
anχn(x) it is true that

Ip =

∥∥∥∥∥∥∥∥




∞∑
n=1

∣∣∣∣∣∣

mn−1∑

j=mn−1

ajχj(x)

∣∣∣∣∣∣

2



1/2
∥∥∥∥∥∥∥∥

p

< ∞,

then this series is the Fourier–Vilenkin series of a function f ∈ Lp[0, 1).
Moreover, ‖f‖p ≤ C3Ip.

Lemma 1′ extends Lemma 1 to the P-adic Hardy space corresponding to
the case p = 1. In the dyadic case Lemma 1′ may be found in [16, p. 101,
Corollary 4].

Lemma 1′. If f ∈ L1[0, 1), f̂(0) = 0, then

C1‖Q(f)‖1 ≤ ‖f‖H ≤ C2‖Q(f)‖1.

The following Lemma is an analog of the Marcinkiewicz theorem on
multiplicators.

Lemma 2 ([3]). If {λk}∞k=0 ⊂ C and there exists M > 0 with the property

1) |λn| ≤ M, 2)
mn+1−1∑

k=mn

|λk − λk+1| ≤ M, n ∈ Z+,

then for every function f ∈ Lp[0, 1), 1 < p < ∞, the series
∞∑

k=0

λkf̂(k)χk(x) is

the Fourier-Vilenkin series of a function fλ ∈ Lp[0, 1). Moreover,

‖fλ‖p ≤ C(p,N)‖f‖p.
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Corollary 1. Set λk = (β(k)/β(mn−1 − 1))1/θ and γk = (β(mn−1 −
−1)/β(k))1/θ for mn−1 ≤ k < mn, n ∈ N with λ0, γ0 arbitrary. Then the se-
quences {λk}∞k=0 and {γk}∞k=0 satisfy the conditions of Lemma 2. In particular,
functions ϕ(f) and ψ(f) belong to Lp[0, 1), 1 < p < ∞, simultaneously.

Proof. Since α(t) > 0 and {β(k)}∞k=1 increases, we see that {λk}∞k=0

increases and {γk}∞k=0 increases in every interval of the form [mn−1,mn),
n ∈ N. The boundedness of {λk}∞k=0 follows from the δ2-condition, while the
boundedness of {γk}∞k=0 is evident. The boundedness and monotonicity imply
the fulfilment of property 2) in Lemma 2. The Corollary is proved.

There are different forms of Minkowski inequality in the spaces Lp and lp.
The two following statements will be used later.

Lemma 3 ([14]). Let 1 ≤ p < ∞, ank ≥ 0, n, k ∈ N. Then the inequalities

(8)

( ∞∑

k=1

(
k∑

n=1

ank

)p)1/p

≤
∞∑

n=1

( ∞∑

k=n

ap
nk

)1/p

,

(9)

( ∞∑

k=1

( ∞∑

n=k

ank

)p)1/p

≤
∞∑

n=1

(
n∑

k=1

ap
nk

)1/p

,

are valid.

Lemma 4 ([4]). Let g = {gk}∞k=1, where gk ∈ Lp[0, 1), k ∈ N, and

‖g‖Lp(lq) =

∥∥∥∥∥∥

( ∞∑

k=1

|gk|q
)1/q

∥∥∥∥∥∥
p

, ‖g‖lq(Lp) =

( ∞∑

k=1

‖gk‖q
p

)1/q

.

Then the inequality ‖g‖Lp(l2) ≥ ‖g‖l2(Lp) is valid for 1 < p ≤ 2. If p ≥ 2, then
we have

‖g‖Lp(l2) ≤ ‖g‖l2(Lp), ‖∆(f)‖Lp(lp) ≤ ‖f‖p, ∆(f) = {∆n(f)}∞n=1.

Remark 1. The last inequality of Lemma 4 is proved in [4] for the Walsh
system with help of interpolation and its proof is translated to the case of an
arbitrary system {χn}∞n=0 of bounded type.

Lemma 5. Let {ϕn}∞n=0 be a subsystem of {χk}∞k=0 such that ϕn = χkn ,

mn ≤ kn < mn+1 and
∞∑

n=0
|an|2 < ∞. Then the series

∞∑
n=0

anϕn(x) converges
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in every Lp[0, 1), 1 ≤ p < ∞, to a function f and the following two double
inequalities are valid:

(10) C1

( ∞∑
n=0

|an|2
)1/2

≤ ‖f‖p ≤ C2

( ∞∑
n=0

|an|2
)1/2

,

(11) C1

( ∞∑
n=mk

|an|2
)1/2

≤ ωk(f)p ≤ 2C2

( ∞∑
n=mk

|an|2
)1/2

, k ∈ N.

Proof. The inequality (10) has been proved by N.Ya. Vilenkin [19].
According to (10) and (4) we have

ωk(f)p ≤ 2‖f − Smk
(f)‖p ≤ 2C2

( ∞∑
n=mk

|an|2
)1/2

.

The left inequality in (11) is obtained in a similar way. The lemma is proved.

Lemma 6. Let 1 < p < ∞, f ∈ Lp[0, 1) and either {f̂(n)}∞n=0 ∈ Aτ ,
τ ∈ R, or {f̂(n)}∞n=0 ∈ RBV S. Then

C1

∞∑

i=mn+1

|f̂(i)|pip−2 ≤ ωp
n(f)p ≤

(12) ≤ C2

(
mp−1

n |f̂(mn)|p +
∞∑

i=mn

|f̂(i)|ip−2

)
, n ∈ N,

(13)

C3

(
|f̂(0)|p +

∞∑

i=1

|f̂(i)|pip−2

)
≤ ‖f‖p

p ≤ C4

(
|f̂(0)|p +

∞∑

i=1

|f̂(i)|pip−2

)
.

Proof. The right inequality in (12) has been proved by N.Yu. Agafonova
[2]. If 1 < p ≤ 2, then the left inequality (12) follows from the famous Paley
theorem (see [7, Theorem [6.3.2]]). If p ≥ 2, then by Lemma 4 we have
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‖f − Smn(f)‖p
p ≥

∞∑
k=n+1

‖∆k‖p
p. From conditions {f̂(n)}∞n=0 ∈ Aτ , τ ≥ 0,

or {f̂(n)}∞n=0 ∈ RBV S we deduce that (k ∈ N)

‖∆k(f)‖p
p ≥

1/mk∫

0

|∆k(f)(x)|p dx =

=

1/mk∫

0

∣∣∣∣∣∣

mk−1∑

i=mk−1

f̂(i)

∣∣∣∣∣∣

p

dx ≥ C5m
p−1
k |f̂(mk)|p.

Summing these inequalities over k from n + 1 to ∞, we obtain

‖f − Smn
(f)‖p

p ≥ C5

∞∑

k=n+1

mp−1
k |f̂(mk)|p ≥ C6

∞∑

i=mn+1

|f̂(i)|pip−2.

For {f̂(n)}∞n=0 ∈ Aτ , τ < 0, we have similarly ‖∆k(f)‖p
p ≥ C7m

p−1
k |f̂(mk−1)|p

and ‖f − Smn(f)‖p
p ≥ C8

∞∑
i=mn

|f̂(i)|pip−2. Since |f̂(i)| ≤ ‖f‖p, i ∈ Z+, p ∈
∈ [1,∞), the inequality (13) is obtained in a similar way. The lemma is proved.

Lemma 7. Let 1 ≤ p, θ < ∞, f ∈ Lp[0, 1). Then for n, q ∈ Z+, n < q,
the inequality

(14)
q∑

k=n+1

µ(k)Eθ
mk

(f)p ≤
1/mn∫

1/mq

α(t)(ω∗(f, t)p)θ dt ≤ C1

q−1∑

k=n

µ(k)Eθ
mk

(f)p

holds. This statement is also valid for En(f)H and ω∗(f, t)H .

Proof. By (4) and by the fact that ω∗(f, t)p increasing we obtain

µ(k)Eθ
mk

(f)p ≤
1/mk−1∫

1/mk

α(t)(ω∗(f, 1/mk)p)θ dt ≤
1/mk−1∫

1/mk

α(t)(ω∗(f, t)p)θ dt.

Summing these inequalities over k from n + 1 to q yields the left inequality
from (14). Using (4) and (6), we have for all k ≥ 0

µ(k)Eθ
mk

(f)p ≥ C2µ(k + 1)(ω∗(f, 1/mk)p)θ ≥ C2

1/mk∫

1/mk+1

α(t)(ω∗(f, t)p)θdt.
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Summing these inequalities over k from n to q − 1 we establish the right
inequality from (14). The lemma is proved.

Corollary 2. If the conditions of Lemma 7 are valid, then

∞∑

k=1

µ(k)Eθ
mk

(f)p ≤
1∫

0

α(t)(ω∗(f, t)p)θ dt ≤ C1

∞∑

k=0

µ(k)Eθ
mk

(f)p,

2−θ
∞∑

k=1

µ(k)ωθ
k(f)p ≤

1∫

0

α(t)(ω∗(f, t)p)θ dt ≤ C1

∞∑

k=0

µ(k)ωθ
k(f)p.

Similar results are valid for En(f)H and ω∗(f, t)H .

Lemma 8. 1) Let n ∈ N, τ > 0, 1 < p < ∞. Then

∥∥∥∥∥
n−1∑

k=0

kτakχk(x)

∥∥∥∥∥
p

≤ C(p)nτ

∥∥∥∥∥
n−1∑

k=0

akχk(x)

∥∥∥∥∥
p

,

∥∥∥∥∥
n−1∑

k=0

kτakχk(x)

∥∥∥∥∥
H

≤ C(p)nτ

∥∥∥∥∥
n−1∑

k=0

akχk(x)

∥∥∥∥∥
H

.

2) Let n ∈ N, τ > 0, 1 < p < ∞, i ∈ [mn, mn+1). Then

∥∥∥∥∥
i∑

k=mn

k−τχk(x)

∥∥∥∥∥
p

≤ C(p)m1−1/p−τ
n .

Proof. 1) Both inequalities may be proved by the method of [20]. In the

case 1 < p < ∞ the proof is simpler. Set tn =
n−1∑
k=0

akχk. By analog of M.Riesz

theorem ‖Sn(f)‖p ≤ C1(p)‖f‖p (see [16, §3.3, Corollary 6] in the dyadic case)
and summation by parts we find that

∥∥∥∥∥
n−1∑

k=0

kτakχk

∥∥∥∥∥
p

≤
n−2∑

k=0

((k + 1)τ − kτ )‖Sk+1(tn)‖p + (n− 1)τ‖Sn(tn)‖p ≤

≤ C2(p)nτ‖tn‖p.
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2) Using (3), we obtain ‖Di −Dmn‖p ≤ C3m
1−1/p
n for i ∈ [mn,mn+1] and

1 < p < ∞. Summation by parts yields

∥∥∥∥∥
i∑

k=mn

k−τχk

∥∥∥∥∥
p

≤
i−1∑

k=mn

(k−τ − (k + 1)−τ )‖Dk+1 −Dmn
‖p+

+i−τ‖Di+1 −Dmn‖p ≤ C3m
1−1/p
n m−τ

n .

The lemma is proved.

2. Embeddings between generalized Besov and Sobolev classes

Theorem 1.
1) Let 1 < p < ∞, θ = min(2, p), f ∈ B(θ, p, α). Then f ∈ W (θ, p, α)

and
‖ϕ(f)‖p ≤ C(Iθ,p,α(f) + E1(f)p) ≤ C(Iθ,p,α(f) + ‖f‖p).

2) If f ∈ B(1,H, α), then f ∈ W (1,H, α) and ‖ψ(f)‖H ≤ CI1,H,α.

Proof. 1) Remember that ψ(f) =
∞∑

n=1
β1/θ(mn − 1)∆n+1(f)(x). Set

∆n(x) := ∆n(f)(x). Since θ = p for 1 < p ≤ 2 and β(mn − 1) =
n∑

ν=1
µ(ν), we

obtain

S1(x) =

( ∞∑
n=1

β2/p(mn − 1)|∆n+1(x)|2
)p/2

≤
∞∑

ν=1

µ(ν)

( ∞∑
n=ν

|∆n+1(x)|2
)p/2

according to (8). From Lemma 1 we deduce that

(15)

J1 :=

1∫

0

S1(x)dx ≤
∞∑

ν=1

µ(ν)

1∫

0

( ∞∑
n=ν+1

|∆n(x)|2
)p/2

dx ≤

≤ C1

∞∑
ν=1

µ(ν)‖f − Smν (f)‖p
p.
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Using Corollary 2, (4) and Lemma 1, we find that J1 ≤ C2

1∫
0

α(t)(ω∗(f, t)p)p dt

and ψ(f) ∈ Lp[0, 1). If 2 ≤ p < ∞, then θ = 2 and

J2 =





1∫

0

( ∞∑
n=1

β(mn − 1)|∆n+1(x)|2
)p/2

dx





2/p

=

=





1∫

0

( ∞∑
n=1

n∑
ν=1

µ(ν)|∆n+1(x)|2
)p/2

dx





2/p

=

=





1∫

0

( ∞∑
ν=1

µ(ν)
∞∑

n=ν+1

|∆n(x)|2
)p/2

dx





2/p

.

Applying the triangle inequality in Lp/2[0, 1), p ≥ 2, Lemma 1 and Corollary 2,
we obtain

J2 ≤
∞∑

ν=1

µ(ν)

∥∥∥∥∥
∞∑

n=ν+1

|∆n|2
∥∥∥∥∥

p/2

≤ C3

∞∑
ν=1

µ(ν)E2
mν

(f)p ≤

≤ C3

1∫

0

α(t)(ω∗(f, t)p)2 dt.

Thus, the function ψ(f) belongs to Lp[0, 1) and ‖ψ(f)‖p ≤ C4Iθ,p,α. By
Corollary 1 and inequalities |f̂(k)| ≤ Ek(f)p, 1 ≤ k < m1, we conclude that
ϕ(f) belongs to Lp[0, 1) and ‖ϕ(f)‖p ≤ C5(Iθ,p,α + E1(f)p).

2) As in 1) (see (15)) we have, due to Lemma 1′

J1 :=

1∫

0

( ∞∑
n=1

β2(mn − 1)|∆n+1|2
)1/2

dx ≤

≤ C1

∞∑
ν=1

µ(ν)

1∫

0

( ∞∑
n=ν+1

|∆n(x)|2
)1/2

dx ≤ C1

∞∑
ν=1

µ(ν)‖f − Smν‖H .

Using (4′), Lemma 1′ and Corollary 2, we obtain that ψ(f) ∈ H(P, [0, 1)) and
‖ψ(f)‖H ≤ C6I1,H,α. The theorem is proved.
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Theorem 2.
1) Let 1 < p < ∞, θ = max(2, p), f ∈ W (θ, p, α). Then f ∈ B(θ, p, α) and




1∫

0

α(t)(ω∗(f, t)p)θ dt




1/θ

≤ C(‖ϕ(f)‖p + ‖f‖p).

2) Let f ∈ W (2,H, α). Then f ∈ B(2,H, α) and




1∫

0

α(t)(ω∗(f, t)H)2 dt




1/2

≤ C(‖ψ(f)‖H + ‖f‖H).

Proof. 1) Set J =
∞∑

k=1

µ(k)Eθ
mk

(f)p. Using Lemma 1 and (4), we find

that

J ≤ C1(p)
∞∑

k=1

µ(k)




1∫

0

( ∞∑

n=k+1

|∆n(x)|2
)p/2

dx




θ/p

.

In the case 2 ≤ p < ∞ (θ = p) by (9) we have

J ≤ C1

∞∑

k=1

µ(k)

1∫

0

( ∞∑

n=k+1

|∆n(x)|2
)p/2

dx =

(16)

= C1

1∫

0

∞∑

k=1

( ∞∑

n=k

µ2/p(k)|∆n+1(x)|2
)p/2

dx ≤

≤ C1

1∫

0




∞∑

k=1

|∆n(x)|2
{

n∑

k=1

µ(k)

}2/p



p/2

dx =

= C1

1∫

0

( ∞∑
n=1

|∆n+1(x)|2β2/p(mn − 1)

)p/2

dx.

In the case 1 < p ≤ 2 we use the converse of the triangle inequality

‖f + g‖p/2 ≥ ‖f‖p/2 + ‖g‖p/2, 0 < p/2 ≤ 1, f, g ≥ 0
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and change of the summation order:

J =
∞∑

k=1

µ(k)E2
mk

(f)p ≤ C2

∞∑

k=1

µ(k)




1∫

0

( ∞∑

n=k+1

|∆n(x)|2
)p/2

dx




2/p

=

(17)

= C2

∞∑

k=1




1∫

0

( ∞∑

n=k

µ(k)|∆n+1(x)|2
)p/2

dx




2/p

≤

≤ C2




1∫

0

( ∞∑

k=1

∞∑

n=k+1

µ(k)|∆n(x)|2
)p/2

dx




2/p

=

= C2




1∫

0

( ∞∑
n=1

|∆n+1(x)|2β(mn − 1)

)p/2

dx




2/p

.

From (16), (17) and Lemma 1 it follows that J ≤ C3(p)‖ψ(f)‖θ
p. By Lemma 2

and Corollary 1 we have ‖ψ(f)‖p ≤ C4(p)‖ϕ(f)‖p. Applying Corollary 2 and
inequality E1(f)p ≤ ‖f‖p, we finish the proof of 1).

2) Using Lemma 1′ we obtain similarly to (17)

J =
∞∑

k=1

µ(k)E2
mk

(f)H ≤ C2

∞∑

k=1

µ(k)




1∫

0

( ∞∑

n=k+1

|∆n(x)|2
)1/2

dx




2

=

= C2




1∫

0

( ∞∑
n=1

|∆n+1(x)|2β(mn − 1)

)1/2

dx




2

≤ C5‖ψ(f)‖2H .

Applying Corollary 2, we finish the proof of 2). The theorem is proved.

Corollary 3. For f ∈ L2[0, 1) conditions f ∈ B(2, 2, α) and f ∈
W (2, 2, α), are equivalent.

Some particular cases of our results are connected with the Butzer-Wagner-
Onneweer P-adic derivative (see [16, Appendix 0.7]). Let γ > 0, r ∈ Z+,

T
(γ)
r (x) =

mr−1∑
k=0

kγχk(x), f ∗ g(x) =
1∫
0

f(xª t)g(t) dt is the P-adic convolution

of f and g. If for f ∈ Lp[0, 1), 1 ≤ p < ∞, there exists g ∈ Lp[0, 1) such
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that lim
r→∞

‖T (γ)
r ∗ f − g‖p = 0, then function g is called the strong derivative

of order γ in Lp[0, 1) for function f (g = I(γ)f). It is easy to see that
(I(γ)f )̂(k) = kγ f̂(k) if k ∈ Z+. This definition comes from to He Zelin
[20]. Since β(n) = ((n + 1)pr − 1)/pr for α(t) = t−pr−1, r > 0, p ≥ 1,
and λn = (npr/((n + 1)pr − 1))1/p is increasing, it follows by Lemma 2 that
in this case the condition ϕ(p, f) ∈ Lp[0, 1), 1 < p < ∞, is equivalent to the

existence of η(f) ∈ Lp[0, 1) with Fourier series
∞∑

n=1
nrf̂(n)χn(x), that is to the

existence of I(r)f ∈ Lp[0, 1). Hence, the conditions f ∈ W (p, p, t−pr−1) and
I(r)f ∈ Lp[0, 1) are also equivalent.

Corollary 4. Let 1 < p ≤ 2, r > 0 and f ∈ Lp[0, 1) be such that
1∫
0

(ω∗(f, t)p)pt−pr−1dt < ∞. Then I(r)f exists and

‖I(r)f‖p ≤ C(p)







1∫

0

(ω∗(f, t)p)pt−rp−1dt




1/p

+ ‖f‖p


 .

Corollary 5. Let p ≥ 2, r > 0 and suppose that for f ∈ Lp[0, 1) there
exists I(r)f ∈ Lp[0, 1). Then f ∈ B(p, p, t−pr−1) and




1∫

0

(ω∗(f, t)p)pt−rp−1dt




1/p

≤ C(p)(‖I(r)f‖p + ‖f‖p).

Remark 2. Using Corollary 2, we can replace
1∫
0

(ω∗(f, t)p)pt−rp−1dt by

∞∑
k=0

mrp
k Ep

mk
(f)p in Corollaries 3 and 4.

3. The sharpness of the embedding conditions

Theorem 3. 1) Let p ∈ (1,∞), α(t) and ωn ↓ 0 satisfy the condition
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∞∑
n=1

µ(n)ωθ
n < ∞ for θ = min(p, 2). Then there exists h ∈ Hω

p such that

(18) ‖ϕ(h)‖p ≥ C

( ∞∑
n=1

µ(n)ωθ
n

)1/θ

.

2) If α(t) and ωn ↓ 0 satisfy the condition
∞∑

n=1
µ(n)ωn < ∞, then there

exists h ∈ Hω
H such that

(18′) ‖ψ(h)‖p ≥ C

∞∑
n=1

µ(n)ωn.

Proof. 1) In the case 1 < p ≤ 2 (θ = p) we consider the function

h(x) =
∞∑

k=1

(ωp
k − ωp

k+1)
1/pm

1/p/1
k (Dmk+1(x)−Dmk

(x)).

(see [1, Chapter 4, §9]). According to (4), Lemma 1, Lemma 4, (3) and the
Jensen inequality we obtain

(19)

ωn(h)p ≤ 2‖h− Smn(h)‖p ≤ C1

∥∥∥∥∥∥

( ∞∑

k=n+1

|∆k(h)|2
)1/2

∥∥∥∥∥∥
p

≤

≤ C1

( ∞∑

k=n+1

‖∆k(h)‖2p
)1/2

≤ C2

( ∞∑

k=n

(ωp
k − ωp

k+1)
2/p

)1/2

≤

≤ C2




( ∞∑

k=n

(ωp
k − ωp

k+1)

)2/p



1/2

= C2ωn, n ∈ N.

By (19) we get h ∈ Hω
p . If

ψ(h) =
∞∑

k=1

(ωp
k − ωp

k+1)
1/pm

1/p−1
k β1/p(mk − 1)(Dmk+1(x)−Dmk

(x)),
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then according to Corollary 1 ‖ψ(h)‖p ≤ C3‖ϕ(h)‖p. By Paley theorem (see
[7, Theorem [6.3.2]])

(20)

‖ψ(h)‖p ≥ C4

( ∞∑

k=1

(ωp
k − ωp

k+1)m
p−1
k β(mk − 1)m1−p

k

)1/p

=

=C4

( ∞∑

k=2

ωp
k(β(mk − 1)− β(mk−1 − 1)) + ωp

1β(m1 − 1)

)1/p

=

=C4

( ∞∑

k=1

ωp
kµ(k)

)1/p

.

From (20) it follows (18) in the case 1 < p ≤ 2. If p ≥ 2, then θ = 2 and

h(x) :=
∞∑

k=1

(ω2
k − ω2

k+1)
1/2χmk−1(x). By Lemma 5 we have h ∈ Hω

p for all

p ≥ 1. Applying (20) for p = 2 and Lemma 5, we obtain

‖ϕ(h)‖p =≥ C5

( ∞∑

k=1

(ω2
k − ω2

k+1)β(mk − 1)

)1/2

≥ C6

( ∞∑

k=1

ω2
kµ(k)

)1/2

.

2) Let us consider the function h(x) =
∞∑

k=1

(ωk−ωk+1)(Dmk+1(x)−Dmk
(x)).

Using Lemma 1′ similarly to (19) we find that h ∈ Hω
H . Instead of the Paley the-

orem we apply the analog of the Hardy inequality
∞∑

n=1
|f̂(n)/n ≤ C7‖f‖H (see

[16, p. 109] in the dyadic case). As in (20) we obtain ‖ψ(h)‖H ≥ C8

∞∑
k=1

ωkµ(k).

The theorem is proved.

Theorem 4. 1) If one of the following conditions

(i) p ≥ 2, h(t) ∈ W (p, p, α), {ĥ(n)}∞n=0 ∈ Aτ , τ ∈ R, or {ĥ(n)}∞n=0 ∈
∈ RBV S;

(ii) 1 < p < 2, h ∈ W (2, p, α), and ĥ(n) = 0 for all n 6= mk − 1, k ∈ N
holds, then for γ = max(p, 2) the inequality

‖ϕ(h)‖γ
p ≤ C




1∫

0

α(t)(ω∗(h, t)p)γdt + ‖h‖γ
p




is valid.
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2) If h ∈ W (2,H, α) and ĥ(n) = 0 for all n 6= mk − 1, k ∈ N, then

‖ψ(h)‖2H ≤ C




1∫

0

α(t)(ω∗(h, t)p)2dt + ‖h‖γ
p


 .

Proof. 1) Let p ≥ 2 and h ∈ W (p, p, α). By Paley theorem ([7, Theorem
[6.3.2]]) and summation by parts we conclude that

‖ψ(h)‖p
p ≤ C1

∞∑
n=1

β(mn − 1)
mn+1−1∑

k=mn

|ĥ(k)|pkp−2 =

=C1

( ∞∑
n=2

(β(mn − 1)− β(mn−1 − 1))
∞∑

k=mn

|ĥ(k)|pkp−2

)
+

+ C1β(m1 − 1)
∞∑

k=m1

|ĥ(k)|pkp−2.

Using generalized monotonicity of {ĥ(n)}∞n=0, Lemma 6, (6) and Corollary 2,
we obtain

(21)

‖ψ(h)‖p
p ≤ C2

∞∑

k=1

µ(n)ωp
n−1(h) ≤ C3

(
µ(1)‖h‖p +

∞∑
n=1

µ(n)ωp
n(h)p

)
≤

≤ C4


‖h‖p +

1∫

0

α(t)(ω∗(h, t)p)p dt


 .

Since |ĥ(k)| ≤ ‖h‖p for all k ∈ Z+, p ∈ [1,∞), the inequality

(21′) ‖ϕ(h)‖p ≤ C5


‖h‖p +

1∫

0

α(t)(ω∗(h, t)p)p dt




is also valid due to Lemma 2 and Corollary 1. If 1 < p < 2, then by Lemma 5

(22)

‖ϕ(h)‖p ≤ C6

( ∞∑
n=1

β(mn − 1)|ĥ(mn − 1)|2
)1/2

=

=C6

∞∑
n=2

(β(mn − 1)− β(mn−1 − 1))
∞∑

k=n

|ĥ(mk − 1)|2+

+ C6β(m1)
∞∑

k=1

|ĥ(mk − 1)|2)1/2) ≤ C7

( ∞∑
n=1

µ(n)ω2
n(h)p

)1/2

.
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Using (6) and Corollary 2, we finish the proof of 1).

2) Since ‖g‖1 ≤ ‖g‖H ≤ C7‖f‖p for all p > 1, from Lemma 5 we obtain

ω2
n−1(f)H ≥ ω2

n−1(f)1 ≥
∞∑

k=n

|ĥ(mk − 1)|2 and ‖ψ(h)‖2H ≤ C8

∞∑
n=1

µ(n)ω2
n(h)H

(see (22)). Using (6) and Corollary 2 we prove 2). The theorem is proved.

Theorems 3 and 4 show that Theorems 1 and 2 are sharp in a certain
sense.

The last theorem gives a criterion of f ∈ Br
p,θ := B(p, θ, t−rθ−1) for

functions f with generalized monotone Fourier–Vilenkin coefficients. One can
find trigonometric analogs of the Theorem 5 in [15] for decreasing Fourier
coefficients and in [11] for cosine and sine coefficients from the class RBV S.

Theorem 5. Let 1 < p < ∞, θ ≥ 1, r > 0 and f ∈ Lp[0, 1) be such that
either {f̂(k)}∞k=0 ∈ Aτ , τ ∈ R, or {f̂(k)}∞k=0 ∈ RBV S. Then f ∈ Br

p,θ if and
only if

J :=
∞∑

n=1

|f̂(n)|θnrθ+θ−θ/p−1 < ∞.

Proof. According to Corollary 2 we can consider
∞∑

n=1
mrθ

n ωθ
n(f)p instead

of
1∫
0

t−rθ−1ωθ(f, t)pdt. By Lemma 6

∞∑
n=1

mrθ
n ωθ

n(f)p ≤ C1

( ∞∑
n=1

mrθ+θ(1−1/p)
n |f̂(mn)|θ+

+
∞∑

n=1

mrθ
n

( ∞∑

i=mn

|f̂(i)|pip−2

)θ/p

 = C1(I1 + I2).

If either {f̂(k)}∞k=0 ∈ Aτ , τ ≥ 0, or {f̂(k)}∞k=0 ∈ RBV S, then f̂(mn+1) ≤
≤ C2f̂(k), mn ≤ k < mn+1, and we obtain that the convergence of I1 is

equivalent to convergence of the series
∞∑

n=1
|f̂(n)|θnrθ+θ−θ/p−1. If {f̂(k)}∞k=0 ∈

Aτ , τ < 0, then f̂(mn) ≤ C3f̂(k), mn ≤ k < mn+1, and we obtain the same
conclusion. To estimate I2 we must consider two cases. In the first case θ/p ≤ 1
we use Jensen inequality and change the order of summation:

∞∑
n=1

mrθ
n

( ∞∑

k=n

|f̂(mk)|pmp−1
k

)θ/p

≤
∞∑

n=1

∞∑

k=n

mrθ
n m

θ(1−1/p)
k |f̂(mk)|θ ≤
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≤
∞∑

k=1

m
rθ+θ(1−1/p)
k |f̂(mk)|θ.

Similarly to the case of I1, convergence of the last series is equivalent to
inequality J < ∞. In the second case θ/p > 1 the inequality I2 < ∞ is
equivalent to

I3 =
∞∑

n=1

nrθ−1

( ∞∑

k=n

|f̂(i)|pip−2

)θ/p

< ∞.

According to Hardy–Littlewood inequality [6, Theorem 346]

I3 ≤ C4

∞∑
n=1

(|f̂(n)|pnp−2n)θ/p = C4

∞∑
n=1

|f̂(n)|θnrθ+θ(1−/p)−1 = C4J.

Thus, the condition f ∈ Br
p,θ follows from the finiteness of J in all cases.

Conversely, if f ∈ Br
p,θ, then the series

∞∑
n=1

mrθ
n ωθ

n(f)p converges. By

Lemma 6 and by the conditions on f̂(i) we have

(23)

∞∑
n=1

mrθ
n ωθ

n(f)p ≥ C5

∞∑
n=2

mrθ
n

( ∞∑

i=mn

|f̂(i)|pip−2

)θ/p

≥

≥ C6

∞∑
n=2

mrθ
n

( ∞∑

k=n+1

|f̂(mk)|pmp−1
k

)θ/p

.

In the case θ/p ≥ 1 we obtain by Jensen inequality
∞∑

n=1

mrθ
n ωθ

n(f)p ≥ C7

∞∑
n=2

∞∑

k=n+1

|f̂(mk)|θmθ(1−1/p)
k mrθ

n =

= C7

∞∑

k=3

k−1∑
n=2

|f̂(mk)|θmθ(1−1/p)
k mrθ

n ≥ C8

∞∑

k=3

|f̂(mk)|θmθ(1−1/p)+rθ
k ,

whence the finiteness of J easily follows. In the case θ/p < 1 we use Theorem
346 from [6] as follows

∞∑
n=m3

nrθ−1(f̂(n)np−1)θ/p ≤ C9

∞∑
n=m3

nrθ−1

( ∞∑

k=n

|f̂(i)|pip−2

)θ/p

≤

≤ C10

∞∑
n=2

mrθ
n

( ∞∑

i=mn

|f̂(i)|pip−2

)θ/p

.

The last inequality and (21) imply j < ∞ in the case θ/p < 1. The theorem is
proved.
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