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FOURIER-VILENKIN SERIES AND ANALOGS
OF BESOV AND SOBOLEV CLASSES

S.S. Volosivets (Saratov, Russia)

Dedicated to professor Ferenc Schipp on his 70th birthday
and to professor Péter Simon on his 60th birthday

Abstract. In this work we prove several theorems connected with
embeddings of P-adic generalized Besov spaces and Sobolev spaces in
each other. The sharpness of these results in a certain sense is shown.
Trigonometrical analogs of two main results were previously proved by M.K.
Potapov.

1. Introduction

Let P = {p,}52 be a sequence of natural numbers such that 2 < p,, < N,
mo =1 and m, =py...p, for n € N = {1,2,...}. Every number z € [0,1)
can be represented as

oo
(1) :c:an/mn7 Tn €Z, 0<x, <pp.
n=1

If © = k/m;, k,i € N, then we take extension with finite number of nonzero
Zn. Every k € Z, ={0,1,...} can be expressed uniquely in the form

(2) kzzkimi—la ki€Z, 0<k<pi

=1
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For x € [0,1) and k € Z, let us define xj(z) by the formula

Xk (z) = exp | 2mi (Z xjkj/pj>

j=1

It is well known that the Vilenkin system {xx(z)}32, is an orthonormal and
complete system in L[0,1) (see [5, §1.5]). In the case p, = 2 it coincides with
the Walsh system. Let by definition for f € L[0,1)

3
|
—

- / fOm@dt, neZy, Si(f)x) =3 fk)), neN,
0

0

>
Il

An(f)(@) = S, (f)(@) = Sy (@), n €N, Ao(f)(z) = f(0).

—~

n—1
The sum Y xi(z) =: Dy(z) is called the n-th Dirichlet kernel. By the
k=0

generalized Paley lemma D, (2) = mn,X[0,1/m,.), where n € Z, and Xp is the
indicator of the set E. From this identity we deduce that

S (1)) = / f(t)dt
I

for zelI =1[k/mn,(k+1)/my), neN, k=0,1,...,m, — 1L
In addition, | D, (x)| < C; min(n, 1/z) for x € (0,1) (see [5, §1.5] or [1, Ch.

1 1/p
4, 83)). If || fll, = (f VGl dt) is the usual norm in LP[0,1), 1 < p < oo,
0

then we have for n € Z; and 1 < p < o0

1/n 1
(3) Dy < C /npdtJr /t’pdt < ConP L.
0 1/n

The maximal function M(f) is defined for f € L'[0,1) by M(f)(x) =

= sup |Sm, (f)(x)]. The P-adic Hardy space H (P, [0, 1)) consists of functions
nELy

f € LY0,1) such that ||f||z = [|[M(f)|1 < oco. If z,y € [0,1) are represented

oo
in the form (1), then x @y = z = > z;/m;, where z; € Z, 0 < z; < p;
i=1
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and z; = x; +y; (mod p;). The inverse operation © is defined similarly.
Let us introduce a modulus of continuity in LP[0,1), 1 < p < oo, by the
formula w*(f,t), = sup{||f(z & h) — f(x)|, : 0 < h < ¢}, t € [0,1]. In
addition, we will denote w*(f,1/my)p by wn(f)p. If {wn}22, is decreasing
to zero, then we define Hy = {f € L?[0,1) : w,(f), < Cwpyn € Zy}. Let

P, ={f € L[0,1): f(k) =0,k > n}, Eo(f)p = nf{||f — tullp : tn € Py} for
n € N. Further, we will often use A.V. Efimov’s inequality [5, §10.5]
(4)

Emn(f)p < ||f = Sm, (f)”p < wn(f)p < 2Emn(f)pv 1<p<oo, ne€z,.

In a similar way we define w*(f,t)u, wn(f)m, Hy and E,(f)#, and have (see

[18])
4)  Enm,(Na < |f =Sm,(Hllz Cwon(f)a <2En, (flu, neZ,.

Let a(t) be a measurable and positive function on (0,1) such that « €

€ L[6,1) for all 0 < § < 1. Then we can introduce two sequences {5(n)}52,
1

{u(n)}sey by formulas B(n) = [  «(t)dt for n € N, 3(0) = 1, and
1/(n+1)
l/m"71
pn) = [ a(t)dt, n e N. If f € LP[0,1), 1 < p, § < oo and the series
1/my,

S BY9(n) f(n)xn(x) is Fourier-Vilenkin series of a function o(f) = ¢(6, f) €

n=1

€ L?P[0,1), then f € W(0,p,a) = W(0,p,,P). Similarly, if f € H(P,[0,1))
o0 mn+171 R

and the series > Y%(m, —1) Y. f(k)xx(x) is the Fourier-Vilenkin series

n=1 k=mn

of a function ¥(f) € H(P,[0,1)), then f € W(6, H,«). By definition, for
p.0 € [1,00)

1/6

1
B(6,p,a) = feLPl0,1):Ippa = /a(t)(w*(f, t)p)e dt < 00
0

The quantity Is . and the space B(6, H, a) are introduced in a similar way.
Further we assume that for a(t) the do-condition

)

26 1
(5) /amﬁgc/a@ﬁgc/a@ﬁ,5emgmx0>m
5 5

/2
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is satisfied. If p,, < N < 2% n € N, then it is easy to see that the da-condition
(5) implies the inequality

1/mn, 2/my,

©6) pn+1)< / aydt <3y c / a(t)dt < A(C)p(n).

2= /my, = 1/my,
Finally, from (6) one can deduce that for my <n < mgy1, k € Z4,

B(n) < B(mis1) < (AF + ...+ (1) < CLAF <
S 012k’y S Clmz S Cln'y, Y= 10g2 A.

(7)
We will consider several classes of generalized monotone sequences. If
lim a, = 0 and a,n~" decreases for some 7 > 0 and for all n > 1, then

{an}22, is called quasi-monotone ({a,}52, € A;). If lim a, = 0 and a,n”
increases for some 7 > 0 and for all n € Z,, then {a,}>2, € A_,. The
classes A, were introduced by O. Szdsz [17] and A.A. Konyushkov [8] in the
case 7 > 0 and by G.K. Lebed’ [9] in the case 7 < 0. If lim a, = 0 and

n—oo

o0
> |ag —ak+1| < Cay, for all n € Zy, then {a, }2, belongs to the class RBV S
k=n

introduced by L. Leindler [10]. It is easy to see that condition {a,}>2, € RBV S
implies the inequality a,, < Ca,, for all m < n.

The trigonometric counterparts of B(6#,p,«) and W (0, p, ) are general-
izations of O.V. Besov and S.L. Sobolev classes of 27-periodic functions. These
classes were studied by M.K. Potapov [12], [13]. So, in [12] he investigated
embeddings between generalized Besov and Sobolev classes while interrelations
between generalized Besov classes may be found in [13]. In this paper we
obtain sufficient conditions for embeddings of B(6,p, «) and W (8, p, «) in each
other and show that these conditions are sharp in a certain sense. A criterion
for functions with generalized monotone Fourier-Vilenkin coefficients to be
in B(A,p,t7""1) is also given. Note that dp-condition in the present paper
replaces two conditions used by M.K. Potapov.

1. Auxiliary propositions

The first lemma has been proved by C. Watari [21] and generalizes the
famous Paley theorem for the Walsh system.
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Lemma 1. 1) Let f € L?[0,1), 1 < p < oo, f(0) = 0 and Q(f) =

o 1/2
(S 18u@P) . Then
CHIQINI < [Ifllp < C2ll QU lp-
2) If for p € (1,00) and for the series io: anXn(x) it is true that
n=1

2 1/2
[e%s) mp—1

I = Z Z a;x;(z) < 00,

n=1|j=mn_1

then this series is the Fourier—Vilenkin series of a function f € LP[0,1).
Moreover, || fl, < CsI,.

Lemma 1’ extends Lemma 1 to the P-adic Hardy space corresponding to
the case p = 1. In the dyadic case Lemma 1’ may be found in [16, p. 101,
Corollary 4].

Lemma 1. If f € L'[0,1), f(0) =0, then

GillR(NI < lfller < CallQ(f) -

The following Lemma is an analog of the Marcinkiewicz theorem on
multiplicators.

Lemma 2 ([3]). If {\x}32, C C and there exists M > 0 with the property

Mpt1—1
D al<M, 2) Y =Ml <M, neZy,

k=my

then for every function f € LP[0,1), 1 < p < oo, the series S A f(k)xx(z) is
k=0
the Fourier-Vilenkin series of a function fy € LP[0,1). Moreover,

[£xllp < Co, NI f1lp-
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Corollary 1. Set A\, = (B(k)/B(mn_1 — )% and v, = (B(mn_1 —
—1)/6(1@))1/9 formp_1 <k <my,, n €N with \g, vo arbitrary. Then the se-
quences {\p}32, and {7k}, satisfy the conditions of Lemma 2. In particular,
functions o(f) and ¥(f) belong to LP[0,1), 1 < p < oo, simultaneously.

Proof. Since a(t) > 0 and {8(k)}32, increases, we see that {A;}72,
increases and {vx}72, increases in every interval of the form [m,_i,my),
n € N. The boundedness of {\;}72, follows from the do-condition, while the
boundedness of {7;}72 is evident. The boundedness and monotonicity imply
the fulfilment of property 2) in Lemma 2. The Corollary is proved.

There are different forms of Minkowski inequality in the spaces LP and [P.
The two following statements will be used later.

Lemma 3 ([14]). Let 1 < p < 00, ank > 0, n,k € N. Then the inequalities

(Z

are valid.

Lemma 4 ([4]). Let g = {gx}3>,, where gi, € L?[0,1), k € N, and

k=1

s 1/q o 1/q
lgllLe ey = (ZIQN) ; IIgllzq@p):(ZkaIZ) :
k=1
p

Then the inequality ||g||L»2) > |Iglli2(zry is valid for 1 <p < 2. If p > 2, then
we have

Igllrazy < lgllzweys  NANrary < N fllps A = {An()}nz-

Remark 1. The last inequality of Lemma 4 is proved in [4] for the Walsh
system with help of interpolation and its proof is translated to the case of an
arbitrary system {x,}52, of bounded type.

Lemma 5. Let {¢,}52 be a subsystem of {xr}7>, such that n = Xk, ,

o0 o0
My < ky < Mpg1 and Y |an|? < 0o. Then the series S ann(x) converges
n=0 n=0
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in every LP[0,1), 1 < p < oo, to a function f and the following two double
inequalities are valid:

1/2

o 1/2 o
(10) e (zw) SllflpS02<Zlan|2> |
n=0 n=0

o 1/2 o 1/2
(11) 01<Z |an|2> <wk(f)p<202<z |an|2> , keN.

n=mjg n=mj

Proof. The inequality (10) has been proved by N.Ya. Vilenkin [19].
According to (10) and (4) we have

o 1/2
Wi (f)p < 2/f = Sy (F)llp < 2C2 ( > an2> :

n=mieg

The left inequality in (11) is obtained in a similar way. The lemma is proved.

Lemma 6. Let 1 < p < oo, f € LP[0,1) and either {f(n)}ffzo € A,
T eR, or {f(n)}>, € RBVS. Then

Cv > f@PP? <wi(f)y <
(12) <Oy <m$’f1|f(mn)|” + 2 |f<i)|ip‘2> , meN,
(13)
Cs (If(O)I” + Z If(i)pip‘2> < |IfIIp < Ca (If(O)I” + Z If(i)lpip‘2> :

Proof. The right inequality in (12) has been proved by N.Yu. Agafonova
[2]. If 1 < p < 2, then the left inequality (12) follows from the famous Paley
theorem (see [7, Theorem [6.3.2]]). If p > 2, then by Lemma 4 we have
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If = Sm, (HIE = > [[Ak|b. From conditions {f(n)}2, € Ar, 7 > 0,
k=n+1

or {f(n)}>2, € RBVS we deduce that (k € N)
l/mk

1A > / A ()P dae =

1/my mp—1
- / S F0)| de > ComE M f(mop.
0

Summing these inequalities over k from n + 1 to oo, we obtain

oo o0

1f =S, (DIE = C5 Y mp Hf )P > Co Y 1f ()PP

k=n+1 T=Mpt1

For {f(n)}:2, € A, 7 < 0, we have similarly [A(NIE > Com? ™| fmp_1)|P

and [|f = S, (NI} = Cs io: |f@)Pir=2. Since |f()] < [|fllps i € Z4, p €

1L=Mn

€ [1, 00), the inequality (13) is obtained in a similar way. The lemma is proved.

Lemma 7. Let 1 <p, 6§ < oo, f € LP[0,1). Then for n,q € Zy, n < g,
the inequality

q 1/my, g—1
(14) Y uR)E, (f) < / o)W (1, 0)p) dt < Cv S u(K)ES, (F),
k=n+1 1/mq k=n

holds. This statement is also valid for E,(f)g and w*(f,t)m.
Proof. By (4) and by the fact that w*(f,t), increasing we obtain

1/mp—1 1/my—1
WWEL (< [ a1, de s [ el (£0,)" d
1/my 1/my

Summing these inequalities over k from n + 1 to ¢ yields the left inequality
from (14). Using (4) and (6), we have for all kK > 0

l/mk

HWRVES, (Np > Coulk + 1)@ (f,1/mi)y)* > Cs / a(t) (" (f.£),)"dr.

1/mp41
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Summing these inequalities over k from n to ¢ — 1 we establish the right
inequality from (14). The lemma is proved.

Corollary 2. If the conditions of Lemma 7 are valid, then

> k) B, (f)p < /a(t)(w*(f, t)p)"dt < C1 Yy u(k)Eyp,, (£,
o k=0

1 o0
205" (D < [ el (£.0,)"dt < Co 3 k)t ()
3 k=0
Similar results are valid for E,(f)g and w*(f,t)m.
Lemma 8. 1) Letn e N, 7> 0,1 <p < oco. Then

n—1

<™ | Y e
k=0

n—1

> K akxk(x)
k=0

p

<C(p)n” Z_: arXk(2)

H k=0 H

n—1
| Z k" arxk(2)
k=0

2) Letn e N, 7>0,1<p<o0,i€[my, myy1). Then

i

Z k™" xk(x)

k=m.,

< C(pymy 1P

p

Proof. 1) Both inequalities may be proved by the method of [20]. In the
n—1
case 1 < p < oo the proof is simpler. Set ¢, = Y axxx. By analog of M.Riesz
k=0
theorem ||S,,(f)llp < Ci(p)||fllp (see [16, §3.3, Corollary 6] in the dyadic case)
and summation by parts we find that

n—1
> K akxx

k=0

< i((k + 17 = EDISk1E)llp + (0 = D7 [Snta)lp <
P k=0

< Ca(p)n”[[tnllp-
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2) Using (3), we obtain ||D; — D, ||, < Csmpb P for i e [mn, Mpy1] and
1 < p < oco. Summation by parts yields

Zk Xk

k=m.,

< Z = (k+ 1)) Dr4r *DmanJr

k=m.,

+i77||Dit1 — Do, |l < Cami=YPm,7

The lemma is proved.
2. Embeddings between generalized Besov and Sobolev classes

Theorem 1.

1) Let 1 < p < oo, 8§ = min(2,p), f € B(0,p,«). Then f € W(0,p, )
and

le(Nllp < CUop,al(f) +Ei(f)p) < Copalf) + If]p)-
2)If f € B(1,H,a), then f € W(1,H,«) and ||[¥(f)llag < Cl Ha-

Proof. 1) Remember that ¢(f) = io: BY0(m, — DAL (f)(x). Set

n=1

Ap(z) == Ap(f)(x). Since § =p for 1 < p <2 and f(m, — 1) = zn: u(v), we

N
=

obtain
oo p/2 S %S p/2
Si(x) = (Z B2P (m, — 1)|An+1($)|2> <> n) (Z |An+1($)|2>
n=1 v=1
according to (8). From Lemma 1 we deduce that

1

o 1 50 p/2
J1 ::/Sl(a?)dx < Zu(u)/( Z |An($)|2> dr <

(15) 0 n=v—+1

<Clzu L= S, (O
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1

Using Corollary 2, (4) and Lemma 1, we find that J; < Co [ a(t)(w*(f,¢)p)P dt
0

and ¥(f) € LP[0,1). If 2 < p < oo, then § = 2 and

1 IS p/2 2/p
Jo = /(Zﬁmn—umm(wn) dey =
0 n=1
1 o n p/2 2/p
={/ (Z u<u>|An+1<x>|2> dx} -
0 n=1v=1
2/p

I
—
7~
M8
=
S
[M]8
=
3
&
>
J
% [\

Applying the triangle inequality in L, 5[0,1), p > 2, Lemma 1 and Corollary 2,
we obtain

o< )| D AP <G5 pwEL (f)p <
v=1 n=v+1 p/2 v=1

< Cg/a(t)(w*(f, t)p)? dt.
0

Thus, the function ¢(f) belongs to LP[0,1) and ||[¢(f)|l, < Calppa. By

Corollary 1 and inequalities |f(k)| < Ex(f)p, 1 < k < my, we conclude that
¢(f) belongs to L7[0,1) and [lo(f)llp < C5(o.p.a + E1(f)p)-

2) As in 1) (see (15)) we have, due to Lemma 1’

n=1

1, 1/2
Jy = / <Z /Bz(mn - 1)|An+1|2> dx <
0

oo 1 00 1/2 o
sclzmv)/( > |An<x>|2> dr < Cy Y pW)I|f = S, |l ar-
0

v=1

Using (4'), Lemma 1’ and Corollary 2, we obtain that ¢(f) € H(P,[0,1)) and
1o ()l < Col1 1. The theorem is proved.
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Theorem 2.
1) Let1 < p < o0, § =max(2,p), f € W(0,p,«). Then f € B(0,p,«a) and

(

2) Let f e W(2,H,«). Then f € B(2,H,«a) and

1/6
a(t)(w(f, t)p)edt) < ClleHllp + N1 £1lp)-

o—_

1 1/2
(/a(t)(w*(f,t)fzfdt) < C(l (e +11f11m)-

0

Proof. 1) Set J = Z u(k)E?, (f)p. Using Lemma 1 and (4), we find
k=1

o 1/ p/2 o/p
J < Ci(p) Y (k) (/( > |An($)l2> dfﬂ) :
k=1

0 n=k+1

that

In the case 2 < p < 0o (0 = p) by (9) we have

) 1 p/2
J< Y plk /( )|2> dr =
k=1 0 n=k+1

=1

00 00 p/2
> (L) s
k=1 \n=k

oo n 2/p /2
(Z Ay ()] {Z ,U(k)} ) dr =
k=1 k=1

p/2
<Z|An+1 P87 (m, —1)) d.

(16)

| /\

/
o/
<

In the case 1 < p < 2 we use the converse of the triangle inequality

Lf +gllps2 = 1 fllps2 + llgllp/2s 0<p/2<1, f,920
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and change of the summation order:

00 00 I 00 p/2 2/
J=Y ulk)En, (fp < Cay_ ulk) / ( > IAn($)2> de | =
k=1 k=1 o \n=k+1
0o 1 0o P/2 2/p
—ae.y ([ (Z () A (2) ) dr| <
k=1 \ \n=k
L p/2 2/p
an aul ( ) i) =
0 k=1n= k+1
1 p/2 2/p
/ (Z | A1 (2)2B(my, — 1)) dx
0 n=1
From (16), (17) and Lemma 1 it follows that J < Cg(p)||w(f)Hf). By Lemma 2

and Corollary 1 we have ||¢(f)|l, < Ca(p)|le(f)llp- Applying Corollary 2 and
inequality E1(f), < || fllp, we finish the proof of 1).

2) Using Lemma 1’ we obtain similarly to (17)

2

o) oo L o) 1/2
J=) wkE;,, (Nu <Ca) (k) /( > IAn(a:)|2> o
k=1 k=1

0 n=k+1

1, 1/2 2
/ (Z A (@) B(my, — 1)) de | < Csllv(H)liF
0 n=1

Applying Corollary 2, we finish the proof of 2). The theorem is proved.

Corollary 3. For f € L*[0,1) conditions f € B(2,2,a) and f €
W(2,2,a), are equivalent.

Some particular cases of our results are connected with the Butzer-Wagner-
Onneweer P-adic derivative (see [16 Appendix 0.7]). Let v > 0, r € Z,

my—1

T (z) = o Kxk(x), frgx f f(z ©t)g(t)dt is the P-adic convolution
k=0

of f and g. If for f € LP[O,I), 1 § p < oo, there exists g € LP[0,1) such
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that lim ||TT(7) * f —gllp = 0, then function g is called the strong derivative
r—00

of order ~ in LP[0,1) for function f (¢ = I f). It is easy to see that
(I fY(k) = kVf(k) if k € Zy. This definition comes from to He Zelin
[20]. Since B(n) = ((n + 1)P" — 1)/pr for a(t) = t™P7=1 r > 0, p > 1,
and \, = (n?"/((n 4+ 1)P" — 1))'/? is increasing, it follows by Lemma 2 that
in this case the condition ¢(p, f) € LP[0,1), 1 < p < oo, is equivalent to the

existence of n(f) € LP[0,1) with Fourier series . n” f(n)xn(z), that is to the

n=1
existence of (" f € LP[0,1). Hence, the conditions f € W(p,p,t~P"~1) and
I f € LP[0,1) are also equivalent.

Corollary 4. Let1 < p < 2, r > 0 and f € LP[0,1) be such that

1
J(w*(f, t)p)Pt P ~1dt < co. Then IV f exists and
0

1 1/p

1 fll, < Clp) / (W (£, )PPt |+ flly

0

Corollary 5. Let p > 2, r > 0 and suppose that for f € LP[0,1) there
exists I") f € LP[0,1). Then f € B(p,p,t """ and
1 1/p

/(W*(f, )t Nt | < COIT flp + 1 £1lp)-

0

1
Remark 2. Using Corollary 2, we can replace [(w*(f,t),)Pt~"P~!dt by
0

gL

p m,PEP, (f)p in Corollaries 3 and 4.

0

3. The sharpness of the embedding conditions

Theorem 3. 1) Let p € (1,00), a(t) and w, | 0 satisfy the condition
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118

p(n)wh < oo for = min(p,2). Then there exists h € HY such that

n=1

o 1/6
(18) le(h)ll, = C <Z u(n)wﬁ> :

2) If a(t) and w, | 0 satisfy the condition Y p(n)w, < oo, then there
n=1

exists h € Hy; such that
(18') [l = CZM

Proof. 1) In the case 1 < p < 2 (6 = p) we consider the function

Z p 1/pm1/p/1(Dmk+l(x) — D, (2)).
k=1

(see [1, Chapter 4, §9]). According to (4), Lemma 1, Lemma 4, (3) and the
Jensen inequality we obtain

. 1/2
wn(h)p < 2|k = Sm,, (W), < C ( > Ak-(h)|2> <

k=n-+1

p
00 1/2 o 1/2
(19) <G ( > ||Ak(h)||;2)> < Cy (Z(wi - w7,3+1)2/p> <
k=n+1 k=n
[e’e] 2/17 1/2
<G <Z(w£ - W£+1)> = Cow,, neN
k=n
By (19) we get h € Hp. 1If
o0
=D (@h =@ )Py " T BYP (mg = 1)(Din (2) — Doy (),

k=1
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then according to Corollary 1 [|(h)|l, < Cs|l¢(h)||p. By Paley theorem (see
[7, Theorem [6.3.2]])

e 1/p
[¥(R)llp = Ca (Z(WZ - wzﬂ)mi_lﬂ(mk - 1)m11g_p> =
k=1
1/p
(20) (Z Wk (my — 1) — B(mp—1 — 1)) + wfﬁ(ml — 1)) —

oo 1/p
=Cy (Z wZu(k)) .
k=1

From (20) it follows (18) in the case 1 < p < 2. If p > 2, then § = 2 and
h(z) = Y (W} — w,%H)l/Qka_l(x). By Lemma 5 we have h € H for all

p > 1. Applying (20) for p = 2 and Lemma 5, we obtain

- 1/2 - 1/2
le(m)llp == Cs (Z(wi — wig)Blmi — 1)) > Cs <Z wi#(’?))
k=1 k=1
2) Let us consider the function h(z) = i (Wk=wWk+1) (D iy () =Dy, ().
k=1

Using Lemma 1’ similarly to (19) we find that A € HY,. Instead of the Paley the-

orem we apply the analog of the Hardy inequality S |f(n)/n < C7||f|la (see

n=1
[16, p. 109] in the dyadic case). Asin (20) we obtain ||¢)(h)| g > Cs > wiu(k).
k=1
The theorem is proved.
Theorem 4. 1) If one of the following conditions

() p =2, h(t) € Wip,p,a), {h(n)}iZy € Ar, 7 € R, or {h(n)}3Z, €
€ RBVS;

(i) 1<p<2 heW(2p,a), and h(n) =0 for alln #my —1, ke N
holds, then for v = max(p,2) the inequality

1
o)l < | [ aw ho,rde+ [
0

18 valid.



Fourier-Vilenkin series and analogs 359

2) If h e W(2,H,a) and h(n) =0 for all n #my — 1, k € N, then

1

(W7 < € (/a(t)(w*(hvt)p)QdH ||h|2> :

0

Proof. 1) Let p > 2 and h € W(p, p, a). By Paley theorem ([7, Theorem
[6.3.2]]) and summation by parts we conclude that

mn+1—1
YR} < Ca Zﬂ ) Y (hR)PRTR =
n=1 k=m,,
=C (Z(ﬂ(mn—l) (Mp_1 — 1)) Z \h(k)[PEP~ 2)
n=2 k=mp

+ C1B(my — 1) Z |h(k)|PEP—2.

km1

Using generalized monotonicity of {h(n)}5°,, Lemma 6, (6) and Corollary 2,
we obtain

¥ M)} < Ca Zu ) < Cs (u(l)llhllp + ZM(H)WZ(h)p> =<

(21) 1
<0y (|h||p+/a(t)(w*(h7t)p)1) dt) )

0

Since |h(k)| < ||h]|, for all k € Z, p € [1,00), the inequality

(21') le(m)llp < Cs (Ilhllp + /a(t)(a)*(hyt)p)p dt)

0

is also valid due to Lemma 2 and Corollary 1. If 1 < p < 2, then by Lemma 5

1/2
le(M)lp < Cs (Zﬂ — 1)|h(m )2>

n=1

(22)  =Cs > (B(mn —1) = Blmp_1 —1)) Y _ |h(mg — 1)+
n=2 k=n

00 0o 1/2
+CoB(ma) Y [h(my = D)%) < C (Z u(n)wi(h)p> :
k=1 n=1
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Using (6) and Corollary 2, we finish the proof of 1).
2) Since ||glli < llglla < C7||f]lp for all p > 1, from Lemma 5 we obtain

whp (e Z w1 (Hr = P |A(my. = D)” and [[¥(h) 13 < Cs S_jlﬂ(n)wi(h)fr
(see (22)). Using (6) and Corollary 2 we prove 2). The theorem is proved.

Theorems 3 and 4 show that Theorems 1 and 2 are sharp in a certain
sense.

The last theorem gives a criterion of f € By, := B(p,0,t=71) for
functions f with generalized monotone Fourier—Vilenkin coefficients. One can
find trigonometric analogs of the Theorem 5 in [15] for decreasing Fourier
coefficients and in [11] for cosine and sine coefficients from the class RBV'S.

Theorem 5. Let 1 <p < oo, 0 >1,7r>0 and f € LP[0,1) be such that
cither {f(k)}32, € A,, 7 € R, or {f(k)}32, € RBVS. Then f € By o if and
only if

J =Y |f(n)| "m0 < oo,
n=1

(o]
Proof. According to Corollary 2 we can consider Y. mwf(f), instead

n
n=1

1
of [t7"97 WO (f,t),dt. By Lemma 6
0

> mplwl(f)y < Cy (Z my /0= £ (m,, )7+
n=1

n=1

0o o) 0/p
+ nga ( Z |f(i)pip_2> =Ci(I1 + I).
n=1

=My

If either {f(k)}2, € Ay, 7 > 0, or {f(k)}32, € RBVS, then f(m, 1)
< C’gf(k), my, < k < mpa1, and we obtain that the convergence of Iy is

IN

equivalent to convergence of the series S |f(n)|?n"0+0=0/P=1 1f {f(k)}?2, €

n=1
A., 7 <0, then f(mn) < Cgf(k:), my, < k < myy1, and we obtain the same
conclusion. To estimate I we must consider two cases. In the first case 8/p < 1
we use Jensen inequality and change the order of summation:

00 00 0/p 0o 0o
S my? (Z |f<mk>|sz1> <SS mrml VP fm) P <
n=1k=n

n=1 k=n
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oo

<> m T )
k=1
Similarly to the case of I;, convergence of the last series is equivalent to
inequality J < oo. In the second case 8/p > 1 the inequality I < oo is
equivalent to

oo 0/p
I3 = an (Z |f(2)[PiP~ 2) < 00.
n=1

According to Hardy-Littlewood inequality [6, Theorem 346]

1 < Cy Y (Fm) ) = €Y Flm) 01 = G
n=1 n=1

Thus, the condition f € B) 4 follows from the finiteness of J in all cases.

Conversely, if f € B ,, then the series Z mrwl (f), converges. By

n=1

Lemma 6 and by the conditions on f(i) we have

0/p
Zmre o( >C'5Zm <Z |f )[PiP— 2) >

=My

(23)

o0 0/p
>CGZm ( Z ¥i mk)|pm£_1> )

k=n+1
In the case 6/p > 1 we obtain by Jensen inequality

Zmre 0 >C7Z Z 1 VPt —
n=1

n=2k=n+1
oo k—1 %S
2 0(1—1 T 2 0(1—1 r0
:C7ZZ‘f(mk)|9mk( /P)mne > CSZUC(mk)‘emk( /p)+ ,
k=3n=2 k=3

whence the finiteness of J easily follows. In the case §/p < 1 we use Theorem
346 from [6] as follows

00 [eS) [eS) 0/p
> o 3 (S s

n=msy n=ms k=n

0/p
<C1()Zm <Z|f ‘pzp 2) .

1=Mn

The last inequality and (21) imply j < oo in the case /p < 1. The theorem is
proved.
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