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UNIFORM AND L-CONVERGENCE
OF THE NORLUND LOGARITHMIC MEANS
OF WALSH-KACZMARZ-FOURIER SERIES

K. Nagy (Nyiregyhdza, Hungary)

This paper is dedicated
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Abstract. The main aim of this paper is to investigate the convergence
and divergence properties of one- and two-dimensional Nérlund logarithmic
means of Walsh-Kaczmarz-Fourier series of functions in the uniform and in
the L Lebesgue norm. We give necessary and sufficient conditions for the
convergence regarding the modulus of continuity of the functions.

1. Introduction

The n-th Riesz’s logarithmic mean of a Fourier series is defined by

1

ln 1Sk(f) ! .:n
I E n -
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The Riesz’s logarithmic mean with respect to the trigonometric system was
studied by a lot of authors, e.g. Szédsz [20] and Yabuta [21], with respect to
Walsh, Vilenkin system by Simon [15] and G&t [4].
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Let {qx : £ > 0} be a sequence of nonnegative numbers. The n-th Nérlund
mean of an integrable function f is defined by

1 n—1
Qi Z @n—1Sk(f)s
" k=1
n—1
where @, := > qx. This Norlund mean of Walsh-Fourier series was investi-
k=1

gated by Mdricz and Siddiqi [13]. The case, when ¢, = % is excluded, since the
method of Moéricz and Siddiqi does not work in this case.

If g := %, then we get the Norlund logarithmic means

1 n_lsk(f)

n—1
where I, = > % From now, we write simply logarithmic means ¢,(f).
k=1
Recently, Gat and Goginava [5, 7, 8] proved some convergence and divergence
properties of these logarithmic means of functions in the class of continuous
functions, and in the Lebesgue space with respect to the Walsh-Paley system.
Moreover, they proved that the maximal norm convergence function space of
these logarithmic means is Llog™ L.

The main aim of this article is to investigate the convergence and di-
vergence properties of one- and two-dimensional Norlund logarithmic means
of Walsh-Kaczmarz-Fourier series of functions in the uniform, and in the L
Lebesgue norm. We give necessary and sufficient conditions for the convergence
regarding the modulus of continuity of the functions.

The a.e. convergence of a subsequence of logarithmic means of Walsh-
Fourier series of integrable functions was discussed by Gét and Goginava [9, 6].
More results on these logarithmic means with respect to unbounded Vilenkin
system can be found in the paper [2] written by Blahota and Gét.

2. Definitions and notations

Let I := [0,1) denote the unit interval in R. The Rademacher functions
are defined by

1 itz el0,1/2),
ro(z) :=19(2"2), n>1and x €I, where ro(z) :=
—1 ifze1/2,1),
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and ro(x + 1) := ro(z). Each natural number n can be uniquely expressed as

n= > n;2" n; € {0,1} (i € N), where only a finite number of n;’s are different
i=0

from zero. Let the order of n > 1 be denoted by |n| := max{j € N : n; # 0}.
That is, 2" < n < 27+,
The Walsh-Paley functions are defined by

The Walsh-Kaczmarz functions are defined by kg := 1 and for n > 1

In|—1

() = 7)) (2) H (T —1—k(2))™*.

k=0

Set w := (wy, : n € N) and  := (k, : n € N). Each x € I = [0,1) can be
oS} .

expressed as z = Y. x;27771, where x; € {0,1} (j € N). This expression is
j=0

unique if z is not a dyadic rational. In other words, if « is not of the form j/2",

where j,n are nonnegative integers. If x is a dyadic rational, then we choose

the expansion which terminates in zeros. In this way we have the unicity of

this expression for all x.

For A € N define the transformation 74 : I — I by

oo
L TA-1 TA-2 To €
Ta(x) == ol + 22 +"'+F+22j+1'
J=A
In other words, if the coordinates of = are zg,x1,...,Z4_1,%A4,..., then the
coordinates of 74(x) are xa_1,ZA—2,...,%1,Z0, LA, ... By the definition of 74

(see [17]), we have
k() = T (T)w,, _gini (T () (n €N, 2 €10,1)).

Suppose that f is a Lebesgue integrable function on I and 1-periodic. We define
the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
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kernels, the Fejér kernels and the Norlund logarithmic kernels by

0 k=0
n—1 1 n
D= ok K= Df,
k=0 k=0
n—1 o
n Z )
n—=k

" g=1

where o = w or . Recall that

2" if x € [0,1/2"),
(1) Don(x) = Dau(x) = D3 (2) =
0 ifwe(1/21).

Set K = I or I2. Denote by L(K) the set of measurable functions f
defined on K for which
9= [ 171 < o0
K

and by C(K) the space of continuous functions on K, with the supremum norm

Iflle = sup |f(z)].
zeK

Let f € C(I). The expression

w(d, f)c = sup [|f(.&h) = F()lle

[h|<6
is called the modulus of continuity of f, and for f € L(I)

w(0, f)r == sup [f(.&h)—f()lL

Inl<s

is called the integral modulus of continuity, where @ denotes the dyadic addition
(see [14]).
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On the unit square 12 = [0,1) x [0,1) we consider the two-dimensional
systems as {a,(z) X am(y) : n,m € N}. The two-dimensional Fourier coeffi-
cients, the rectangular partial sums of Fourier series and the Dirichlet kernels
are defined by

1 1
FoGi, 5) = / / F(t, 8)au(t)ay (s)dtds,
0 0

k—11-1 k—=11-1
Spa(f) = Z Z [, j)aic; and Dy = Z Z o = D?’lDla’2,
=0 j=0 i=0 j=0

where a = w or k. Let X = L(I?) or C(I?). The total modulus of continuity
in case X = C(I?), and the total integrated modulus of continuity in case
X = L(I?) are defined by

w6, fx =sup{||lf(. ®u,. ®v) — f(.,.)||x : u? +v* < 62}

The partial modulus of continuity in case X = C(I?), and the partial integrated
modulus of continuity in case X = L(I?) are defined by

wi(0, f)x = sup{[|f(- ®u, ) = [ )[x + [ul < 63,

wa(0, f)x = sup{[|f(,- @) = (., )llx : |v] <}

The mixed modulus of continuity in case X = C(I), and the mixed integrated
modulus of continuity in case X = L(I) are given by

wi,2(01, 02, f)x =

= sup{||f(.69u,.@v) 7f(®u7) 7f(,EB’U> +f(7)||X : |u‘ < 61,|1}| < 52}

3. On the one-dimensional Noérlund logarithmic means

During the proofs of Theorems and Lemmas ¢,C' will denote constants
which may vary at different occurrences. In order to prove our main theorems
we need the following lemma of G4t and Goginava in the paper [5]:

Lemma 1. Let py =224 4+ .. 422 420, then IFy% ]Iz > clogpa.
By the help of this lemma we prove the following
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Lemma 2. Let py := 224 +...+22420 then there exists an ng € N such

that
1Fy ]l = clogpa
for A > nyg.
Proof. During the proof of Lemma 2 we will use the following equation:
(2) Sai;(x) = Doa(x) + ra(2) DY (talx)), j=0,1,..,2" = 1.

Let |m| = A, then

i) | R D5@)
m—j

2A
I Fp () =)
j=1

j=24+1
First, we discuss I by the help of the equation (2).

m—24-1 DE

II— 2A+]( ) —l D 2 -1 Dw TA )) .
= ]:Zl m—mf2f; 2A +TA g 72A ]_

= ln—24D2a (2) + 74(@0) 20 F1|_5a(7a())-

Now, we investigate I. By the help of Abel’s transformation we could write

241
1 1 _— 24
Z<m—jm—j—1>]Kj(gc)+m—zA 24 ().

Now, we choose m = p4 (we note that |m| = 2A) and we write

l

H || = AFpA ;1 0T24 - 12A71 Dy2a —
DA L Pa L
224 _1

1 1 1
S ) jKr

lpa ]:Zo <pA—] pA—j—1> ’

L

R

ZPA pAfl 2 L
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By Lemma 1 we have

l
PA—-1 w
———raakl), | oT2a

z > ||y, |z > clogpa-1.
PA

L

It is evident that
l

A—
P ! D22A

<ec.
Ipa

L

For the Walsh-Kaczmarz system it was proved [16] that

sup || K|l < oo.
n

This immediately gives that

224 _q

1 1 1 1 1

S ()i e X s

lpa = \Pa—J pa—j—1 lpa =5 (Pa—1J)
L

and
1 22A

lpiPAq

K

22A S C.

L

Summarizing our results, we get
|y, |l > clogpa—1 —c > Clogpa

for A big enough.
This completes the proof of this lemma.

It is well known that the following are true [17, 18]:
Theorem A. Let either X = C(I) or X = L(I). Let f € X and

w(é, flx =o <log(11/5)> ’

then ||SE(f) — fllx — 0 as n — oo.

Since,
. SE) ~
I#505) ~ Fllx §:”kn_ Ix

and the fact that the logarithmic summability method is regular from Theorem
A we conclude that the followings are true.
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Theorem 1. Let f € C(I) and

m&ﬁc:O(mJUﬁ)’

then ||tE(f) — fllc = 0 as n — oc.

Theorem 2. Let f € L(I) and

m&ﬂL=0<m;ﬂ®>’

then ||t5(f) — fllL — 0 as n — oo.

In this paper we prove the sharpness of these results. Namely, we prove
the following theorems:

Theorem 3. There exists a function f € C(I) such that

w(d, f)e =0 <log(11/6)>

and t5(f,0) diverges.
Theorem 4. There exists a function g € L(I) such that

w@@L:OQ%&®>

and t5(g) does not converge to g in L-norm.

To prove Theorem 3 we modify the counterexample function of Gat
and Goginava defined in [5] and show that this modified function is really
a counterexample function for the Walsh-Kaczmarz logarithmic means.

The construction: Choose a monotonically increasing sequence of positive
integers {ny, : k > 1} such that

(3) ni < Mgt

k—1 22m 22n;C

(4) an < -

=1
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Set
92nk+25 if0 <2 <222
w’nk (l’) = _227Lk+2(x _ 2—2nk—1) lf 2—2nk—2 S T < 2—2nk—1,
0 otherwise.

Define the functions ¢, periodically by

92np+1_q

o= X s (- gt )+ o+ 1) = oy ).

The counterexample function f is defined by

k=1

where fp, () = on,(x) sgnfy (x) and py, is defined in Lemma 2. The
method of the article [5] immediately gives that

(5) w(1/2% f, Vo = O (;j;) (i=1,2,....k—1)

and

w(8,fle =0 (log(11/5)> '

Proof of Theorem 3. The only fact we have to prove is that t;nk (f,0)
diverges. To do this we follow the method of Gdt and Goginava [5] and write

(©)
65, (£,0) = SO = 185, (70 = | [ FOF, (Ot) =

/fm Fp, (t)dt| =1 —IT—III.
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By Lemma 2 we write

(7)
1 1 L 92nj+1_q (G+1)27 2"kt
= [ OIF, 0l = [ eutl
0 Jj=0 jo—2n—1
92np+1_q (j+1)27 2"kt
X lEL ) | enta-
=0 ja—2nK—1
22nk+1 1 (j+1)272"k 1
_ ‘mk j2m2neh)| / 1dt >
ja—2ng—1
C
>

n:”Fpnk lo>e>0
for k big enough.
It is known that

150) = Slle < oo (£.7) togtn+1
C

and
Wb fle _ yw@ fle

5 < 5 for 0<d <.

Therefore, we have

165~ fllo < oo (1.7) Toxtu-+1)
C

(for more details see [5]). This and (3), (4), (5) imply that

E—1 k—1
1 &t
125 L (o) o +n=0 (5

=0
Nk 22mk—1
= = 1
0 (g2 ) = ot

as k — oo.

Fr (1)]dt =
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Since, || Df||r < clogn, we immediately get that | Ff||z = O(logn). This
and (3) yield

oo FK/
III:O<Z ”p"’“”L>:O< [ )zo(l) as k — oo.

n; n
i=k+1 ‘ kot

Summarizing our results, we conclude that
e, (£,0) = £0)] > 0.

That is, the proof is complete.

Now, we prove Theorem 4 and show that the counterexample function g
given in the article [5] is really a counterexample function for the logarithmic
means of Walsh-Kaczmarz-Fourier series, too.

First, we give the construction. Choose a monotonically increasing se-
quence of positive integers {my, : k > 1} such that

(8) 2mk—1 S mg,
k—1 22ml 22m;c
(9) < .
=1 my my
Set
g(z) = z:gj(;v)7 where g;(z) := M
ey
j=1 /

In the article [5] it is proved that

(10) w(d,g9)L =0 (log(11/6))

and

(11) w(b,g1)r, = 0(2*™6/my) for 1=1,2,...,k—1, §>0.

Proof of Theorem 4. During the proof of this theorem we will follow
the method of G4t and Goginava in the article [5]. Simple calculation gives

I, (@)~ gllz >
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Y

k—1 k—1
(Zm) 0 (zgi) 5
=1 =1 L

I —I1I—-1I1.

o0
- Z lgillz —
i=k

(12) .

We have the following

K

1 K Fpmk .
U (90) = — Sy (B )= — (i=kk+1,..).

i m;

By (8) and Lemma 2 we get

e’} [>'s) K K
1 1Ey, e lIFy,
I = 752 i+1 Fr = Tk ZC il ZC>0
; m; m;+ ( Pmk) B ; mi me

for k£ big enough and
=1
E — <= o(l) as k— oo.
—omi T omg

The estimation
K 1
1#5(9) = gllz < cw <g) log(n + 1)
noJr

goes analogously to the estimation ||t5(g) — g||c (for more details see [5]). This,
(8), (9) and (11) yield

k-1 k—1
IIT < Z It5,,, (9:) = gill = < (22mk ,91>Lmk> =
i=1

i=1

K21 gom, 2my,
mg 24 my, 2°7k-1

i=1
Summarizing our results, we conclude that

T 65, (9) — gllz > 0.

This completes the proof of this theorem.
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4. On the logarithmic means of cubical partial sums

We define the logarithmic means and kernels (of Marcinkiewicz type) of
cubical partial sums by

n

. 1= Sg(f) 1=

We define the Marcinkiewicz kernels IC,, by
I
= ﬁ Z Dk,kv
k=0

where o = w or k. For the Walsh system this logarithmic mean was investigated
by Gat and Goginava in the article [8]. Now, we would like to discuss the
behavior of this logarithmic mean of quadratical partial sums with respect to
the double Walsh-Kaczmarz system. We show that the behavior of T)¥ is very
close to the behavior of T}V in our special sense.

The following Lemma proved by Goginava [10] will play an important role
in the proof of our main theorems.

Lemma 3. If f € X, then

1550 () = fllx <

1 1 1
Sc{wl (m7f) logm + ws (n7f) 10gn+w12(m
X X

where X = C(I%) or L(I?).
It is evident that the condition

w(d, flx <o <<log(11/6)>2>

provides the convergence of || S5, (f)—fllx — 0 (asn — oo) for f € X := C(I?)
or L(I?).

,f) 1ogm10gn} ,
X

3\>—‘

n—1
K ||S f”X
ITE () = fllx < z Pl X

n
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and the fact that the logarithmic summability method is regular, then by
Lemma 3 we conclude that the following is true.

Theorem 5. Let either X := C(I?) or X := L(I?). Let f € X and

ons=o( (i)

Then | T5(f) — fllx — 0 as n — oo.

In this section we investigate the sharpness of this result. Namely, we
prove the following theorems:

Theorem 6. There exists a function f € C(I?) such that

w(d, fle =0 <(log(11/6>)2>

and T (£,0,0) diverges.
Theorem 7. There exists a function g € L(I?) such that

w(0,9)r =0 ((log(ll/cﬂ)Q)

and T} (g) does not converge to g in L-norm.
To prove our theorems we need the following lemma [8]:

Lemma 4. Let py :=224 + ... 4+ 224+ 20 then

1F5 I = clog?pa
for every positive integer A.

By the help of this lemma we prove the following lemma for Walsh-
Kaczmarz system.

Lemma 5. Let py := 224 4 ... 422490 then there exists anng € N such
that

1F5 Il = clog®pa
for A > nyg.

Proof. Let m =pa.

224 n

L FE Z + Z —)::IJrH.

= j=22441
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We will use the notation D;’i(xl,xz) = Dj(a'), riy(z!,2?) := ra(a’) and
Fri(zt, 2?) = Fr(2?) for i = 1,2.
To discuss II, we use the equation (2), which immediately yields

_922A_1 nyk,1 K,2
7= Z Dot Dofary _
ot m — 224 _ j
pa-1—1 D;U’z

PA-1— 1 2
D 2AD22A
= D iy triaDes )
=1 bA-1—] j=1

0 T2A
PA-1—]

PA—1— 1Dw1 pPA-—1— 1

i OT24 o (T24 X T24)
1 2
7340524 E — e 1y ATSA E =
- PA- 1—J pA 1—7J

= lps_Dy2a D3os + 7"2AD22AlpA_1F;ifl ©T2A + T'QAD22AZPA—1F;;UAE1 °TaA+
+roaTaalps (FE o(Toa X Toa) = 11} + I1y + I3+ I14.

pPA-1

By the equation

e 2
HF;‘;ll oToullL = ||F1§”A11||L < T Z —L — < clogpa_i,
Pa-1 5 PA-1— )]

we have that

1 1
—IL|| <clogpsa_1 and —II3|| <clogpa_1.
Ipa L lpa L
The equation (1) implies that
1
7][1 S C.
Ipa L
Now, we discuss 1. Abel’s transformation gives that
2241
1 1 224
I= - — - iKY+ ——Kooa =: 11 + Is.
2 (PA—] PA—J_1>j P pany T

=1
For the Walsh-Kaczmarz-Marcinkiewicz kernels [11] holds that

sup ||KCF L < oo.
n
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This implies that

224 1
JIES e

1 ~ c
7*53 3;;

1
pA—J

ME

Il
—

<c

o~

- —j-1
= Pa—5pa—-j-1) ‘

pA

1 22A
= T ||K§2A||L S C.
L pa PA—-1

By Lemma 4 we get that

1
1—114 > c||F, —g2a 0 (T2a X T24)|lL 2 | Fp, L > clog®pa_1.
pa L
That is,
1
175 e > l—II4 —clogpa_1 —c > Clog?pa.
pA L

for A large enough.

To prove Theorem 6, we modify the function of Gat and Goginava given
in the paper [8].

First, we construct the modified function f € C(I?). We choose a
monotonically increasing sequence of positive integers {ny : k£ > 1} such that
the conditions (3) (that is, n} < ng41) and

(13)

are satisfied.
Set
fnk (CL‘, y) = Pny (x)(Pnk ( )Sgn}w (-757 y)v

where p,, is defined in Lemma 5 and ¢, is defined in the proof of Theorem

4. Set
= T

By the method of article [8] it is easy to see that

w8, fle <0 ((lg(11/5)>2>
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and

1 227” )
(14) w1 (22nkufm>cz <22”k fnl> :O<22nk> s Z:].,Q,...,k—]_.

Proof of Theorem 6. The only fact we have to prove is that this function
f is a counterexample function for Walsh-Kaczmarz system. To do this we show
that T;”k (f,0,0) diverges. Now, we write the expression |Tp’7nk (f,0,0)—f(0,0)]

into the analogous form of the inequality (6).

By Lemma 5 we get

11

//Sonk V¢n, (8)|F, (8, 5)|dtds > 2||~7'-;Lk||LZC>O
ny

0 0

3
= O

for k big enough (for more details see the one-dimensional case, the inequality
(7))

By Lemma 3 of Goginava and the method of the paper [8] we have that

1T (f) = flie <

SCIOgQH{wl(:L7f> +WQ(7]’-L’f) +\/Wl(:l/af> w2<,’]7:7f) }
C C C C

This and (14) give that

222%,3

T, (fris 0,00 < T3 (fni) = fuillo

22n;€

This implies that
n2 k=1l gom, 2 92ns_
2 ny, 2"kt
_ k _ k _
IIO<2 n2>0<22nk nil)o(l) as k — oo.

Since

||f:||Lo< i \DE ”L) = O(1og? n)

and (3) hold, we write

III:O(Z |I;:2’°”L>:O< Zk )zo(l) as k — oo.

i=k+1 i Mkt
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This completes the proof of this theorem.

Now, we use the function g € L(I?) constructed by Gat and Goginava [8].

We choose a monotonically increasing sequence of positive integers {my, :
k > 1} such that the condition (8) (that is, 2m;_1 < my) and

k—1

le 22mk
(15) >
=1 my
are satisfied. Set
D 2m . +1 (x)D 2m;+1 (y)
Ji= D gi(ey),  where  gyla,y) = SR

m;

In the article [8] it is proved that

w(6,9)r =0 <<log<11/6>>2> '

Thus, the only thing we have to prove is that the function ¢ is really a
counterexample function for the Walsh-Kaczmarz system, too.

Proof of Theorem 7. To prove this theorem we use the analogue of the
inequality (12). First, we investigate I. We have that

K

K 1 K fpmk .
Tpmk (95) = mfisz”"ﬁl,z?mﬁl(fpmk) = m? for j > k.

Lemma 5 and condition (8) yield

oo oo

1 [
I= Z —5 Sppmnyt ooy (P, || = Z —— > nTg”F;w [ >e¢>0
j=k i=k J

for k big enough.
Second, we discuss /1. Using (8) we write
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At last, we discuss I11. From (11) it is easy to get that

w1(0,g1)r = w2(6, 1), = O(22™§/m?) for | =1,2,...k — 1, § > 0.

11 1
wiz2 | =, =4 < 2"‘Jl ~ 91
7 1 L (3 L

By Lemma 3 and

we write that

22m1 og? §

1¢4(ar) — ail <O (
b im?

and

Tl || (1) —

g1) —allz

Ty, (9 gl < — e =

1Tp,.., (9) — aul p— ; P —

—1

22m1 |og? p P 1
D i

2 .
mEm; — i(pm, — 1)

_0 (22ml 10g2 pmk> .

22mem?

This and (15) immediately give that

1og? Py, 2 22
my

=1
2 22mk 1
—O< Tk ) =o(1) ask — oc.
22mi m2
k—1
Summarizing our results on I, I, II1 we conclude that

Jm |75 (9) =gl > 0.

This completes the proof of this theorem.
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5. On the two-dimensoional Norlund logarithmic means

We define the two-dimensional logarithmic means and kernels of rectan-
gular partial sums by

thm(f) = 7
: Inlm == (n—kK)(n-1)
n—1m-—1
1 Dica | a2
F,, L REy
Inlm (= = (n—kK)(n-1

(o = w or k). For the Walsh system this mean was discussed by Gét and
Goginava in the article [7]. Now, we investigate the behavior of two-dimensional
logarithmic means of rectangular partial sums with respect to the double
Walsh-Kaczmarz system.

The two-dimensional logarithmic method can be given by the help of
a positive rectangular matrix which satisfies regularity conditions (for more
details see [7]).

Moreover,

1 "i:“”’l 158.(f) = fllx

165 (f) = flx < i

o lnlﬂ

~
£l
Il
-
-~
Il
-

where X = C(I?) or L(I?). These and Lemma 3 immediately give the following
Theorem 8. Let either X := C(I?) or X := L(I?). Let f € X and

w(é, f)x =o ((bg(11/<5)>2> ’

then |t} . (f) — fllx — 0 as n,m — oc.
In this section we investigate the sharpness of this result. Namely, we state
the following theorems:

Theorem 9. There exists a function f € C(I?) such that

o100 ()
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and ty, ,,(f,0,0) diverges.
To prove Theorem 9 we use Lemma 2 and modify the counterexample
function given in the article [7]. This is a mixed function of the functions in

the previous sections.

We choose a monotonically increasing sequence of positive integers {ny :
k > 1} such that the conditions (3) and (13) are satisfied. Set

fzy) = Z W’
k=1 K

where f,, is defined in Theorem 3.

This function satisfies the conditions of our theorem. The proof of that
fact, that f is a counterexample function for Walsh-Kaczmarz system, goes
analogously to the proofs of Theorems 3 and 6 (for more details see [7]).
Therefore, it is left to the reader.

Theorem 10. There exists a function g € L(I?) such that

w(d,9)L = O ((103:(11/5))2>

and ty, ,,(g) does not converge to g in L-norm.

The function g constructed in the proof of Theorem 7 with a monotonically
increasing sequence of positive integers {my : k > 1} which satisfies the
conditions (8) and (15) will be good. The proof goes analogously to the proofs
of Theorems 4 and 7 (for more details see the article [7]). Therefore, it is left to
the reader. At last, we note that the proof of this theorem is based on Lemma
2.
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