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TO SUMMATION OF FOURIER SERIES
ON ONE AND TWO–DIMENSIONAL
UNBOUNDED VILENKIN GROUPS
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Abstract. It is a highly celebrated problem in dyadic harmonic analysis

the pointwise convergence (or divergence) of the Fejér means of functions

on unbounded Vilenkin groups. We give a résumé of the very recent

developments concerning this matter both in the point of view of the one

and two dimensional cases.

1. Introduction, some known results

First, we give a brief introduction to the theory of Vilenkin systems. These
orthonormal systems were introduced by N. Ja. Vilenkin in 1947 (see e.g. [39,
1]) as follows.

Let m := (mk, k ∈ N) (N := {0, 1, . . .},P := N \ {0}) be a sequence of
integers each of them not less than 2. Let Zmk

denote the discrete cyclic group
of order mk. That is, Zmk

can be represented by the set {0, 1, ..., mk − 1},
with the group operation mod mk addition. Since the group is discrete, then
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every subset is open. The normalized Haar measure on Zmk
, µk is defined by

µk({j}) := 1/mk (j ∈ {0, 1, ...,mk − 1}). Let

Gm :=
∞×

k=0
Zmk

.

Then every x ∈ Gm can be represented by a sequence x = (xi, i ∈ N) ,
where xi ∈ Zmi

(i ∈ N). The group operation on Gm (denoted by +) is the
coordinate-wise addition (the inverse operation is denoted by −), the measure
(denoted by µ), which is the normalized Haar measure, and the topology are
the product measure and topology. Consequently, Gm is a compact Abelian
group. If sup

n∈N
mn < ∞, then we call Gm a bounded Vilenkin group. If the

generating sequence m is not bounded, then Gm is said to be an unbounded
Vilenkin group.

The Vilenkin group is metrizable in the following way:

d(x, y) :=
∞∑

i=0

|xi − yi|
Mi+1

(x, y ∈ Gm).

The topology induced by this metric, the product topology, and the
topology given by intervals defined below, are the same. A base for the
neighborhoods of Gm can be given by the intervals:

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}

for x ∈ Gm, n ∈ P. Let 0 = (0, i ∈ N) ∈ Gm denote the nullelement of Gm.

Furthermore, let Lp(Gm) (1 ≤ p ≤ ∞) denote the usual Lebesgue spaces
(‖.‖p the corresponding norms) on Gm, An the σ-algebra generated by the sets
In(x) (x ∈ Gm), and En the conditional expectation operator with respect to
An (n ∈ N) (f ∈ L1).

The definition of the maximal function of integrable function f and the
definition of the maximal Hardy space on Vilenkin groups is as follows

f∗ := sup
n∈N

|Enf | = Mn

∫

In(x)

fdµ,

H1 :=
{
f ∈ L1(Gm) : f∗ ∈ L1(Gm)

}
, ‖f‖H1 := ‖f∗‖1.

The atomic Hardy space is defined by functions called atom: An atom is
a function a : Gm → L∞(Gm) either a = 1 or supp a ⊂ In(x),

∫
In(x)

a =

= 0, ‖a‖∞ ≤ 1/µ(In(x)) for some interval In(x).
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Then the function f belongs to the atomic Hardy space, that is f ∈ H(Gm)

if and only if f =
∞∑

i=0

λiai, where
∞∑

i=0

|λi| < ∞ λi ∈ C, ai is an atom (i ∈ N).

Moreover, H(Gm) is a Banach space with the norm

‖f‖H := inf
∞∑

i=0

|λi|,

where the infimum is taken over all decompositions f =
∞∑

i=0

λiai ∈ H(Gm).

If the sequence m is bounded, then H(Gm) = H1(Gm), Moreover, ‖f‖H ∼
∼ ‖f‖H1 . That is, the two norms are equivalent.

If the sequence m is not bounded, then the situation changes. That is, in
this situation we have

H(Gm)⊂
6=

H1(Gm).

This inconvenience comes from that there are ”too few” intervals. In order
to overcome this difficulty Simon defined more intervals on unbounded Vilenkin
groups [34]. If the sequence m is not bounded, then define the set of intervals
in a different way. That is, we have “more” intervals.

I ⊂ Gm is called an interval if I =
⋃

k∈U

In(x, k) where U is obtained from:

U0
n,0 =

{
0, ..., mn − 1

}
,

U1
n,0 =

{
0, ...,

[
mn

2

]
−1

}
, U1

n,1 =
{[

mn

2

]
, ..., mn − 1

}
,

U2
n,0 =

{
0, ...,

[
[mn/2]− 1

2

]
−1

}
,

U2
n,1 =

{[
[mn/2]− 1

2

]
, ...,

[
mn

2

]
−1

}
, ...

and so on, where In(x, k) := {y ∈ Gm : yj = xj (j < n), yn = k}. Simon [34]:
the two Hardy spaces coincide.

Let a be a nonnegative real. We say that the function f ∈ L1(Gm) belongs
to the logarithm space L(log+ L)a(Gm) if the integral

‖f‖L(log+ L)a :=
∫

Gm

|f(x)| (log+(|f(x)|))a
dµ(x)
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is finite. The positive logarithm log+ is defined as

log+(x) :=

{
log x if x > exp(1),

1 otherwise.

Let X and Y be either L(log+ L)a(Gm) or Lp(Gm) for some 1 ≤ p ≤ ∞,
and a ≥ 0 with norms ‖.‖X and ‖.‖Y . We say that operator T is of type (X, Y )
if there exists an absolute constant C > 0 for which ‖Tf‖Y ≤ C‖f‖X for all
f ∈ X. If X = Y = Lp(Gm) then we often say that T is of type (p, p) instead
of type (Lp, Lp). T is of weak type (L1, L1) (or weak type (1, 1)) if there exists
an absolute constant C > 0 for which µ(Tf > λ) ≤ C‖f‖1/λ for all λ > 0
and f ∈ L1(Gm). It is known that the operator which maps a function f to
the maximal function f∗ is of weak type (L1, L1), and of type (Lp, Lp) for all
1 < p ≤ ∞ (see e.g. [4]).

Let M0 := 1,Mn+1 := mnMn (n ∈ N) be the so-called generalized powers.
Then each natural number n can be uniquely expressed as

n =
∞∑

i=0

niMi (ni ∈ {0, 1, ..., mi − 1}, i ∈ N),

where only a finite number of ni’s differ from zero. The generalized Rademacher
functions are defined as

rn(x) := exp
(

2πı
xn

mn

)
(x ∈ Gm, n ∈ N, ı :=

√−1).

It is known that

mn−1∑

i=0

ri
n(x) =

{ 0 if xn 6= 0,

mn if xn = 0
(x ∈ Gm, n ∈ N).

The n-th Vilenkin function is

ψn :=
∞∏

j=0

r
nj

j (n ∈ N).

The system ψ := (ψn : n ∈ N) is called a Vilenkin system. Each ψn is a
character of Gm, and all the characters of Gm are of this form. Define the m-
adic addition as

k ⊕ n :=
∞∑

j=0

(kj + nj(mod mj))Mj (k, n ∈ N).
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Then, ψk⊕n = ψkψn, ψn(x + y) = ψn(x)ψn(y), ψn(−x) = ψ̄n(x), |ψn| =
= 1 (k, n ∈ N, x, y ∈ Gm).

Define the Fourier coefficients, the partial sums of the Fourier series, the
Dirichlet kernels, the Fejér means, and the Fejér kernels with respect to the
Vilenkin system ψ as follows

f̂(n) :=
∫

Gm

fψ̄n,

Snf :=
n−1∑

k=0

f̂(k)ψk,

Dn(y, x) = Dn(y − x) :=
n−1∑

k=0

ψk(y)ψ̄k(x),

σnf :=
1
n

n−1∑

k=0

Skf,

Kn(y, x) = Kn(y − x) :=
1
n

n−1∑

k=0

Dk(y − x),


n ∈ P, y, x ∈ Gm, f̂(0) :=

∫

Gm

f, S0f = D0 = K0 = 0, f ∈ L1(Gm)


 .

It is well-known that

Snf(y) =
∫

Gm

f(x)Dn(y − x)dµ(x),

σnf(y) =
∫

Gm

f(x)Kn(y − x)dµ(x)

(n ∈ P, y ∈ Gm, f ∈ L1(Gm)).

It is also well-known that

DMn(x) =





Mn if x ∈ In(0),

0 if x /∈ In(0),
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SMn
f(x) = Mn

∫

In(x)

f = Enf(x) (f ∈ L1(Gm), n ∈ N).

Next, we introduce some notations with respect to the theory of two-
dimensional Vilenkin systems. Let m̃ be a sequence like m. The relation
between the sequences (m̃n) and (M̃n) is the same as between sequences (mn)
and (Mn). The group Gm × Gm̃ is called a two-dimensional Vilenkin group.
The normalized Haar measure is denoted by µ, just as in the one-dimensional
case. It will not cause any misunderstanding.

The two-dimensional Fourier coefficients, the rectangular partial sums of
the Fourier series, the Dirichlet kernels, the Fejér means, and the Fejér kernels
with respect to the two-dimensional Vilenkin system are defined as follows:

f̂(n1, n2) :=
∫

Gm×Gm̃

f(x1, x2)ψ̄n1(x
1)ψ̄n2(x

2)dµ(x1, x2),

Sn1,n2f(y1, y2) :=
n1−1∑

k1=0

n2−1∑

k2=0

f̂(k1, k2)ψk1(y
1)ψk2(y

2),

Dn1,n2(y, x) = Dn1(y
1 − x1)Dn2(y

2 − x2) :=

:=
n1−1∑

k1=0

n2−1∑

k2=0

ψk1(y
1)ψk2(y

2)ψ̄k1(x
1)ψ̄k2(x

2),

σn1,n2f :=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

Sk1,k2f,

Kn1,n2(y, x) = Kn1,n2(y − x) :=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

Dk1,k2(y − x),

(y = (y1, y2), x = (x1, x2) ∈ Gm ×Gm̃).

It is also well-known that

σn1,n2f(y) =
∫

Gm×Gm̃

f(x)Kn1,n2(y − x)dµ(x),

SMn1 ,M̃n2
f(x) = Mn1M̃n2

∫

In1 (x1)×In2 (x2)

f(y)dµ(y) = (E1
n1
⊗ E2

n2
)f(x).
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One of the most celebrated problems in dyadic harmonic analysis is the
pointwise convergence of the Fejér (or (C, 1)) means of functions on one and
two-dimensional unbounded Vilenkin groups.

Fine [5] proved every Walsh-Fourier series (in the Walsh case mj = 2 for
all j ∈ N) is a.e. (C, α) summable for α > 0. His argument is an adaptation of
the older trigonometric analogue due to Marcinkiewicz [24]. Schipp [30] gave a
simpler proof for the case α = 1, i.e. σnf → f a.e. (f ∈ L1(Gm)). He proved
that σ∗ := sup |σn| is of weak type (L1, L1).

For the proof that σ∗ is bounded from H1 to L1 see Schipp and Simon
[32] and also Fujii [7].

The theorem of Schipp is generalized to the p-series fields (mj = p for all
j ∈ N) by Taibleson [38], and later to bounded Vilenkin systems by Pál and
Simon [27].

Now, what about the Vilenkin groups with unbounded generating se-
quences? The methods known in the trigonometric or in the Walsh, bounded
Vilenkin case are not powerful enough. One of the main problems is that the
proofs on the bounded Vilenkin groups (or in the trigonometric case) heavily
use the fact that the L1 norm of the Fejér kernels are uniformly bounded. This
is not the case if the group Gm is an unbounded one [28]. From this it follows
that the original theorem of Fejér does not hold on unbounded Vilenkin groups.
Namely, Price proved [28] that for an arbitrary sequence m (supn mn = ∞)
and a ∈ Gm there exists a function f continuous on Gm and σnf(a) does
not converge to f(a). Moreover, he proved [28] that if log mn

Mn
→ ∞ , then

there exists a function f continuous on Gm whose Fourier series are not (C, 1)
summable on a set S ⊂ Gm which is non-denumerable.

Moreover, the result of Price also implies that for each unbounded Vilenkin
group Gm one can give an integrable function f ∈ L1(Gm) such that even the
special subsequence of the Fejér means σMnf does not converge to the function
in the Lebesgue norm L1.

On the other hand, norm convergence of the full partial sums for Lp, p > 1,
is known for the unbounded case. This result is proven by Schipp [31], Simon
[33] and Young [47]. This trivially implies the norm convergence σnf → f for
all f ∈ Lp, where 1 < p < ∞. But what positive can be said with respect to
the L1 case?

The concept of Nörlund logarithmic means is as follows

tnf :=
1
ln

n−1∑

k=1

Skf

n− k
, where ln :=

n−1∑

k=1

1
k

.
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For further information with respect to Nörlund logarithmic means on
Walsh-Paley systems see some papers of Gát and Goginava and Tkebuchava
[19, 18, 20]. In their paper Gát and Goginava [19] proved (for Walsh-Paley
system), that there exists an f ∈ L1 such that

‖tnf − f‖1 6→ 0.

On the other hand, Blahota and Gát [3] proved that the Nörlund logarithmic
means have better approximation properties on some unbounded Vilenkin
groups, than the Fejér means. Namely:

Theorem 1. If f ∈ L1 and

lim sup
n∈N

n−1∑
k=0

log2 mk

log Mn
< ∞,

then
‖tMn

f − f‖1 → 0.

In the case f ∈ C the convergence holds in the supremum norm. This
means that in the case of some unbounded Vilenkin groups the behavior of the
Nörlund means tMn is better than the behavior of the Fejér means σMn .

On the other hand, this can not be said in general, that is for the means
tn. That is, Blahota and Gát proved [3]:

If log mn = O(nδ) for some 0 < δ < 1/2, then there exists an f ∈ L1 such
that

‖tnf − f‖1 6→ 0.

It is surprising that the behavior of the Nörlund logarithmic means is
worse than the behavior of the Fejér means in the Walsh-Paley or in the
bounded Vilenkin case, but the situation changes on a class of unbounded
Vilenkin groups. For the time being it is an open question that it is possible to
give an unbounded generating sequence m such that we would have the norm
convergence ‖tnf − f‖1 → 0 for all integrable functions f .

We already have written about the behavior of the Nörlund logarithmic
means. Another weighted mean of the partial sums of the Fourier series is the
logarithmic mean, which seems to be very similar to the Nörlund ones:

unf :=
1
ln

n−1∑

k=1

Skf

k
, where ln :=

n−1∑

k=1

1
k

.



Convergence and divergence results with respect to summation 165

It is easy to see in the trigonometric, Walsh and bounded Vilenkin case, that
for each integrable function f the logarithmic means unf converge to f both in
norm and a.e. This is a trivial consequence of the nice properties of the Fejér
means and the Abel transformation. On the other hand, if we investigate these
means on unbounded Vilenkin groups then the situation is different. Namely,
for the time being there is no result with respect to convergence or divergence
of these means of integrable functions.

With respect to the Walsh-Paley system Simon proved [35] that for each
function belonging the Hardy space H we have the norm convergence

1
ln

n−1∑

k=1

‖Skf − f‖1
k

→ 0.

This result was generalized for unbounded Vilenkin systems by Gát [8] and
for the two-parameter Walsh-Fourier series by Weisz [42]. The two dimensional
Vilenkin case is due to Simon and Weisz [37]. They proved

1
log N log M

∑
0≤k≤N,0≤l≤M

1/α≤k/l≤α

‖Sk,lf − f‖1
kl

→ 0,

where α > 1 is some constant. More precisely, their result is much more general.
It also concerns the Hardy spaces Hp for 0 < p < 1.

Now, turn back to the Fejér means. Nurpeisov [26] gave a necessary
and sufficient condition of the uniform convergence of the Fejér means σMnf
of continuous functions on unbounded Vilenkin groups. Namely, define the
uniform modulus of continuity as

ωn(f) := sup
h∈In(0),x∈Gm

|f(x + h)− f(x)|.

Let ω be a real sequence with property ωn ↘ 0. We say that f belongs
to the Hölder class Hω if ωn(f) ≤ ωn for all n ∈ N. Nurpeisov [26] proved: a
necessary and sufficient condition that the means σMnf of the Fourier series of
the continuous function f converge uniformly to f on an unbounded Vilenkin
group for all f belonging to the Hölder class ω is that

ωn−1(f) log(mn) = o(1).

Since the uniform modulus of continuity can be any nonincreasing real
sequence which converges to zero (for the proof see [29, 6]), then as a
consequence of this it is possible to give a sequence m increasing enough fast,
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and a function even in the Lipschitz class Lip(1), such that the Mnth Fejér
means do not converge to the function uniformly.

So, it seems that it is impossible to give a (Hölder) function class such
that the uniform convergence of the Fejér means would hold for all functions
in this class if there is no condition on sequence m at all.

It also seems that some difference could occur in the case of Nörlund
logarithmic means. For the time being there is no result is known with respect
to this issue.

Concerning the a.e. convergence and Fejér means on unbounded Vilenkin
groups we can say a bit more. Namely, in 1999 the author [10] proved:

Theorem 2. If f ∈ Lp(Gm), where p > 1, then σnf → f almost
everywhere.

This was the very first “positive” result with respect to the a.e. conver-
gence of the Fejér means of functions on unbounded Vilenkin groups. One
might say that this result is an easy consequence of the result of Carleson, that
is the a.e. convergence Snf → f for functions f ∈ Lp(Gm), where p > 1. The
”only problem” is that to prove this a.e. convergence result of the partial sums
is the one of the greatest open problems in the theory of Fourier analysis on
Vilenkin groups.

However, it is possible to step further in the direction of space L1(Gm). In
2001 Simon [36] proved the following theorem with respect to the Fejér means
of L1 functions. A sequence m is said to be strong quasi-bounded if

1
Mn+1

n−1∑

j=0

Mj+1 < C log mn.

Then every bounded m is quasi-bounded, and there are also some unbounded
ones. Let m be strong quasi-bounded. Then for all f ∈ L1(Gm)

σMnf(x)− f(x) = o(max(log m0, . . . , log mn−1)).

Later, in 2003, the author of this paper [12] improved this result, and gave
a partial answer for the L1 case. He discussed this partial sequence of the
sequence of the Fejér means. Namely,

Theorem 3. if f ∈ L1(Gm), then ([12]) σMnf → f almost everywhere,
where m is any sequence.

In my opinion, it is highly likely that the methods of the papers [10, 12]
can be applied and improved in order to prove the a.e. relation σnf → f for
all f ∈ L log+ L and m. Anyway, it is not an easy task...
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With respect to another class of unbounded Vilenkin groups Gát proved
the original Lebesgue theorem. This class is called ”rarely unbounded”. What
does it mean?

If there exists a constant C and L ∈ P such that for all i, j ∈ P we have

(1)
min(mi,mi+j)

(mi+1 · . . . ·mi+j−1)L
≤ C

(the empty product is defined to be 1, and the constant C may depend on the
sequence m - of course), then we call the Vilenkin group Gm a rarely unbounded
Vilenkin group. Every bounded Vilenkin group is a rarely unbounded Vilenkin
group. Unfortunately, not all unbounded ones are rarely unbounded, since for
instance the rarely unboundedness implies the inequality min(mi,mi+1) ≤ C.
So, e.g. if (mn) tends to plus infinity, then Gm is not rarely unbounded. On
the other hand, there are many unbounded Vilenkin groups, which are rarely
unbounded ones.

In paper [17] one can find

Theorem 4. Let Gm be a rarely unbounded Vilenkin group. Then the
operator σ∗ is of weak type (1, 1).

A straightforward consequence of Theorem 4 is the proof of the Fejér-
Lebesgue theorem on rarely unbounded Vilenkin groups. That is,

Theorem 5. Let Gm be a rarely unbounded Vilenkin group, and f ∈
L1(Gm). Then we have the a.e. relation σnf → f .

It is also interesting to add that the concept of rarely unbounded Vilenkin
groups is natural in the point of view of the Carleson’s theorem. Since it can
be proved that if the theorem of Carleson holds on every rarely unbounded
Vilenkin group, then it also holds on every Vilenkin groups.

At last, we mention a (H, L) and a (L(log+ L)a+1, L(log+ L)a) type in-
equality with respect to the one-dimensional Fejér means of integrable functions
on unbounded Vilenkin groups.

Define the maximal operator σ†f := sup
n∈N

|σMnf |, where f is an integrable

function. Simon [34] proved that the maximal operator sup |σnf | is not a
bounded one from the atomic Hardy space H to the Lebesgue space L1, but
for the ”smaller” operator σ† we have it [12] and we also have the following
inequality [16]:

Theorem 6. Let f ∈ L(log+ L)a+1, and a ≥ 0. Then we have

‖σ†f‖L(log+ L)a ≤ Ca(‖f‖L(log+ L)a+1 + 1).
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In the proof of this theorem and Theorems 3 and 4 the following operator
plays a fundamental role: For an integrable function f we define

H1f(y) := sup
A∈N

∣∣∣∣∣∣∣
MA−1

∫

IA−1(y)\IA(y)

f(x)
1

1− rA−1(y − x)
dµ(x)

∣∣∣∣∣∣∣
.

Much depends on the fact that operator H1 is of weak type (L1, L1). In order
to step further to discuss σ∗, for instance to prove that it is also of weak type
(L1, L1) it would be necessary to discuss the operator sup

n
H1(fψ̄n).

What can be said in the case of two-dimensional functions? This is
“another story”. For double trigonometric Fourier series Marcinkiewicz and
Zygmund [23] proved that σm,nf → f a.e. as m,n → ∞ provided the
integral lattice points (m,n) remain in some positive cone, that is provided
β−1 ≤ m/n ≤ β for some fixed parameter β ≥ 1. It is known that the
classical Fejér means are dominated by decreasing functions whose integrals are
bounded but this fails to hold for the one-dimensional Walsh-Fejér kernels. This
growth difference is exacerbated in higher dimensions so that the trigonometric
techniques are not powerful enough for the Walsh case.

In 1992 Móricz, Schipp and Wade [25] proved that σ2n1 ,2n2 f → f a.e. for
each two dimensional function f ∈ L1, when n1, n2 → ∞, |n1 − n2| ≤ α for
some fixed α. Later, Gát [9] and Weisz [41] proved this for the whole sequence,
that is, the theorem of Marcinkiewicz and Zygmund with respect to the Walsh-
Paley system. For the bounded Vilenkin case see the paper of Weisz [44], and
the paper of Blahota and the author [2]. In the paper [2] the authors generalize
this theorem with respect to two-dimensional bounded Vilenkin-like systems.

If we do not provide a “cone restriction” for the indices in σn,kf that is, we
discuss the convergence of this two-dimensional Fejér means in the Pringsheim
sense, then the situation changes. In 1992 Móricz, Schipp and Wade [25] proved
with respect to the Walsh-Paley system that σn,kf → f a.e. for each two
dimensional function f ∈ L log+ L, when min {n, k} → ∞. Later, in 2002
Weisz generalized [44] this with respect to two-dimensional bounded Vilenkin
systems.

In 2000 Gát proved [11] that the theorem of Móricz, Schipp and Wade
above can not be improved. Namely, let δ : [0,+∞) → [0, +∞) be a measurable
function with property lim

t→∞
δ(t) = 0. Gát proved the existence of a two variable

function f ∈ L1 such that f ∈ L log+ Lδ(L), and σn,kf does not converge to
f a.e. as min{n, k} → ∞. This theorem of Gát [11] is generalized on bounded
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two dimensional Vilenkin groups [15]. This divergence result has not been
proved for unbounded two dimensional Vilenkin groups yet. It is interesting in
the following point view. It is very usual that to prove some divergence results
with respect to unbounded Vilenkin systems is easier or less complicated than
in the case of bounded Vilenkin systems or in the Walsh-Paley setting. That
is, - when we try to determine the maximal convergence space of the two
dimensional Vilenkin-Fejér means in the Pringsheim setting, - we have a little
bit unusual situation.

What ”positive” can be said in the two-dimensional case with respect to
unbounded Vilenkin systems? In 1997 Wade proved [40] the following. Let

βk,j := max {m0, . . . ,mk−1, m̃0, . . . , m̃j−1} .

The sequence m is called δ-quasi bounded, 0 ≤ δ < 1, if the sums

n−1∑

j=0

mj/(mj+1 . . . mn)δ

are (uniformly) bounded. Let the generating sequences m, m̃ be δ-quasi
bounded. Then for all f ∈ L1(Gm ×Gm̃) we have

σMn,M̃k
f(x)− f(x) = o(βn,kβ2r

n+r,k+r),

as n, k →∞, provided that |n− k| < α, where α, r ∈ N are some constants for
almost every x ∈ Gm ×Gm̃.

On the other hand, there was nothing concerning the pointwise conver-
gence before the following result of the author. In [14] he proved

Theorem 7. Let f ∈ (L log+ L)(Gm×Gm̃). Then we have σMn1 ,M̃n2
f →

f almost everywhere, where min{n1, n2} → ∞ provided that the distance of the
indices is bounded, that is, |n1 − n2| < α for some fixed constant α > 0.

Here it is necessary to emphasize that in this paper m, m̃ can be any
sequences.

It seems also to be interesting to discuss the almost everywhere convergence

of Marcinkiewicz means 1
n

n−1∑
j=0

Sj,jf of integrable functions on two-dimensional

unbounded Vilenkin groups. Although, this mean is defined for two-variable
functions, in the view of almost everywhere convergence there are similari-
ties with the one-dimensional case. For the trigonometric, Walsh-Paley and
bounded Vilenkin case see the papers of Zhizhiasvili, Weisz and Gát [48, 43,
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13]. With respect to the Walsh case see also the papers of Goginava [21, 22].
Some results can also be found in [45, 46]. It is highly likely that by the
application of the method of the proof of the a.e. relation σMnf → f (on
unbounded Vilenkin groups), it would be possible to prove the a.e. relation

1
Mn

Mn−1∑

j=0

Sj,jf → f

with respect to unbounded Vilenkin systems for every integrable f .
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