# ON MEAN-VALUE THEOREMS FOR MULTIPLICATIVE FUNCTIONS IN ADDITIVE ARITHMETICAL SEMIGROUPS 

A. Barát and K.-H. Indlekofer<br>(Paderborn, Germany)

## Dedicated to Professor Ferenc Schipp on the occasion of his 70th birthday

 Dedicated to Professor Péter Simon on the occasion of his 60th birthday
#### Abstract

In this paper, the authors prove mean-value theorems for multiplicative functions in general additive arithmetical semigroups.


## 1. Introduction

Let $(G, \partial)$ be an additive arithmetical semigroup. By definition $G$ is a free commutative semigroup with identity element 1 , generated by a countable subset $P$ of primes and admitting an integer valued degree mapping $\partial: G \rightarrow$ $\rightarrow \mathbb{N} \cup\{0\}$ which satisfies
(i) $\partial(1)=0$ and $\partial(p)>0$ for all $p \in P$,
(ii) $\partial(a b)=\partial(a)+\partial(b)$ for all $a, b \in G$,
(iii) the total number $G(n)$ of elements $a \in G$ of degree $\partial(a)=n$ is finite for each $n \geq 0$.

Obviously $G(0)=1$ and $G$ is countable. Putting

$$
\pi(n):=\#\{p \in P: \partial(p)=n\}
$$

Supported by a grant of the Deutsche Forschungsgemeinschaft.
we obtain the identity

$$
\sum_{n=0}^{\infty} G(n) t^{n}=\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{-\pi(n)}
$$

In a monograph [10], Knopfmacher, motivated by earlier work of Fogels [3] on polynomial rings and algebraic function fields, developed the concept of an additive arithmetical semigroup satisfying the following axiom.

AXIOM $A^{\#}$. There exist constants $A>0, q>1$, and $\nu$ with $0 \leq \nu<1$ (all depending on $G$ ), such that

$$
G(n)=A q^{n}+O\left(q^{\nu n}\right), \quad \text { as } n \rightarrow \infty
$$

If $G$ satisfies Axiom $A^{\#}$, then the generating function

$$
\begin{equation*}
\tilde{Z}(z):=\sum_{n=0}^{\infty} G(n) z^{n} \tag{1}
\end{equation*}
$$

is holomorphic in the disc $|z|<q^{-\nu}$ up to a simple pole at $z=q^{-1}$. This means, that we have the representation

$$
\begin{equation*}
\tilde{Z}(z)=\frac{\tilde{H}(z)}{1-q z} \tag{2}
\end{equation*}
$$

where $\tilde{H}$ is holomorphic for $|z|<q^{-\nu}$ and takes the form

$$
\tilde{H}(z)=A+(1-q z) \sum_{n=0}^{\infty}\left(G(n)-A q^{n}\right) z^{n}
$$

Obviously $\tilde{H}(0)=1$ and $\tilde{H}\left(q^{-1}\right)=A$.
$\tilde{Z}$ can be considered as the zeta-function associated with the semigroup $(G, \partial)$, and it has an Euler-product representation (cf. [10], Chapter 2)

$$
\tilde{Z}(z)=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{-\pi(n)} \quad\left(|z|<q^{-1}\right)
$$

The logarithmic derivative of $\tilde{Z}$ is given by

$$
\begin{equation*}
\frac{\tilde{Z}^{\prime}(z)}{\tilde{Z}(z)}=\sum_{n=1}^{\infty}\left(\sum_{d \mid n} d \pi(d)\right) z^{n-1}=: \sum_{n=1}^{\infty} \lambda(n) z^{n-1} \tag{3}
\end{equation*}
$$

where the von Mangoldt's coefficients $\lambda(n)$ and the prime element coefficients $\pi(n)$ are related by

$$
\lambda(n)=\sum_{d \mid n} d \pi(d)
$$

and, because of the Möbius inversion formula

$$
n \pi(n)=\sum_{d \mid n} \lambda(d) \mu\left(\frac{n}{d}\right) .
$$

Defining the von Mangoldt function $\Lambda: G \rightarrow \mathbb{R}$ by

$$
\Lambda(b)= \begin{cases}\partial(p) & \text { if } b \text { is a prime power } p^{r} \neq 1, \\ 0 & \text { otherwise },\end{cases}
$$

we see

$$
\lambda(n)=\sum_{\substack{b \in G \\ \partial(b)=n}} \Lambda(b)
$$

and

$$
\partial(a)=\sum_{b d=a} \Lambda(b)
$$

Chapter 8 of [10] deals with a theorem called the abstract prime number theorem: If the additive arithmetical semigroup $G$ satisfies Axiom $A^{\#}$, then

$$
\pi(n)=\frac{q^{n}}{n}+O\left(\frac{q^{n}}{n^{\alpha}}\right) \quad(n \rightarrow \infty)
$$

or equivalently,

$$
\begin{equation*}
\lambda(n)=q^{n}+O\left(\frac{q^{n}}{n^{\alpha-1}}\right) \quad(n \rightarrow \infty) \tag{4}
\end{equation*}
$$

is true for any $\alpha>1$.
But this result is only valid if $\tilde{Z}\left(-q^{-1}\right) \neq 0$. In [8], Indlekofer et al. gave (in a more general setting) much sharper results valid also in the case $\tilde{Z}\left(-q^{-1}\right)=0$. For instance, if $\tilde{Z}\left(-q^{-1}\right)=0$, then Axiom $A^{\#}$ yields $(\varepsilon>0)$

$$
\begin{equation*}
\frac{\lambda(n)}{q^{n}}=1-(-1)^{n}+O_{\varepsilon}\left(q^{n(\nu+\varepsilon-1)}\right) \tag{5}
\end{equation*}
$$

In both cases, the Chebyshev inequality

$$
\begin{equation*}
\lambda(n) \ll q^{n} \tag{6}
\end{equation*}
$$

holds, respectively.
Moving to the investigation of the mean-value properties of complex valued multiplicative functions $f$ satisfying $|f(a)| \leq 1$ for all $a \in G$, in [6] Indlekofer and Manstavičius proved analogues of the results of Delange, Wirsing and Halász. Here, as in the classical case, $f$ is called multiplicative if $f(1)=1$ and $f(a b)=f(a) f(b)$ whenever $a, b \in G$ are coprime, and the general aim is to characterize the asymptotic behaviour of the summatory function

$$
\begin{equation*}
M(n, f):=q^{-n} \sum_{\substack{a \in G \\ \partial(a)=n}} f(a) \quad \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

The main results (Analogue of Halász's Theorem (see [6])) are
Proposition 1. Suppose that $G$ is an additive arithmetical semigroup satisfying Axiom $A^{\sharp}$ and let $f: G \rightarrow \mathbb{C}$ be a multiplicative function, $|f(a)| \leq 1$. Then there exist a real constant $\tau_{0} \in(-\pi, \pi]$ and a complex constant $D$ such that

$$
\begin{equation*}
M(n, f)=D \exp \left\{i \tau_{0} n+i \sum_{k=1}^{n} \operatorname{Im}\left(q^{-k} \sum_{\partial(p)=k} f(p) e^{-i \tau_{0} k}\right)\right\}+o(1) \tag{8}
\end{equation*}
$$

as $n \rightarrow \infty$.
Proposition 2. Suppose that $G$ is an additive arithmetical semigroup satisfying Axiom $A^{\#}$. In order that $M(n, f)=o(1)$ as $n \rightarrow \infty$, it is both necessary and sufficient that one of the following conditions is satisfied:
(i) for each $\tau \in(-\pi, \pi]$ the series

$$
\begin{equation*}
\sum_{p \in P} q^{-\partial(p)}\left(1-\operatorname{Re}\left(f(p) e^{-i \tau \partial(p)}\right)\right) \tag{9}
\end{equation*}
$$

diverges;
(ii) there exists a unique $\tau=\tau_{0} \in(-\pi, \pi]$ such that the series (9) converges for $\tau=\tau_{0}$ and

$$
\begin{equation*}
\prod_{\partial(p) \leq c}\left(1+f(p)\left(q^{-1} e^{-i \tau_{0}}\right)^{\partial(p)}+f\left(p^{2}\right)\left(q^{-1} e^{-i \tau_{0}}\right)^{2 \partial(p)}+\ldots\right)=0 . \tag{10}
\end{equation*}
$$

The fundamental question arises: what conditions ensure such alternative asymptotic estimates (5), (6) and (10)? Can these assertions be established under rather loose conditions and hence, hold in principle for a much larger variety of additive arithmetical semigroups? One aim of the book [11] of Knopfmacher and Zhang is to give answers to these questions, and the authors proved, for instance, Chebyshev upper estimates, abstract prime number theorems and mean-value theorems for multiplicative functions. Zhang [13] showed assuming

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sup _{n \leq m}\left|G(m) q^{-m}-A\right|<\infty \tag{11}
\end{equation*}
$$

that the Chebyshev-type upper estimate (6) and the assertions of Propositions 1 and 2 hold.

Different kind of assumptions have been used by Indlekofer [5]. Assuming some mild conditions on the boundary behaviour of the function $\tilde{H}$ in (2) Chebyshev inequality and the prime number theorem could be proved.

In a similar way we formulate in this paper conditions on $\tilde{H}$ which lead to a proof of Propositions 1 and 2 (see Theorem 2). These conditions imply essentially the estimate

$$
\begin{equation*}
\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N) \quad \text { as } \quad N \rightarrow \infty \tag{12}
\end{equation*}
$$

which is much weaker than the Chebyshev inequality (6). Further we show that Theorem 2 superceeds all the corresponding results by Zhang (cf. § 2).

Putting $z=q^{-1} y$ in (2) we define $Z(y):=\tilde{Z}\left(q^{-1} y\right)$ and $H(y):=\tilde{H}\left(q^{-1} y\right)$ and obtain

$$
\begin{equation*}
Z(y)=\frac{H(y)}{1-y} \quad \text { for } \quad|y|<1 \tag{13}
\end{equation*}
$$

and shall assume that $H(y)$ is bounded in the disc $|y|<1$ satisfying

$$
\begin{equation*}
\lim _{y \rightarrow 1^{-}} H(y)=A>0 \tag{14}
\end{equation*}
$$

To ease notational difficulties we restrict ourselves to completely multiplicative functions $f: G \rightarrow \mathbb{C}$ under the condition $|f| \leq 1$. Then the generating function $\hat{F}$ of $f$ is given by

$$
\begin{equation*}
\hat{F}(y):=\sum_{n=0}^{\infty} \sum_{\substack{a \in G \\ \partial(a)=n}} f(a) q^{-n} y^{n}=\exp \left(\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{n q^{n}} y^{n}\right) \tag{15}
\end{equation*}
$$

for $|y|<1$, where

$$
\begin{equation*}
\lambda_{f}(n)=\sum_{\substack{p \in P, k \in \mathbb{N} \\ \partial\left(p^{k}\right)=n}}(f(p))^{k} \partial(p) \tag{16}
\end{equation*}
$$

We investigate the behaviour of $M(n, f)$ as $n$ tends to infinity, and deal with two alternating cases: the series (9) converges for some unique $\tau \in(-\pi, \pi]$ or diverges for all $\tau \in(-\pi, \pi]$. The proof follows the same lines as in [7] and [11] and is adapted to the given assumptions.

## 2. Results

Put $H(y)=\sum_{n=0}^{\infty} h(n) y^{n}$. Then the following holds.
Theorem 1. Let $H(y)$ be continuous for $|y| \leq 1$ and satisfy (14). If

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2} h^{2}(n) r^{2 n}=O\left(\frac{1}{1-r}\right) \quad \text { as } \quad 0<r<1, r \rightarrow 1 \tag{17}
\end{equation*}
$$

then

$$
\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)
$$

as $N \rightarrow \infty$.
For example, assume that $\sum_{n=1}^{\infty} n h^{2}(n)<\infty$. Put $S_{n}=\sum_{m=1}^{n} m h^{2}(m)$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{2} h^{2}(n) r^{2 n} & =\sum_{n=1}^{\infty} n\left(S_{n}-S_{n-1}\right) r^{2 n}= \\
& =\left(1-r^{2}\right) \sum_{n=1}^{\infty}(n+1) S_{n} r^{2 n}-\sum_{n=1}^{\infty} S_{n} r^{2 n} \ll \\
& \ll\left(1-r^{2}\right) \sum_{n=1}^{\infty}(n+1) r^{2 n} \ll \\
& \ll \frac{1-r^{2}}{\left(1-r^{2}\right)^{2}} \ll \\
& \ll \frac{1}{1-r}
\end{aligned}
$$

and (17) holds in this case.
Now, as an obvious consequence of Theorem 1 we formulate
Corollary 1. Let $H(y)$ be continuous for $|y| \leq 1$ and satisfy (14). If

$$
\begin{equation*}
h(n)=O\left(n^{-1}\right) \text { for all } n \in \mathbb{N} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
H^{\prime}(y)=O\left(|1-y|^{-1}\right) \text { as }|y| \rightarrow 1, \tag{ii}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=1}^{\infty} n h^{2}(n)<\infty \tag{iii}
\end{equation*}
$$

then

$$
\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)
$$

as $N \rightarrow \infty$.
Theorem 2. Let $G$ be an additive arithmetical semigroup satisfying

$$
\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)
$$

and let $H \in \mathbb{H}^{\infty}$ (i.e. $H$ is bounded in $|y|<1$ ) satisfy (14). Further, let $f$ be a completely multiplicative function, $|f| \leq 1$. Then the following two assertions hold.
(i) If the series (9) diverges for each $\tau \in(-\pi, \pi]$, then

$$
M(n, f)=o(1)
$$

as $n \rightarrow \infty$.
(ii) If the series (9) converges for some $\tau=\tau_{0} \in(-\pi, \pi]$, then

$$
M(n, f)=c L(n)+o(1)
$$

as $n \rightarrow \infty$, where $c$ is an appropriate real constant, and $L(y)$ is a slowly oscillating function.
Theorem 2 superceeds all the corresponding results of Zhang (cf. [11]). His assumption

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|G(n) q^{-n}-A\right|<\infty \tag{18}
\end{equation*}
$$

(for example [11], Theorem 6.2.2, p.243) implies, since $h(n)=G(n) q^{-n}-G(n-$ $-1) q^{-n+1}$ the absolute convergence

$$
\sum_{n=0}^{\infty}|h(n)|<\infty
$$

and thus $H$ is continuous on the closed disc $\bar{D}=\{y:|y| \leq 1\}$. In the same way the assumption (loc. cit.)

$$
\sum_{n=1}^{\infty} n\left(G(n) q^{-n}-A\right)^{2}<\infty
$$

leads to

$$
\sum_{n=1}^{\infty} n|h(n)|^{2}<\infty
$$

Similarly, the condition (see for example [11])

$$
\sum_{n=0}^{\infty} \sup _{n \leq m}\left|G(m) q^{-m}-A\right|<\infty
$$

yields $\sum_{n=0}^{\infty}|h(n)|<\infty$ and $h(n)=o\left(n^{-1}\right)$.
This can easily be seen in the following way. Put $g(n)=G(n) q^{-n}-A$ and $\bar{g}(n):=\max _{m \geq n}|g(m)|$. Then $\bar{g}(n)$ is monotonically decreasing and $\sum_{n=1}^{\infty}|\bar{g}(n)|<\infty$. Thus

$$
\begin{aligned}
n \bar{g}(2 n) & \leq \bar{g}(n+1)+\bar{g}(n+2)+\ldots+\bar{g}(2 n)= \\
& =o(1)
\end{aligned}
$$

and, since $g(n)=-\sum_{m>n} h(m)$,

$$
\begin{gathered}
\sum_{n=0}^{\infty}|h(n)|<\infty \\
\sum_{m \geq n} h(m)=o\left(\frac{1}{n}\right),
\end{gathered}
$$

$$
h(n)=o\left(\frac{1}{n}\right)
$$

as $n \rightarrow \infty$.
Further, the assumption of the Chebyshev inequality $\lambda(n) q^{-n}=O(1)$ together with (18) (cf. [11], Theorem 6.3.1) is much stronger than the condition $\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)$ together with (14). This may also be illustrated by the following

Example 1. Let the function $\omega: \mathbb{N} \rightarrow \mathbb{N}_{0}$ be such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\omega^{2}(n)}{n}<\infty \tag{19}
\end{equation*}
$$

and let $q \geq 2$ be an integer. Then

$$
\sum_{n \leq N} \omega(n)=O(N) \text { and } \sum_{n \leq N} \omega^{2}(n)=O(N)
$$

Define integers $a_{n}, 0 \leq a_{n}<n$ by

$$
\begin{equation*}
q^{n}+\omega(n) q^{n} \equiv a_{n} \bmod n \tag{20}
\end{equation*}
$$

and put

$$
\begin{equation*}
\pi(n)=\left(q^{n}+\omega(n) q^{n}-a_{n}\right) \frac{1}{n}+1 \tag{21}
\end{equation*}
$$

for $n=1,2, \ldots$ Then, by (19), the corresponding Zeta-function $Z(y)=$ $=\tilde{Z}\left(q^{-1} y\right)$ satisfies (13) and (14). Since $\pi(n) \ll q^{n}$ we get

$$
\lambda(n)=n \pi(n)+O\left(n \log n \cdot q^{\frac{n}{2}}\right)
$$

and we obtain using (19)

$$
\sum_{n \leq N} \frac{\lambda^{2}(n)}{q^{2 n}}=O(N)
$$

as $N \rightarrow \infty$.
This example shows that the Chebyshev-type assumption $\lambda(N) \ll q^{N}$ is stronger than our assumption $\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)$ with $H \in \mathbb{H}^{\infty}$ in Theorem 2.

## 3. Proof of Theorem 1

Obviously,

$$
y \frac{Z^{\prime}(y)}{Z(y)}=\sum_{n=1}^{\infty} \lambda(n) q^{-n} y^{n}=\frac{y}{1-y}+y \frac{H^{\prime}(y)}{H(y)}
$$

We show that, if $0<r<1$,

$$
\int_{-\pi}^{\pi}\left|\frac{r e^{i \tau} Z^{\prime}\left(r e^{i \tau}\right)}{Z\left(r e^{i \tau}\right)}\right|^{2} d \tau \ll \frac{1}{1-r}
$$

For this we use the following result which is due to Montgomery (see [2]).
Lemma 1. Let the series

$$
A(y)=\sum_{n=0}^{\infty} a_{n} y^{n} \text { and } B(y)=\sum_{n=0}^{\infty} b_{n} y^{n}
$$

converge for $|y|<R$. Let $\left|a_{n}\right| \leq b_{n}$ hold for $n=0,1,2, \ldots$. Then for $0<r<R$ we have for any $\tau_{0}$

$$
\int_{\tau_{0}}^{\tau_{0}+\eta}\left|A\left(r e^{i \tau}\right)\right|^{2} d \tau \leq 2 \int_{-\eta}^{\eta}\left|B\left(r e^{i \tau}\right)\right|^{2} d \tau
$$

Proof. See, for example [11].
Note that $H(y)$ has no zeros in the open disc $D:=\{y:|y|<1\}$. Since $H(1)=A \neq 0$ and $H(y)$ is continuous for $y \in \bar{D}:=\{y:|y| \leq 1\}$ there exists some $\eta>0$ such that $H(y) \neq 0$ for $y=r e^{i \tau}$ with $0 \leq r \leq 1$ and $|\tau| \leq \eta$. Fix $0<\eta \leq \pi$. Then

$$
\begin{gathered}
\int_{\tau_{0}}^{\tau_{0}+\eta}\left|\frac{r e^{i \tau} Z^{\prime}\left(r e^{i \tau}\right)}{Z\left(r e^{i \tau}\right)}\right|^{2} d \tau \leq 2 \int_{-\eta}^{\eta}\left|\frac{r e^{i \tau} Z^{\prime}\left(r e^{i \tau}\right)}{Z\left(r e^{i \tau}\right)}\right|^{2} d \tau \ll \\
\ll 1+\int_{-\eta}^{\eta}\left(\frac{1}{\left|1-r e^{i \tau}\right|^{2}}+\left|H^{\prime}\left(r e^{i \tau}\right)\right|^{2}\right) d \tau \ll
\end{gathered}
$$

$$
\begin{aligned}
& \ll \int_{-\pi}^{\pi}\left(\frac{1}{\left|1-r e^{i \tau}\right|^{2}}+\left|H^{\prime}\left(r e^{i \tau}\right)\right|^{2}\right) d \tau= \\
& =\sum_{n=0}^{\infty} r^{2 n}+\sum_{n=1}^{\infty} n^{2} h^{2}(n) r^{2 n} \ll \\
& \ll \frac{1}{1-r}
\end{aligned}
$$

and thus

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|\frac{r e^{i \tau} Z^{\prime}\left(r e^{i \tau}\right)}{Z\left(r e^{i \tau}\right)}\right|^{2} d \tau & =\sum_{n=1}^{\infty}\left(\lambda(n) q^{-n}\right)^{2} r^{2 n}= \\
& =O\left(\frac{1}{1-r}\right)
\end{aligned}
$$

Choosing $r=1-N^{-1}$ with $N>1$ gives

$$
\begin{aligned}
\sum_{n=1}^{N}\left(\lambda(n) q^{-n}\right)^{2} & \leq\left(1-\frac{1}{N}\right)^{-2 N} \sum_{n=0}^{N}\left(\lambda(n) q^{-n}\right)^{2} r^{2 n}= \\
& =O(N)
\end{aligned}
$$

This ends the proof of Theorem 1.

## 4. Proof of Theorem 2

We have

$$
\begin{aligned}
n M(n, f) & =q^{-n} \sum_{\substack{a \in G \\
\partial(a)=n}} f(a) \partial(a)= \\
& =q^{-n} \sum_{\substack{a \in G \\
\partial(a)=n}} \sum_{b d=a} \Lambda(b) f(b) f(d)= \\
& =\sum_{\partial(b) \leq n} \frac{\Lambda(b) f(b)}{q^{\partial(b)}} \sum_{\substack{d \\
\partial(d)=n-\partial(b)}} \frac{f(d)}{q^{n-\partial(b)}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
|n M(n, f)| & \leq \sum_{\partial(b) \leq n} \frac{\Lambda(b)}{q^{\partial(b)}}|M(n-\partial(b), f)| \leq \\
& \leq \sum_{m \leq n} \frac{\lambda(m)}{q^{m}}|M(n-m, f)|
\end{aligned}
$$

Applying Cauchy-Schwarz's inequality we obtain

$$
\begin{equation*}
|n M(n, f)| \leq\left(\sum_{m \leq n} \frac{\lambda(m)^{2}}{q^{2 m}}\right)^{\frac{1}{2}}\left(\sum_{m \leq n}|M(m, f)|^{2}\right)^{\frac{1}{2}}=: \Sigma_{1}^{\frac{1}{2}} \cdot \Sigma_{2}^{\frac{1}{2}} \tag{22}
\end{equation*}
$$

Obviously

$$
\Sigma_{1}^{\frac{1}{2}} \ll n^{\frac{1}{2}}
$$

as $n \rightarrow \infty$. By definition

$$
\begin{gather*}
\hat{F}(y)=\exp \left(\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{q^{n} n} y^{n}\right),  \tag{23}\\
Z(y)=\exp \left(\sum_{n=1}^{\infty} \frac{\lambda(n)}{q^{n} n} y^{n}\right) . \tag{24}
\end{gather*}
$$

Putting $y=r e^{i \tau}$ with $0<r<1$ and $\tau \in(-\pi, \pi]$ gives

$$
\begin{aligned}
\frac{|\hat{F}(y)|}{Z(|y|)} & =\left|\exp \left(\sum_{n=1}^{\infty} \frac{\lambda_{f}(n) e^{i \tau n}-\lambda(n)}{q^{n} n} r^{n}\right)\right|= \\
& =\left|H_{1}(y)\right| \exp \left(-\sum_{p \in P}\left(1-f(p) e^{i \tau \partial(p)}\right) q^{-\partial(p)} r^{\partial}(p)\right) \mid
\end{aligned}
$$

where

$$
H_{1}(y):=\exp \left(\sum_{n=1}^{\infty} \sum_{\substack{\partial\left(p^{k}\right)=n \\ p \in P, k \in \mathbb{N}, k \geq 2}} \frac{\partial(p)\left(f(p)^{k} e^{i \tau n}-1\right)}{q^{n} n} r^{n}\right) .
$$

Obviously by Cauchy-Schwarz's inequality,

$$
\sum_{n \leq N} \frac{\lambda(n)}{q^{n}}=O(N)
$$

Since $|f| \leq 1$, we conclude

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sum_{\substack{\left(p^{k}\right)=n \\
p \in P, k \in \mathbb{N}, k \geq 2}}\left|\frac{\partial(p)\left(f(p)^{k} e^{i \tau n}-1\right)}{q^{n} n} r^{n}\right| & \leq \sum_{n=1}^{\infty} 2 \sum_{\substack{\partial(p) \leq \frac{n}{2} \\
p \in P}} \frac{\partial(p)}{q^{n} n} r^{n} \leq \\
& \leq \sum_{n=1}^{\infty} \frac{2}{q^{n} n} \sum_{\substack{\partial(a) \leq \frac{n}{2} \\
a \in G}} \Lambda(a) r^{n} \leq \\
& \leq \sum_{n=1}^{\infty} \frac{2}{q^{n} n} \sum_{m \leq \frac{n}{2}} \lambda(m) r^{n} \ll \\
& \ll \sum_{n=1}^{\infty} \frac{2}{q^{n} n} \frac{n}{2} q^{\frac{n}{2}} r^{n} \ll \\
& \ll \sum_{n=1}^{\infty} \frac{1}{q^{\frac{n}{2}}} r^{n}
\end{aligned}
$$

Thus $H_{1}(y)$ is holomorphic for $|y|<q^{1 / 2}$. Further, using (13) we get

$$
\begin{aligned}
|\hat{F}(y)| & =\frac{|\hat{F}(y)|}{Z(|y|)} \cdot Z(|y|)= \\
& =\left|H_{1}(y)\right| \cdot\left|\exp \left(-\sum_{p \in P}\left(1-f(p) e^{i \tau \partial(p)}\right) q^{-\partial(p)} r^{m}\right)\right| \cdot \frac{H(r)}{1-r}
\end{aligned}
$$

Assume now that the series (9) diverges for every $\tau \in(-\pi, \pi]$. Then, for every $\tau$

$$
-\sum_{p \in P}\left(1-\operatorname{Re} f(p) e^{i \tau \partial(p)}\right) q^{-\partial(p)} r^{m} \rightarrow-\infty
$$

as $r \rightarrow 1$, and Dini's theorem shows

$$
\exp \left(-\sum_{p \in P}\left(1-\operatorname{Re} f(p) e^{i \tau \partial(p)}\right) q^{-\partial(p)} r^{m}\right)=o(1)
$$

uniformly in $\tau \in(-\pi, \pi]$ as $r \rightarrow 1$. Since

$$
\frac{H(r)}{1-r} \sim \frac{A}{1-r}
$$

we get

$$
\begin{equation*}
\sum_{m=0}^{\infty} M(m, f) r^{m} e^{m i \tau}=o\left(\frac{1}{1-r}\right) \tag{25}
\end{equation*}
$$

uniformly for $\tau \in(-\pi, \pi]$ as $r \rightarrow 1$. The remaining part of the proof of (i) may be found in [7]. For the sake of completeness we repeat the details. By Parseval's identity

$$
W(r):=\sum_{m=0}^{\infty}|M(m, f)|^{2} r^{2 m}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{m=0}^{\infty} M(m, f) r^{m} e^{m i \tau}\right|^{2} d \tau
$$

Then, using the estimate (25)

$$
\begin{equation*}
W(r)=o\left((1-r)^{-\frac{1}{2}}\right) \int_{0}^{2 \pi}\left|\sum_{m=0}^{\infty} M(m, f) r^{m} e^{m i \tau}\right|^{3 / 2} d \tau \tag{26}
\end{equation*}
$$

The Euler-product gives the representation

$$
\begin{equation*}
\hat{F}(y)=\sum_{m=0}^{\infty} M(m, f) y^{m}=H_{2}(y) \exp \left\{\sum_{k=1}^{\infty} q^{-k} \sum_{\partial(p)=k} f(p) y^{k}\right\} \tag{27}
\end{equation*}
$$

where $|y|<1$ and $H_{2}(y)$ is a regular function in the disc $|y|<1+c$ with some $c>0$. Observe that $H_{2}(y) \neq 0$ and $H_{2}(y) \asymp 1$ in the disc $|y| \leq 1$. Hence using the same representation for the function $f g$, where $g(a)=(3 / 4)^{\Omega(a)}$ and $\Omega(a)$ denotes the number of all prime elements dividing $a$, we obtain

$$
\begin{equation*}
|\hat{F}(y)|^{3 / 4} \asymp \exp \left\{\sum_{k=1}^{\infty} q^{-k} \sum_{\partial(p)=k} \frac{3}{4} f(p) y^{k}\right\} \asymp \sum_{m=0}^{\infty} M(m, f g) y^{m}, \quad \text { for } \quad|y|<1 \tag{28}
\end{equation*}
$$

Since $|M(m, f g)| \ll|M(m, g)|$, applying the Parseval's identity again we deduce

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{3 / 2} d \tau & \ll \int_{0}^{2 \pi}\left|\sum_{m=0}^{\infty} M(m, f g) r^{m} e^{m i \tau}\right|^{2} d \tau= \\
& =2 \pi \sum_{m=0}^{\infty}|M(m, f g)|^{2} r^{2 m} \ll \\
& \ll 2 \pi \sum_{m=0}^{\infty}|M(m, g)|^{2} r^{2 m}= \\
& =\int_{0}^{2 \pi}\left|\sum_{m=0}^{\infty} M(m, g) r^{m} e^{m i \tau}\right|^{2} d \tau
\end{aligned}
$$

The representation of type (27) and $H \in \mathbb{H}^{\infty}$ shows that

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\sum_{m=0}^{\infty} M(m, g) r^{m} e^{m i \tau}\right|^{2} d \tau & \ll \int_{0}^{2 \pi}\left|Z\left(r e^{i \tau}\right)\right|^{3 / 2} d \tau= \\
& =\int_{0}^{2 \pi}\left|\frac{H\left(r e^{i \tau}\right)}{1-r^{e^{i \tau}}}\right|^{3 / 2} d \tau \ll  \tag{29}\\
& \ll \int_{0}^{2 \pi}\left|1-r e^{i \tau}\right|^{-3 / 2} d \tau
\end{align*}
$$

Hence

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{3 / 2} d \tau & \ll \int_{0}^{2 \pi}\left|1-r e^{i \tau}\right|^{-3 / 2} d \tau \ll  \tag{30}\\
& \ll \int_{0}^{1-r}(1-r)^{-3 / 2} d \tau+\int_{1-r}^{2 \pi} \tau^{-3 / 2} d \tau \ll \frac{1}{(1-r)^{1 / 2}}
\end{align*}
$$

Thus from (26) we have the estimate $W(r)=o\left(\frac{1}{1-r}\right)$. Our assumption (14) yields by Hardy-Littlewood's Tauberian Theorem (see [4], p.155, Theorem 96)

$$
\sum_{m \leq n}|M(m, f)|^{2}=o(n)
$$

It follows

$$
n M(n, f) \leq \Sigma_{1}^{\frac{1}{2}} \cdot \Sigma_{2}^{\frac{1}{2}} \ll o(n)
$$

for $n \rightarrow \infty$. This ends the proof of assertion (i).
Next, we need the following
Lemma 2. Let $G$ be an additive arithmetical semigroup satisfying

$$
\sum_{n \leq N}\left(\lambda(n) q^{-n}\right)^{2}=O(N)
$$

and let further $f$ be a completely multiplicative function with $|f| \leq 1$ and suppose the series (9) converges for $\tau=0$. Then we have uniformly for $y=r$ and $\frac{1}{2}(1-\eta) \leq 1-r \leq 1-\eta$,

$$
\begin{equation*}
\sum_{p \in P}\left|\eta^{\partial(p)}-r^{\partial(p)}\right| \frac{|1-f(p)|}{q^{\partial(p)}}=o(1) \tag{32}
\end{equation*}
$$

as $\eta \rightarrow 1-$.
Proof. For every $M>0$

$$
\begin{aligned}
\sum_{p \in P}\left|\eta^{\partial(p)}-r^{\partial(p)}\right| \frac{|1-f(p)|}{q^{\partial(p)}}= & \sum_{\substack{p \in P \\
\partial(p) \leq M}}\left|\eta^{\partial(p)}-r^{\partial(p)}\right| \frac{|1-f(p)|}{q^{\partial(p)}}+ \\
& +\sum_{\substack{p \in P \\
\partial(p)>M}}\left|\eta^{\partial(p)}-r^{\partial(p)}\right| \frac{|1-f(p)|}{q^{\partial(p)}}= \\
= & S_{1}+S_{2} .
\end{aligned}
$$

Choose $\varepsilon>0$. Since $|1-f(p)|^{2} \leq 2(1-\operatorname{Re} f(p))$ for $|f(p)| \leq 1$ there exists $M_{0}>0$ such that for $M>M_{0}$

$$
\begin{aligned}
S_{2}^{2} & \leq \sum_{\substack{p \in P \\
\partial(p)>M}} q^{-\partial(p)}\left|\eta^{\partial(p)}-r^{\partial(p)}\right|^{2} \sum_{\substack{p \in P \\
\partial(p)>M}} \frac{|1-f(p)|^{2}}{q^{\partial(p)}} \leq \\
& \leq \sum_{\substack{p \in P \\
\partial(p)>M}} q^{-\partial(p)} r^{2 \partial(p)}\left|\left(\frac{\eta}{r}\right)^{\partial(p)}-1\right|^{2} \varepsilon= \\
& =\varepsilon S_{3} .
\end{aligned}
$$

Observe

$$
\begin{aligned}
\left|\left(\frac{\eta}{r}\right)^{\partial(p)}-1\right|^{2} & \leq 2 \partial(p) \log \frac{r}{\eta} \leq \\
& \leq 4 \partial(p)(1-r)
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{3} & \leq 4(1-r) \sum_{p \in P} \frac{\partial(p)}{q^{\partial(p)}} r^{2 \partial(p)} \leq \\
& \leq 4(1-r) \sum_{n=1}^{\infty} \frac{\lambda(n)}{q^{n}} r^{2 n}= \\
& =4(1-r) O\left(\frac{1}{1-r}\right)= \\
& =O(1)
\end{aligned}
$$

as $r \rightarrow 1$ since $\sum_{n \leq N} \frac{\lambda(n)}{q^{n}}=O(N)$. Letting $r \rightarrow 1$ and $\eta \rightarrow 1$ gives $S_{1}=o(1)$ and this ends the proof of Lemma 2.

We assume now that (9) converges for $\tau=0$. Our aim is to prove first

$$
\begin{equation*}
N M(N, f)=\frac{1}{2 \pi i} \int_{|y|=r} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y=c N L(N)+o(N) \tag{33}
\end{equation*}
$$

where $0<r<1$ and $c$ is an appropriate real constant. For this we will show the following estimate

$$
\hat{F}(y)=\frac{c}{1-y} L\left(\frac{1}{1-|y|}\right)+o\left(\frac{1}{1-|y|}\right)
$$

as $|y| \rightarrow 1-$.
For $|y|<1$ we have

$$
\begin{aligned}
\hat{F}(y) & =\exp \left(\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{q^{n} n} y^{n}\right) \\
Z(y) & =\exp \left(\sum_{n=1}^{\infty} \frac{\lambda(n)}{q^{n} n} y^{n}\right)
\end{aligned}
$$

This yields

$$
\begin{aligned}
\frac{\hat{F}(y)}{Z(y)} & =\exp \left(\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)-\lambda(n)}{q^{n} n} y^{n}\right)= \\
& =H_{3}(y) \exp \left(\sum_{n=1}^{\infty} \sum_{\substack{p \in P \\
\partial(p)=n}} \frac{f(p)-1}{q^{n}} y^{n}\right)
\end{aligned}
$$

where

$$
H_{3}(y):=\exp \left(\sum_{n=1}^{\infty} \sum_{\substack{\partial\left(p^{k}\right)=n \\ p \in P, k \in \mathbb{N}, k \geq 2}} \frac{\partial(p)\left(f(p)^{k}-1\right)}{q^{n} n} y^{n}\right) .
$$

Similarly as above $H_{3}(y)$ is holomorphic for $|y|<q^{1 / 2}$. Further

$$
\begin{aligned}
\exp \left(\sum_{n=1}^{\infty} \sum_{\substack{p \in P \\
\partial(p)=n}} \frac{f(p)-1}{q^{n}} y^{n}\right) & =\exp \left\{-\sum_{p \in P}\left(y^{\partial(p)}-|y|^{\partial(p)}\right) q^{-\partial(p)}(1-f(p))-\right. \\
& \left.-\sum_{p \in P}|y|^{\partial(p)} q^{-\partial(p)}(1-\operatorname{Re} f(p))\right\} L\left(\frac{1}{1-|y|}\right)
\end{aligned}
$$

where

$$
L\left(\frac{1}{1-|y|}\right):=\exp \left(i \sum_{p \in P}|y|^{\partial(p)} q^{-\partial(p)} \operatorname{Im} f(p)\right)
$$

Obviously, $|L|=1$. Put $u:=(1-|y|)^{-1}$. To show that $L(u)$ is a slowly oscillating function of $u$, it suffices to note that, for $\frac{1}{2} u \leq v \leq u$, by Lemma 2 with $\eta=1-v^{-1}$,

$$
\begin{aligned}
\frac{L(v)}{L(u)} & =\exp \left(i \sum_{p \in P}\left(\eta^{\partial(p)}-|y|^{\partial(p)}\right) \frac{\operatorname{Im} f(p)}{q^{\partial(p)}}\right)= \\
& =\exp (o(1))
\end{aligned}
$$

as $u \rightarrow \infty$. Set

$$
c_{1}:=H_{1}(1) \exp \left(-\sum_{p \in P} q^{-\partial(p)}(1-\operatorname{Re} f(p))\right) .
$$

Let $M$ be a fixed positive real number. The function $\hat{F}(y)\left(L\left(\frac{1}{1-|y|}\right) Z(y)\right)^{-1}$ is holomorphic in the disc $|y|<1$ and converges at the boundary point $y=1$. Then, by Stolz's theorem (see [12], page 121) we conclude, putting $y=r e^{i \tau}$,

$$
\frac{\hat{F}(y)}{L\left(\frac{1}{1-|y|}\right) Z(y)}=c_{1}+o_{M}(1)
$$

as $|y| \rightarrow 1$ - uniformly for $|\tau| \leq M(1-|y|)$. Hence

$$
\begin{equation*}
\hat{F}(y)=c_{1} \frac{H(y)}{1-y} L\left(\frac{1}{1-|y|}\right)+o_{M}\left(\frac{1}{|1-y|}\right) \tag{34}
\end{equation*}
$$

and

$$
\begin{aligned}
&\left|\frac{\hat{F}(y)}{Z(|y|)}\right|= \\
&=\exp \left(\sum_{m=1}^{\infty} \frac{\operatorname{Re} \lambda_{f}(m) e^{i \tau m}-\lambda(m)}{m q^{m}} r^{m}\right)= \\
&=\exp \left(-\sum_{p \in P} q^{-\partial(p)} r^{\partial}(p)\left(1-\operatorname{Re} f(p) e^{i \tau \partial(p)}\right)\right) \times \\
& \quad \times \exp \left(-\sum_{m=1}^{\infty} \sum_{\substack{p \in P, k \geq 2 \\
\partial\left(p^{k}\right)=m}} \frac{1-\operatorname{Re} f(p)^{k} e^{i \tau \partial(p)}}{m q^{m}} r^{m}\right) \ll \\
& \ll \exp \left(-\sum_{p \in P} q^{-\partial(p)} r^{\partial}(p)\left(1-\operatorname{Re} f(p) e^{i \tau \partial(p)}\right)\right) .
\end{aligned}
$$

This shows

$$
\begin{aligned}
& \frac{|\hat{F}(y)|}{Z(|y|)|Z(\bar{y})|}=\left|\frac{\hat{F}(y)}{Z(|y|)}\right|^{2} \cdot \frac{Z(|y|)}{|Z(\bar{y})|} \ll \\
& \ll \exp \left(-2 \sum_{p \in P} q^{-\partial(p)} r^{\partial}(p)\left(1-\operatorname{Re} f(p) e^{i \tau \partial(p)}\right)+\right. \\
&\left.\quad+\sum_{p \in P} q^{-\partial(p)} r^{\partial}(p)\left(1-\operatorname{Re} e^{-i \tau \partial(p)}\right)\right) \ll \\
& \ll \exp \left(2 \sum_{p \in P} q^{-\partial(p)} r^{\partial}(p)(1-\operatorname{Re} f(p))\right) \\
& \ll 1,
\end{aligned}
$$

since the series (9) converges for $\tau=0$ and since

$$
\begin{aligned}
2\left(1-\operatorname{Re} e^{-i \tau \partial(p)}\right) & =\left|1-e^{-i \tau \partial(p)}\right|^{2} \leq \\
& \leq 2|1-f(p)|^{2}+2\left|f(p)-e^{-i \tau \partial(p)}\right|^{2} \leq \\
& \leq 4(1-\operatorname{Re} f(p))+4\left(1-\operatorname{Re} e^{i \tau \partial(p)}\right)
\end{aligned}
$$

This implies for $|\tau| \geq M(1-|y|)$,

$$
\begin{equation*}
|\hat{F}(y)| \ll M^{-\frac{1}{2}} \frac{1}{1-|y|} \tag{35}
\end{equation*}
$$

Collecting (34) and (35) shows

$$
\begin{equation*}
\hat{F}(y)=\frac{c}{1-y} L\left(\frac{1}{1-|y|}\right)+o\left(\frac{1}{1-|y|}\right) \tag{36}
\end{equation*}
$$

as $|y| \rightarrow 1-$.
Now we proceed similarly as in the proof of Theorem 6.2.2 in [11]. Set $r=1-\frac{1}{N}$. Let $K$ be a large positive number and let $N$ be chosen that $N \geq 2 K^{2}$. We break the circle $y=r e^{i \tau}$ into two arcs

$$
A_{0}:=\left\{\tau:|\tau| \leq \frac{K}{N}\right\} \quad \text { and } \quad A_{1}:=\left\{\tau: \frac{K}{N} \leq|\tau| \leq \pi\right\}
$$

We estimate the integral on the left-hand side of (33) on each arc separately. This will show that the integral on $A_{0}$ produces the main term on the righthand side of (33), whereas the integral on $A_{1}$ gives an o-term.
(i) Estimate of $\int_{A_{0}}$.

Let $y \in A_{0}$ and consider the circle $|w-y|=\frac{1}{2 N}$. In the range $1-\frac{3}{2 N} \leq$ $\leq|w| \leq 1-\frac{1}{2 N}$ we have

$$
L\left(\frac{1}{1-|w|}\right)=L(N)+o(1)
$$

Thus, by (36),

$$
\begin{aligned}
\hat{F}(w) & =\frac{c}{1-w} L\left(\frac{1}{1-|w|}\right)+o\left(\frac{1}{1-|w|}\right)= \\
& =\frac{c}{1-w} L(N)+o(N)
\end{aligned}
$$

on this circle. Now, by Cauchy's theorem

$$
\hat{F}^{\prime}(y)=\frac{c}{(1-y)^{2}} L(N)+o\left(N^{2}\right) \quad \text { if } \quad y \in A_{0}
$$

Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{A_{0}} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y=\frac{c L(N)}{2 \pi i} \int_{A_{0}} \frac{d y}{(1-y)^{2} y^{N}}+o\left(N^{2}\right) \frac{2 K}{N} . \tag{37}
\end{equation*}
$$

The integral on the right-hand side of (37) can be evaluated by using the residue theorem (for more details see the proof of Theorem 6.2.2 in [11]):

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{A_{0}} \frac{d y}{(1-y)^{2} y^{N}}=N+O\left(K^{-1} N\right) . \tag{38}
\end{equation*}
$$

(ii) Estimate of $\int_{A_{1}}$.

If $f$ is a completely multiplicative function with $|f(a)| \leq 1$, then $\hat{F}(y) \neq 0$ for $|y|<1$. By Cauchy-Schwarz's inequality we have

$$
\begin{gather*}
\left|\int_{A_{1}} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y\right| \leq \\
\leq\left(\int_{A_{1}}\left|\frac{r e^{i \tau} \hat{F}^{\prime}\left(r e^{i \tau}\right)}{\hat{F}\left(r e^{i \tau}\right)}\right|^{2} r^{-N} d \tau\right)^{1 / 2} \times\left(\int_{A_{1}}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{2} r^{-N} d \tau\right)^{1 / 2} . \tag{39}
\end{gather*}
$$

Parseval's identity and the conditions $\sum_{n \leq N} \lambda^{2}(n) q^{-2 n}=O(N)$ and $|f| \leq 1$ yield

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{A_{1}}\left|\frac{r e^{i \tau} \hat{F}^{\prime}\left(r e^{i \tau}\right)}{\hat{F}\left(r e^{i \tau}\right)}\right|^{2} r^{-N} d \tau= & \leq r^{-N} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{r e^{i \tau} \hat{F}^{\prime}\left(r e^{i \tau}\right)}{\hat{F}\left(r e^{i \tau}\right)}\right|^{2} d \tau= \\
& =r^{-N} \sum_{n=0}^{\infty}\left|\frac{\lambda_{f}(n)}{q^{n}}\right|^{2} r^{2 n} \leq \\
& \leq r^{-N} \sum_{n=0}^{\infty}\left|\frac{\lambda(n)}{q^{n}}\right|^{2} r^{2 n} \ll \\
& \ll \frac{1}{1-r^{2}} \\
& \leq \frac{1}{1-r}= \\
& =N,
\end{aligned}
$$

since $r=1-\frac{1}{N}$. Further

$$
\begin{equation*}
\int_{A_{1}}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{2} r^{-N} d \tau \leq \max _{\frac{K}{N} \leq|\tau| \leq \pi}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{1 / 2} \int_{A_{1}}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{3 / 2} r^{-N} d \tau \tag{40}
\end{equation*}
$$

By (36),

$$
\left|\hat{F}\left(r e^{i \tau}\right)\right| \leq\left|\frac{c}{1-r e^{i \tau}}\right|+o(N)
$$

For $\frac{K}{N} \leq|\tau| \leq \pi$,

$$
\left|1-r e^{i \tau}\right| \geq\left|1-\left(1-\frac{1}{N}\right) e^{i K / N}\right|=r_{N} \gg \frac{K}{N}
$$

and hence

$$
\begin{equation*}
\max _{\frac{K}{N} \leq|\tau| \leq \pi}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{1 / 2} \leq O\left(K^{-1 / 2} N^{1 / 2}\right)+o\left(N^{1 / 2}\right) \tag{41}
\end{equation*}
$$

As we have seen in the proof of (i) (cf. (28)-(31)) we get

$$
\begin{equation*}
\int_{A_{1}}\left|\hat{F}\left(r e^{i \tau}\right)\right|^{3 / 2} r^{-N} d \tau \ll \int_{-\pi}^{\pi}\left|Z\left(r e^{i \tau}\right)\right|^{3 / 2} d \tau=\int_{-\pi}^{\pi}\left|\frac{H\left(r e^{i \tau}\right)}{1-r e^{i \tau}}\right|^{3 / 2} d \tau \ll N^{\frac{1}{2}} \tag{42}
\end{equation*}
$$

This implies

$$
\begin{gather*}
\left|\int_{A_{1}} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y\right| \ll N^{1 / 2}\left(\left[O\left(K^{-\frac{1}{2}} N^{\frac{1}{2}}\right)+o\left(N^{\frac{1}{2}}\right)\right] N^{\frac{1}{2}}\right)^{1 / 2} \leq  \tag{43}\\
\leq O\left(K^{-\frac{1}{4}} N\right)+o(N) \tag{44}
\end{gather*}
$$

Combining the estimates we finally arrive at

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{|y|=r} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y & =\frac{c L(N)}{2 \pi i} \int_{A_{0}} \frac{d y}{(1-y)^{2} y^{N}}+o(K N)+O\left(K^{-\frac{1}{4}} N\right) \\
& =c N L(N)+o(K N)+O\left(K^{-\frac{1}{4}} N\right)
\end{aligned}
$$

Choosing $K$ large and letting $N$ tend to infinity shows

$$
\frac{1}{2 \pi i} \int_{|y|=r} \frac{\hat{F}^{\prime}(y)}{y^{N}} d y=c N L(N)+o(N)
$$

as $N \rightarrow \infty$. Thus by (33)

$$
N M(N, f)=c L(N) N+o(N)
$$

Finally, assume that (9) converges for $\tau=\tau_{0} \neq 0$. Then for the completely multiplicative function $f(a) q^{-i \partial(a) \tau_{0}}$, (9) converges for $\tau=0$ and the above arguments prove assertion (ii) of Theorem 2.

## References

[1] Daboussi, H. and Indlekofer, K.-H., Two elementary proofs of Halász's theorem, Mathematische Zeitschrift, 209 (1992), 43-52.
[2] Elliott, P.D.T.A., Probabilistic number theory I-II., Springer Verlag, 1979.
[3] Fogels, E., On the abstract theory of primes I-III., Acta Arith., 10 (1964), 137-182.
[4] Hardy, G.H., Divergent series, Oxford University Press, 1949.
[5] Indlekofer, K.-H., Some remarks on additive arithmetical semigroups, Liet. Matem. Rink., 42 (2) (2002), 185-204.
[6] Indlekofer, K.-H. and Manstavičius, E., Additive and multiplicative functions on additive and arithmetical semigroups, Publ. Math. Debrecen, 45 (1994), 1-17.
[7] Indlekofer, K.-H. and Manstavičius, E., New approach to multiplicative functions, Liet. Matem. Rink., 34 (4) (1994), 449-458; also published in Lithuanian Mathematical Journal, 34 (4) (1994), 356-363.
[8] Indlekofer, K.-H., Manstavičius, E. and Warlimont, R., On certain class of infinite products with application to arithmetical semigroups, Arch. Math., 56 (1991), 446-453.
[9] Indlekofer, K.H. and Wehmeier, S., Mean behaviour of multiplicative functions on additive arithmetical semigroups, Computers and Mathematics with Applications, 52 (2006), 577-592.
[10] Knopfmacher, J., Analytic arithmetic of algebraic function fields, Lecture Notes in Pure and Appl. Math., 500, Marcel Decker, New York, 1979.
[11] Knopfmacher, J. and Zhang, W.-B., Number theory arising from finite fields, Analytic and probabilistic theory, Pure and Appl. Math. 241, Marcel Decker, New York, 2001.
[12] Remmert, R., Funktionentheorie, Springer Verlag, 2007.
[13] Zhang, W.-B., A Chebyshev type upper estimate for prime elements in additive arithmetical semigroups, Monatsh. Math., 129 (2000), 227-260.

A. Barát and K.-H. Indlekofer<br>Faculty of Computer Science, Electrical Engineering<br>and Mathematics<br>Warburger Strasse 100<br>D-33098 Paderborn, Germany<br>barat@math.uni-paderborn.de<br>k-heinz@math.uni-paderborn.de

