A CHARACTERIZATION OF THE IDENTITY FUNCTION WITH FUNCTIONAL EQUATIONS

Bui Minh Phong (Budapest, Hungary)

Abstract

It is proved that if $f, g: \mathbb{N} \rightarrow \mathbb{C}$ are completely multiplicative functions such that $f(p+1)=g(p)+1$ and $f\left(p+q^{2}\right)=g(p)+g\left(q^{2}\right)$ hold for all primes p and q, then either

$$
f(p+1)=f\left(p+q^{2}\right)=0, g(\pi)=-1 \text { for all primes } p, q, \pi
$$

or

$$
f(n)=g(n)=n \text { for all } n \in \mathbb{N} .
$$

Let \mathbb{N} and \mathcal{P} denote the set of all positive integers and the set of all primes, respectively. An arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ with the condition $f(1)=1$ is said to be multiplicative if $(n, m)=1$ implies

$$
f(n m)=f(n) f(m)
$$

and it is called completely multiplicative if this holds for all pairs of positive integers n and m. In the following we denote by \mathcal{M} and \mathcal{M}^{*} the set of all integer-valued multiplicative and completely multiplicative functions, respectively.

In 1992, C. Spiro [9] showed that if a function $f \in \mathcal{M}$ satisfies

$$
f(p+q)=f(p)+f(q) \text { for all } p, q \in \mathcal{P}
$$

The European Union and the European Social Fund have provided financial support to the project under the grant agreement TÁMOP-4.2.1/B-09/1/KMR-2010-003.
then $f(n)=n$ for all $n \in \mathbb{N}$. In [3] the identity function was characterized as the multiplicative function f for which

$$
f\left(p+n^{2}\right)=f(p)+f\left(n^{2}\right) \text { holds for all } p \in \mathcal{P} \text { and for all } n \in \mathbb{N}
$$

Recently, J.-C. Schlage-Puchta [8] improved this result by showing that if

$$
f(p+1)=f(p)+1 \text { and } f\left(p+q^{2}\right)=f(p)+f\left(q^{2}\right)
$$

are satisfied for some function $f \in \mathcal{M}$ and for all $p, q \in \mathcal{P}$, then f is the identity function.

For other results in this topic we refer to works [1]-[2] and [4]-[7].
We prove the following
Theorem 1. If $f, g \in \mathcal{M}^{*}$ satisfy the following equations
(1) $f(p+1)=g(p)+1$ and $f\left(p+q^{2}\right)=g(p)+g\left(q^{2}\right) \quad$ for all $p, q \in \mathcal{P}$, then either
(2) $\quad f(p+1)=f\left(p+q^{2}\right)=0 \quad$ and $g(\pi)=-1 \quad$ for all $p, q, \pi \in \mathcal{P}$,
or

$$
\begin{equation*}
f(n)=g(n)=n \quad \text { for all } \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Our proof of Theorem 1 will follow from the next Lemma 1 - Lemma 3.
Lemma 1. Assume that $f, g \in \mathcal{M}^{*}$ satisfy (1). Then either

$$
\begin{equation*}
f(2)=0 \text { and } g(2)=-1 \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
f(2)=g(2)=2 \tag{5}
\end{equation*}
$$

Proof. First we deduce from (1) that

$$
\begin{equation*}
(f(p)-g(p))(g(p)+1)=0 \text { for all } p \in \mathcal{P} \tag{6}
\end{equation*}
$$

Indeed, the repeated use of (1) for the case $p=q$ gives

$$
f(p)[g(p)+1]=f(p) f(p+1)=f\left(p^{2}+p\right)=g\left(p^{2}\right)+g(p)=g(p)^{2}+g(p)
$$

which proves (6). Consequently, in the case $p=2$ we have either $g(2)=-1$ or $g(2) \neq-1$ and $f(2)=g(2)$.

Case I. $g(2)=-1$. Let $x:=f(2)$
By using (1), we also have
$g(3)=f(3+1)-1=f(4)-1=x^{2}-1, \quad g(7)=f(7+1)-1=f(2)^{3}-1=x^{3}-1$
and

$$
x^{4}=f(2)^{4}=f(16)=f\left(3^{2}+7\right)=g(3)^{2}+g(7)=\left(x^{2}-1\right)^{2}+\left(x^{3}-1\right)
$$

which implies that

$$
\begin{equation*}
x^{2}(x-2)=0 \tag{7}
\end{equation*}
$$

On the other hand, by using (1) and the condition $g(2)=-1$, we have

$$
f(3)=f(2+1)=g(2)+1=0, \quad g(5)=f(6)-1=f(2) f(3)-1=-1
$$

and so

$$
x^{5}=f(2)^{5}=f(32)=f\left(5^{2}+7\right)=g(5)^{2}+g(7)=1+\left(x^{3}-1\right)=x^{3},
$$

which implies that

$$
\begin{equation*}
x^{5}=x^{3} \tag{8}
\end{equation*}
$$

It is clear that (7) and (8) imply $x=0$. The proof of (4) is completed.
Case II. $g(2) \neq-1, f(2)=g(2)$.
In this case, let

$$
x=f(2)=g(2) \neq-1
$$

So, we conclude from (1) and the above relations that
$f(3)=f(2+1)=g(2)+1=x+1, g(5)=f(6)-1=f(2) f(3)-1=x(x+1)-1$
and

$$
(x+1)^{2}=f(3)^{2}=f(9)=f\left(2^{2}+5\right)=g(2)^{2}+g(5)=x^{2}+x(x+1)-1
$$

Therefore $(x+1)(x-2)=0$, and so the condition $x \neq-1$ gives $x=2$.
Thus (5) and Lemma 1 is proved.
Lemma 2. Assume that $f, g \in \mathcal{M}^{*}$ satisfy (1). If

$$
f(2)=0 \quad \text { and } \quad g(2)=-1
$$

then (2) is true, that is

$$
f(p+1)=f\left(p+q^{2}\right)=0 \quad \text { and } \quad g(\pi)=-1 \quad \text { for all } \quad p, q, \pi \in \mathcal{P}
$$

Proof. Since $g(2)=-1$, we shall prove that

$$
g(\pi)=-1 \quad \text { for all primes } \quad \pi \in \mathcal{P}, \pi \neq 2
$$

Let $\pi \in \mathcal{P}, \pi \neq 2$. We deduce from (1) and the fact $f(2)=0$ that

$$
0=f(2) f\left(\frac{\pi+1}{2}\right)=f(\pi+1)=g(\pi)+1
$$

which implies $g(\pi)=-1$. Therefore, we prove that $g(\pi)=-1$ for all primes $\pi \in \mathcal{P}$.

Finally, the last fact with (1) shows that

$$
f(p+1)=g(p)+1=0 \text { and } f\left(p+q^{2}\right)=g(p)+g\left(q^{2}\right)=-1+(-1)^{2}=0
$$

hold for all $p, q \in \mathcal{P}$. Hence Lemma 2 is proved.
Lemma 3. Assume that $f, g \in \mathcal{M}^{*}$ satisfy (1). If

$$
f(2)=g(2)=2
$$

then

$$
f(n)=g(n)=n \quad \text { for all } \quad n \in \mathbb{N} .
$$

Proof. It is clear that Lemma 3 will follow if we can prove that following:
If T is an integer such that $f(n)=g(n)=n$ for all $n<T$, then $f(T)=T$.
Assume first that T is not a prime number. We may thus write $T=A B$ with $1<A \leq B<T$, in which case we have $f(T)=f(A B)=f(A) f(B)=$ $A B=T$ and $g(T)=g(A B)=g(A) g(B)=A B=T$.

Now assume that $T \in \mathcal{P}$. Since $f(2)=g(2)=2$, we may assume that $T \in \mathcal{P}$ and $T \geq 3$. Then $2<T$ and $\frac{T+1}{2}<T$. Hence, we get from (1) and our assumptions that

$$
T+1=2 \frac{T+1}{2}=f(2) f\left(\frac{T+1}{2}\right)=f(T+1)=g(T)+1,
$$

consequently

$$
g(T)=T
$$

Finally, we infer from (6) that

$$
0=(f(T)-g(T))(g(T)+1)=(f(T)-g(T))(T+1)
$$

which shows that $f(T)=g(T)=T$.

References

[1] Chung P.V., Multiplicative functions satisfying the equation $f\left(m^{2}+\right.$ $\left.+n^{2}\right)=f\left(m^{2}\right)+f\left(n^{2}\right)$, Math. Slovaca, 46 (2-3) (1996), 165-171.
[2] Chung P.V. and Phong B.M., Additive uniqueness sets for multiplicative functions, Publ. Math. Debrecen, 55 (1999), 237-243.
[3] De Koninck J.-M., Kátai I. and Phong B.M., A new characteristic of the identity function, J. Number Theory, 63 (1997), 325-338.
[4] Indlekofer K.-H. and Phong B.M., Additive uniqueness sets for multiplicative functions, Annales Univ. Sci. Budapest. Sect. Comp., 26 (2006), 65-77.
[5] Phong B.M., A characterization of the identity function, Acta Acad. Paedag. Agriensis (Eger), Sect. Mat., (1997), 1-9.
[6] Phong B.M., On sets characterizing the identity function, Annales Univ. Sci. Budapest. Sect. Comp., 24 (2004), 295-306.
[7] Phong B.M., A characterization of the identity function with an equation of Hosszú type, Publ. Math. Debrecen, 69 (1-2) (2006), 219-226.
[8] Schlage-Puchta J.-C., A characterization of the identity as a multiplicative function (accepted)
[9] Spiro C., Additive uniqueness set for arithmetic functions, J. Number Theory, 42 (1992), 232-246.
(Received September 15, 2010)

Bui Minh Phong
Department of Computer Algebra
Eötvös Loránd University
Pázmány Péter Sét. 1/C
H-1117 Budapest, Hungary

