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Abstract. Portable and scalable operating systems must satisfy very
different needs on very different hardware architectures. Therefore they
consist of several modules implementing different functionalities, and the
actual system is composed of a subset of all these modules. The purpose
of the modules may be very different, e.g. device drivers, security subsys-
tems or user interfaces, but they work in the same computer system using
the same hardware and software resources, so they must conform to pre-
defined interfaces to cooperate with each other. However, these interfaces
are usually defined to be very restrictive to avoid enormous complexity of
the operating system. In this paper we describe a new approach for op-
erating system design that allows a more flexible composition of modules
without increasing the complexity of the system. Our suggested solution
is the application of the subject-oriented programming [17] where different
modules are considered as subjects which work with hardware and software
resources as objects. Objects are instances of system predicate classes, our
recently published technology for effective application of object-oriented
language elements in system programming. We also suggest implementa-
tion techniques avoiding performance loss.

1. Motivation

A modern operating system is no longer a single and uniform software prod-
uct: it must serve very different needs, most of their criteria contradicting. There-
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fore the system software has to be flexible enough to be executed in different
hardware environments and to match specific requirements. Hardware environ-
ments cover a large scale from personal mobile devices or embedded systems
through desktop computers to large database servers, while specific requirements
vary from maximal efficiency to top-level security. To achieve such flexibility, the
operating system consists of more or less tightly cooperating low-level software
components, such as device drivers, security services, user interface drivers etc.,
most of them optional or interchangeable.

A classic operating system structure is the so called multi-layer kernel, where
the software is divided into layers, with well defined interfaces between them.
The lowest layer usually consists of device drivers, customizable to match the
underlying hardware architecture. Similarly, the user interface in the topmost
layer is replaceable as well. Also intermediate layers contain flexible parts, such
as file system drivers which work on top of mass storage device drivers. However,
forcing operating system components into layers restricts the flexibility of the
system. Beyond a specific point of scalability, there is no good order of layers,
the different components have to mutually cooperate to provide the requested
services, and layering them would restrict this cooperation. Furthermore, multi-
layer operating systems have poor performance because of the restricted protocols
between their components. This is the main reason why multi-layer operating
systems are hardly ever used in practise.

Figure 1. Cooperation between three components of an operating system

File-access is a good example to show the weakness of multi-layered kernels,
as it involves several components depending on the actual security policy. The
file system is handled by the file system driver, which is the main component
responsible for the file-access. A modern operating system usually supports more
different file systems (e.g. Linux supports all popular file systems on PCs), thus it
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contains more file system drivers. In multi-user operating systems access to files is
controlled by access rights. However, different security models (e.g. DAC, MAC
etc.) use different authorization strategies, which is implemented by a specific,
often interchangeable part of the operating system, the authorization subsystem.
This module is independent of the file system, but is able to cooperate with
it in different file operations, e.g. opening for reading, writing, file deletion or
renaming. The file system device driver does not have to deal with the security
model in use, but must be able to handle the file in the actual file system.
Similarly, the authorization subsystem does not need to know the details of the
underlying file system, but is responsible for decisions whether a specific file
access mode is allowed on a given file. It is obvious, that the two components
(file system driver and authorization subsystem) cannot be arranged in layers,
since the file system makes the authorization subsystem check for permission,
while the latter queries the file system driver for file attributes. There may also
be a third component, an event logger or auditing subsystem, which is of course
optional as well, since some systems e.g. mobile devices do not have enough
resources for logging, and also do not need to do it. The event logger may log
specific kinds of events in the system, thus its services are used by both the file
system and the authorization component which invoke its routines for logging
allowed and denied file accesses as well as operations on the file. However, the
log itself is written into a file, thus the event logger uses the services of the file
system as well. Figure 1 shows the ways of cooperation between them. It is
obvious, that these three components of the operating system cannot be placed
on top of each other.

Modular software design allows more complex structuring of program com-
ponents than layering. Modules can provide services to each other mutually, the
connection between them is described by interfaces. Every module can be re-
placed by another one, which conforms to the same interface, thus the modular
structure is flexible as well.

In an open source system, the modules may be provided by the programming
language. It is up to the user to select the necessary modules, and make (compile
and link) the kernel of them. Similar method was applied in early Linux kernels
(before version 2.0) and in the various BSD kernels as well. The main drawback
of this solution is that it requires from the user special skills that many do not
have. Another issue is that kernel recompilation must be followed by complete
system restart, which cannot be applied in systems supposed to run continuously.

A more user-friendly solution is the application of run-time modules, which
are precompiled, but can be linked to the kernel in run-time. The core operating
system contains hooks, which are function calls to invoke a subroutine in a mod-
ule. Some of these function calls are optional, if the module is not present, they
invoke an empty function. This solution is implemented for example in Linux
kernels version 2.0 and later.
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However, these classic kinds of modularization (both programming language
and run-time) are too restrictive, since the fixed places of the hooks in the code of
the core system limit the set of the services that can be performed by the modules.
For example, a Linux security module deciding whether an operation is allowed
on an object is called after a successful DAC check, which is part of the core
system. If the DAC check fails, thus it denies the operation to be performed the
security module does not have the possibility to override this decision, because
the hook is placed after the built-in check.

The application of the object-oriented paradigm for operating system devel-
opment is a new technology, still in experimental phase, but very promising.
However, it does not address our problem at all, since objects represent rather
resources than services. For example, object is a file, with its own operations for
opening, closing, reading, writing etc., but neither the whole file system, nor the
authorization nor the auditing subsystem.

The solution which we suggest in this paper is based on the paradigm of
subject-oriented programming. Although the technology was originally invented
for high-level application development, the concepts behind it are also applica-
ble for building of flexible operating systems. In a subject-oriented operating
system, subjects replace modules, while objects represent the resources simi-
larly to object-oriented operating systems. These objects are instances of system
predicate classes, a recently introduced language tool that allows low-level data
structure types to be handled as classes. The operating system itself is composed
of different subjects, customized to the actual needs. The composition is per-
formed on subjects in object-code, thus no recompilation is needed to change the
structure of the system. The various composition rules ensure maximal flexibility
and scalability of the system.

The remaining of the paper is organized as follows. In Sections 2 and 3 we
overview the main concepts of subject-oriented programming and system predicate
classes. Section 4 describes, how these concepts can be applied for design of an
operating system. In Section 5 we present the most important composition rules
to be used in a subject-oriented operating system. Section 6 introduces a new
term: subject interfaces, to further increase the flexibility of our proposed tech-
nology. Suggestions for efficient implementation are given in Section 7. Finally,
Section 8 discusses related work while Section 9 concludes.

2. Subject-oriented programming – Overview

In the general subject-oriented programming paradigm, the state and be-
haviour of the objects is shared among multiple program components, the so
called subjects. This is one of the main differences compared to the classic
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object-oriented paradigm, where the whole object is defined in a single module.
Another very important difference is, that subjects are executable as standalone
programs as well, thus the partial definition of their objects are complete in
themselves, they do not explicitly require services provided by other subjects.
However, when two or more subjects are composed together, the partial defini-
tions of the same object are merged. This composition is done by the subject
composer, a tool that works on the target code, thus no recompilation is needed.
A large variety of composition rules is available to determine the representation
and the semantics of such composition. The basic elements of subject oriented
programming are shown on Figure 2.

Figure 2. Overview of the subject-oriented programming paradigm

2.1. Subjects and objects

In the model being used, a subject is a collection of state and behaviour spec-
ifications, a perception of the world by a particular application or application
component. They are not classes or objects, but describe some of the state and
behaviour of them. The actual objects are a composition of these partial defini-
tions. The objects do not have intrinsic state and behaviour, all properties are
defined in various subjects. Subjects operate separately on these shared objects,
without knowing the details associated with those objects by other subjects.

An executing instance of a subject is called subject activation. A cooperating
group of subjects is called subject composition. The composition rule determines
the representation, state and behaviour of the objects composed by multiple
definitions in the different subjects.

Similarly to object-oriented programming, objects are members of classes.
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Classes may inherit from each other, composing class-trees. These class trees
may be different in different subjects even for the same class. The state of an
object is retained in state variables, while behaviour is specified by the means of
methods.

2.2. Interactions among subjects

Although subjects are standalone running components of the software, work-
ing independently of each other, they are not completely isolated. In the subject-
oriented programming paradigm various forms of interactions may occur between
subjects:

• a request for function or state change to be supplied by another subject;
• performance of an activity in which another subject might participate;
• notification of an occurrence which may be of interest to another subject;
• use of subject’s behaviour as part of the ”larger” behaviour of another;
• sharing of state.

The first four of these forms describe a shared behaviour of the object between
subjects, while the last one a shared state. Shared state can be implemented as
shared representation, thus affected instance variables must be mapped to the
same memory location. However, to implement shared behaviour, the composi-
tion rule defines the semantics of shared method invocation.

2.3. Composition rules

A composition rule describes how the object’s representations defined in dif-
ferent subjects are to be merged to one single representation, and the semantics
of invocation of shared methods. A method call in one subject may trigger in-
vocation of a method with the same name of the very same object in another
subject. The composition rule describes the exact semantics how this situation
must be handled.

The simplest composition rule, called merging is the following. The method
is dispatched for each subject activation in arbitrary order (but not in parallel).
In each subject the local inheritance graph is used for method dispatching. If the
method returns values, they must be all identical or an exception is raised. If the
method has in-out parameters, they may be set by one method and used by the
next. However, the operations performed on them should be commutative.

An alternative composition rule, called nesting, treats compositions as scopes,
and allows calls to propagate beyond scopes only if specified explicitly. This
composition rule does not handle subjects at the same level, but one subject is
nested into the other one. By using this rule subsequently for more subjects,
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a nesting-tree evolves, where subjects in the lower levels are nested into their
parent. In such trees, invocation of a method is dispatched downward in the
tree from the node where it was called. Additionally, a subject at a given level
may import a call from one of its children. In this case, the call is dispatched
to the remaining children of the importing subject as well. The import can also
be done successively, thus the parent of that subject may also import that call,
so the dispatch can be propagated even to the top of the tree. However, in the
absence of an explicit import the dispatch of the method invocation is restricted
to the particular subtree.

2.4. Object creation and initialization

Similarly to the operation invocation, object creation and initialization is
shared as well. First, a common object identifier is reserved. Then each subject
allocation determines which class the object belongs to and reserves space for its
state. Finally, initial values are written in the fields.

For this last step, initialization of the state of the object the composition may
choose from two approaches. First, called immediate initialization fills default
values to the fields immediately upon creation. Second possibility, deferred ini-
tialization does it first when the subject responds to an operation request of that
object.

2.5. Class matching

Different subjects classify the same objects differently. It may also happen,
that a subject has not classified an object at all. In this case, upon invocation
of an operation, the subject must decide which method to call. There are many
possible approaches to perform this classification. However, as they do not play
any role in our case, where objects are instances of predicate classes (see below),
we do not discuss them in this paper.

3. System predicate classes – Overview

Predicate classes are a special approach to the concept of classes in object-
oriented programming, where instead of an external type identifier or a pointer to
the virtual method table a Boolean function on the state of the object determines
its dynamic type. This allows an object’s representation to contain only the
fields explicitly defined by the programmer. Furthermore, predicate classes make
possible for an object to change its dynamic type if its state is modified implying
the change of the truth value of its classifying predicate.
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System predicate classes are predicate classes with fixed representations, able
to store system data structures, e.g. registers, hardware-defined data structures
etc. They may contain special fields, denoted as reserved, which may be over-
lapped in their descendant classes. This enables polymorphism-by-value, which
means that a variable of the type of the superclass may store an instance of
its subclass as well. Most high-level object-oriented languages allow such poly-
morphism only for the reference, not for the variable itself. Dispatcher methods
evaluating the predicates and jumping to the appropriate method body are gen-
erated during link time to enable modular software development. These jumps
eliminate long call-chains, giving the technology very good performance results,
since their time costs contain only the execution time of the simple jump instruc-
tions.

System predicate classes allow four different kinds of single inheritance de-
pending on whether there are new fields overlapping reserved fields or new fields
at the end of the object, while multiple inheritance permits almost arbitrary
combinations of these four kinds. A summary about them is presented on Figure
3.

Figure 3. Overview of the various kinds of single and multiple inheritance of
system predicate classes

4. Low-level subject-oriented design

The subject of this paper is the adoption of the above presented subject-
oriented paradigm for operating system development. It is obvious, that optional
and interchangeable operating system component may be considered as subjects,
while system resources, such as various descriptors, memory pages, files, pro-
cesses etc. can be represented as objects. However, there are several special
requirements in operating system programming, which do not play role in high-
level application development. This implies that the above described technology
cannot be used in system programming without change.



Subject-oriented operating system development 125

The special requirements in operating system development can basically di-
vided into two main groups. First, operating system is executed on the raw
hardware. It cannot make use of an abstract virtual machine, run-time environ-
ment or standard library. It has to handle physical addresses, fixed represen-
tations, must access specific memory locations, ports and registers. High-level
object identifiers or references, compiler created abstract representations cannot
be used. Both compiler and subject composer must thus omit these high-level
elements. This implies the introduction of several restrictions which we discuss
further below.

The other group of special needs is related to the performance of the system
code. An application programmer may decide against efficiency in favour of
other properties more important in the actual situation, but an operating system
must always provide as high performance as possible. Otherwise it would restrict
its usability for applications where good performance is not a goal. Thus a
general-purpose operating system must be efficient, which results in additional
restrictions and modifications of the original paradigm.

In spite of the restrictions we have to introduce, we also have to retain most of
the features of subject-oriented programming to benefit from it. These features
include that the executing software – the operating system – is composed of
precompiled subjects. Thus subject composer has to work on object code, which
is one of the most challenging problems which must be solved efficiently.

4.1. Technology overview

A subject-oriented operating system consists of subjects, composed by pre-
defined composition rules. Subjects are operating system modules, all of them
interchangeable, and many of them optional. Typical optional subjects are auxil-
iary device drivers, security modules, while mandatory subjects include memory
managers, process schedulers etc. The subjects are available in object code,
no recompilation is needed when changing the system by replacing, inserting
or removing subjects. The composition rule itself may also be changed at the
operator’s decision.

Subjects are not arbitrary standalone programs supplied in object code. They
must be ready for composition with other subjects which requires special compi-
lation and additional information issued with it. Although the technology itself is
programming language-independent, the subject-oriented development tool has
to support the language the subject is written in. It must include a preprocessor
which executes the necessary modifications on the code and creates an interface
(e.g. header file) of the subject in a syntax interpretable by the subject-composer.
The subject is then compiled by the standard compiler of the programming lan-
guage. Thus a subject ready for composition consists of the object file and the
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Figure 4. Technology overview of low-level subject-oriented design: the fixed
part (picokernel) of the operating system is the subject composer composes new
subjects into the system and removes unused ones in runtime based on user-
customizable composition rules

generated interface.

4.2. Data representation

Operating systems work on data structures provided by the hardware’s manu-
facturer, having fixed representations. This restricts both the partial definition of
the classes and the subject composer, since the composed objects have to match
these representations. It follows that subjects must exactly determine the offset
of all fields of a class, thus reserving space for fields defined by other subjects.
This is a restriction to the technology, since in the original concept subjects do
not need to have any knowledge on the parts of the object defined by other
subjects.

To define a (partial) class in a subject, the programmer has to determine the
exact places of the fields within the object. The gaps between must be filled
by reserved fields, which are basic elements of any language based on system
predicate classes. Reserved fields allow the subject composer to compose classes
together in a way, that fields overlapping each other are either the same, or a non-
reserved field overlaps only reserved fields. If this is not the case, the composer
returns error and rejects composition of the subjects containing the ambiguous
definitions of the same class.

This latter requirement may perhaps seem to be too strict if we think on fields
which are to be interpreted differently in various situations, handled by different
subjects. However, our goal is to provide a tool for safe programming, and
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allowing of arbitrary composition of contradicting representations would increase
risk of accidental programming errors. That is the reason why we decided to
introduce this restriction. However, using system predicate classes this particular
problem can be solved efficiently by definition of the affected field of the class as
reserved, and inherit different subclasses of it in the different subjects, overlapping
the field.

Since the programming language used for the development of the subjects
uses predicate-based inheritance, the composer also requires that predicates in
different subjects for the same subclass are either the same or independent of
each other. As independence of Boolean expressions is too complicated to check,
typical requirement is that they do not contain expressions for the same fields of
the class. This implies that the subject composer implements a kind of multiple
inheritance across the different subjects, even if the language itself only supports
single one.

Figure 5. Composition of class for non-present page table entry defined in the
paging file handler subject (a) and in the memory manager subject (b) of a
subject-oriented operating system

Figure 5 shows the representation of a class for non-present pages on the
Intel x86 processor architecture in two different subjects and their composition.
The last bit is always zero, since non-present page inherits in both subjects from
general page with a predicate determining the last bit (present bit) as zero. Our
first subject, which handles the paging file does not need any other information
on the page than its address in the file (first 20 bit). However, the memory
manager does not care where the page is actually stored, instead, it has to deal
with other information on the actual page: its type, whether it is cached (C),
whether write-through caching is enabled (T), whether it is accessible from user
privilege-level (U) and whether it is accessible for writing (W). As these fields do
not overlap each other, the two classes can be composed together. Other paging
file-handlers and other memory managers may use different representations for
non-present pages, but the fields they define may not overlap each other, except
if they have the same name and type.

A special situation is, when partial definitions of the same class have different
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size in different subjects. If this is the case, the subject composer extends the
shorter class with reserved fields to match the size of the longest one. The most
extreme case is when one subject does not define fields for a class at all, only
methods: such classes match any other one. However, methods of these classes
cannot access any of the fields of the object directly, only through other methods,
defined in other subjects. Thus subjects defining classes without fields depend
on other subjects, which contain methods accessing these fields. These subjects
cannot be run as standalone programs.

A typical example for the case described above is an operating system contain-
ing a file system driver subject and an authorization subject. The latter one does
not have any information about the actual data structures of the underlying file
system, thus its class representing a file contains no fields at all. Instead, it asks
the protection fields through private methods of the same class, but defined in
the file system driver subject. This makes the authentication subject dependent
of the file system, but the file system is able to run without the authentication
subject, of course by providing zero security.

4.3. Method invocation

Unlike composition of the object’s representation, which is always the same,
the semantics for method invocation across subjects are defined by the actual
composition rule. Always the same rule applies for all methods of all objects in
the composed subjects.

Basically, there are three types of methods within a subject. A method is
local, if there is no method with the same name and parameter signature for the
class in other subjects with which the subject is composed. However, locality
turns out only at composition, thus at (pre)compilation time no method can be
handled as local, as we do not know what methods other subjects define for the
same class.

A method of a class is common, if it is defined with the same signature
in multiple subjects. This is the case, where the composition rule defines the
semantics of the actual invocation.

The last case is a method, which is called in one of the subjects, but is not
defined locally. This method is called external, and makes the subject dependent
of another one, which contains definition of the missing method. This does
not happen arbitrarily, the composition rule must explicitly declare dependency
and must be checked at composition time. As the compiler does not have any
information about the actual composition rule, it has to compile any subjects
containing calls for missing methods. However, the subject composer has to signal
error when finding missing methods without explicitly declared dependency.
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4.4. Object creation and initialization

As we already mentioned earlier, an operating system is executed on the raw
hardware, thus it has no language runtime environment dealing with objects
identifiers in a common abstract pool. Furthermore, objects are not always cre-
ated dynamically, they are often static system data structures. This results in a
quite different object creation process from that what we have seen in high-level
subject-oriented programming.

The most typical case is, if an object already exists somewhere in the memory,
for example in a system table, e.g. a segment descriptor in a descriptor table.
Our subject just creates a pointer to point to this object. No allocation happens,
no state initialization and no constructor is called.

If an object is defined as a local variable, its initialization happens at the be-
ginning of the block. First, where defined, default values are assigned to the fields.
Then the appropriate constructor is called, depending on the parameter list given
at the variable’s declaration. As constructors are methods, similar rules apply
for constructor invocation as for method invocation, but with some differences.
As we already described, normal methods are distinguished on their parameter
lists. If there is no method with the same name and same parameter list in one
subject as the called one, no method is invoked in that subject, regardless of the
composition rule. However, in case of constructors, the default constructor of the
class is called in the subjects not containing constructor with the same parameter
list as in the calling subject. Another difference is, that constructors cannot be
external: a constructor with a formal parameter list matching with the actuals of
the call must exist in the same subject. At dynamic allocation of objects similar
things happen, but at the exact place of the allocation and not at the beginning
of the block.

4.5. Class matching

Having general classes, it is difficult to determine which class an object belongs
to, if its explicit class does not exist in that particular subject. Several solutions
exist, but none of them is perfect, the area is a subject of research. However,
the problem becomes much easier when using predicate classes, as predicates
determine classification of the object.

Whenever the composition rule triggers invocation of the method in another
subject, the class-tree in the original subject is searched upward for the first
common class with the other subject. Then the method is dispatched in that
class, using the predicates, as in the standard, non subject-oriented case.

Figure 6 presents a simplified example for class matching. An instance of
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Figure 6. Direction of search at class matching

class U (thus containing zero in the field A) in the left subject, which stores one
in the field B calls method M(). Let us suppose that the composition rule orders
that M() has to be called in the right subject as well. However, class U does
not exist in the right subject. To search for the appropriate class, and thus the
appropriate method body, the class-tree of U is searched upward. Since class X,
the parent class of U exists in both subjects, the method is dispatched in class X
in the right subject. As we already mentioned, field B of our object is equal to
one, thus method M() in class Z is executed.

5. Composition rules

Composition rules play their main role in the definition of the semantics
for method invocation. The same rules apply for invocation of constructors as
for invocation of normal methods, apart from the differences described above.
Composition rules may also define dependencies.

A subject is dependent of another one, if one of its classes contains a call for
an external method, thus a method which is not defined in that subject at all. In
this case, the subject containing the call depends on any subject that provides
the invoked method. To prevent programming errors, such dependencies must be
defined explicitly in the composition rules in the form of an interface definition,
which describes all the external methods the subject needs. If no dependency
is defined in the composition rule or the interface does not describe an external
method, the composition fails with an error message. Dependency and semantics
of operation invocation are completely independent.

If the programming language and the actual system allows arguments to be
assigned to subjects at their activation, multiple activations of the same sub-
ject may appear in a composition. Two completely identical subjects cannot be
composed together, any attempt to it is considered a programming error.
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5.1. Merging

The simplest and most straightforward composition rule merging can be used
in subject-oriented operating system development as well. Merging always in-
volves two subjects in a determined order, more subjects can be merged by
subsequently applying the rule multiple times on the previous compositions. No
single subject can be merged with more others in one single step. If two sub-
jects are merged, the bodies of their common methods are executed sequentially
after each other. Since we do not have any runtime environment but working
on the raw hardware, we cannot check the commutativity of the method bodies,
so we require a strict definition of the sequence of their invocation. This means
that merging two subjects is not commutative either, the composition rule must
determine their exact order, which is always independent of which subject has
initiated the call, but in every case the method in the first subject is executed
first.

5.2. Conditional merging

Similarly to standard merging, conditional merging is also applied on two
subjects. However, for common methods returning discrete values its semantics
is different. When calling such a method, the method body in the first subject is
executed first, then its return value determines whether the body in the second
one has to be executed as well. The condition is either positive or negative: in
the positive case the second one is executed if the first one returned nonzero, in
the negative case it happens if the return value of the first one is zero. Similarly
to standard merging, one subject or one composition cannot be merged simulta-
neously with more others, thus conditional merging cannot be used to branch on
the return value of methods.

An example, where conditional merging can be applied in operating system
development is the composition of a file system driver subject with the autho-
rization subject. As we already mentioned, this latter subject depends on a file
system driver subject, since it handles several protection attributes but does not
have information about their physical representation, since they vary from file
system to file system. However, dependency does not determine the composition
rule, since it is only related to external methods. The authorization subject has
to guard file system operations, thus it has to contain methods for opening the
file in different modes with the same parameter signature and return value as the
file system driver. This subject is conditionally merged with the file system in
such a way, that the return value of the authorization subject determines whether
a file operation is allowed. For example, they both return Boolean, thus positive
conditional merging is the appropriate composition rule. If the original caller of
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the method gets true as return value, the file system operation was completed
successfully. If it gets false, the operation failed either on access rights, thus
authorization subject returned false, or on any other reason, which is the case
if the file system itself returned false. To signal the exact kind of failure, the
methods can either use a global error flag, similarly to POSIX’s errno, or return
an integer or enumerated type instead of Boolean, with a negative conditional
merging.

5.3. Nesting

Unlike merging, nesting is a tree-like composition structure, similarly to that
what we have seen at high-level subject-oriented programming, thus it is allowed
to nest multiple subjects into another one. However, one single subject cannot
be nested into more than one subject. In this case, the semantic of method
dispatching is not symmetric, thus it depends on the place of the invocation.
When a method is called in the nesting subject, it is dispatched to its nested
subjects. However, if the call is initiated in the nested subject, it is only delegated
to its nesting subject if it imports it explicitly. Then, it is dispatched to its other
nested subjects, so the total scope of the call is a subtree of the nesting tree.

The order of execution in the affected subtree of subjects may be individually
set for each nesting-nested pairs. If it is pre-order, the method in the nesting
subject is executed first, while with post-order the method in the nested one.
One single subject can nest more others with different orders of execution. In
this case, first the methods are executed in the nested subjects with post-order
nesting, then the one in the nesting subject, and at last the methods in the nested
subjects with pre-order nesting. The order of execution of methods in the nested
subjects with the same ordering rule is undetermined.

For the continuation after the execution of the method in the nested subject
there are two possibilities as well. When deep-first order is defined, then the
execution is continued with the parent or the child depending on the actual rule
(pre- or post-order). When level-first order is defined, then the next subject is
the sibling of the actual one.

5.4. Conditional nesting

Conditional nesting is the most general composition rule. It is a mixture of
conditional merging and nesting. The determination of the involved subtree of
subject is identical with the procedure we presented at standard nesting. How-
ever, execution of methods depend on a condition similar to conditional merging.
Using the pre-order scheme, methods in the conditionally nested subjects are
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executed only if the return value of the nesting subject is appropriate. This
allows branches between subjects, which would be impossible with the linear
conditional merging. When post-order is defined, the nested subjects are called
first, and the execution of the method in the nesting subject depends on their
return values. There are two possibilities: method in an and-nesting subject is
executed, if all nested subjects returned the appropriate return value (i.e. zero or
non-zero, specified for all nested subjects individually). On contrary, or-nesting
subjects execute their method body if there is at least one nested subject whose
method returned the expected result. Subjects can be nested in another one in
a mixed way of standard and conditional nesting. In this case, methods in stan-
dard nested methods are always executed, and their return values at post-order
invocations are not considered.

Figure 7. Examples of composition rules

Figure 7 shows small examples of the mentioned composition rules. Note
that merging, conditional merging and nesting are all special cases of conditional
nesting. The reason for introducing them was to make often used compositions
easier.

6. Subject interfaces

In an operating system there may be services which can be provided by dif-
ferent subjects. For example, the system can offer more memory managers, from
which we have to select the one best suitable to our needs. It may offer different
paging file handlers as well, each independent of the actual memory manager.
In such cases, the composition rule must also be changed, when one of these
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subjects is replaced at next reboot.
The problem becomes more complex, when multiple subjects providing similar

services are allowed to be loaded simultaneously to the system. For example,
the operating system may support several file systems, each implemented by a
different subject. However, authorization rules are the same in every file system.
Since the authorization subject is not allowed to be merged with or nested into
more than one file system, the only solution would be to nest the file system
into the authorization subject. This, however, would break the structure of the
operating system and make compositions unnecessarily complicated.

To solve these problems, we introduce a new term, subject interface. A sub-
ject interface is similar to an interface in high-level programming languages such
as Java or C#, but instead of classes, subjects implement it. It contains inter-
faces for classes, to be defined in the subject implementing the subject interface.
Subject interfaces can be used in composition rules instead of subjects. In this
case, the rule defines the multiplicity of the implementing subjects as well. Sin-
gle interfaces are implemented by at most one active subject. Typical single
interfaces are process schedulers, memory managers, authoriser subsystems etc.
Multiple interfaces may be implemented by multiple active subjects simultane-
ously. Typical application for multiple interfaces are file systems and various
device drivers.

7. Implementation techniques

As we already discussed, performance is one of the most important issues when
dealing with operating system code. The key for success of a new technology in
the operating system programming is the possibility of efficient implementation.
That is the reason why new paradigms invented for application development could
hardly penetrate into the operating system development, instead still modern
operating systems are programmed procedurally in standard C.

System predicate classes are intended to bring object-oriented programming
into the lowest level of software development, thus enable efficient implementation
of object-oriented operating systems. The key for the good performance of this
new technology lies in the dispatcher subroutines, which are called normally,
but after evaluating the actual predicate they jump into the appropriate method
body directly. This results in the very low cost of a simple jump instruction
on the actual processor as the total overhead of the technology. In this section
we present how similar dispatcher subroutines can be used for subject-oriented
method compositions.

As every method is potentially composable with another one in another sub-
ject, the straightforward way would be to use indirect addressing at each method
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call, to be able to change the starting address of the method to the starting ad-
dress of the dispatcher in case of composition. However, this would have a large
negative impact of the performance. To prevent this, we generate a map on all
the method calls during compile time and use direct calls, which results zero over-
head. The composer then replaces every address for the actual methods in the
map for the dispatcher. Although changing of the addresses may be slow, subject
loading and unloading happens much more rarely than ordinary method calls,
thus the general performance is higher than if we would use indirect addressing
everywhere.

Composition of methods depends on the actual composition rule. Standard
merging is very simple, no real dispatcher is needed: the called method is the
first one which jumps at the end into the body of the second one. Since uncondi-
tional jump skips unnecessary stack handling, its execution time is much lower.
Similarly, conditional merging can be solved without real dispatcher as well, by
testing the return value and the conditionally jumping to the second method
body. This must happen before the return instruction, which is executed only if
the condition does not hold. The only trick in these solutions is that some space
has to be left before the return instruction for the test and the conditional jump,
which is jumped over if the method is not composed together with another one.

Nesting is much more complicated than merging, it needs a real dispatcher.
However, since arguments of the methods are the same in this case as well, over-
head of stack handling can be prevented by using conditional and unconditional
jump instructions similarly to the dispatchers of system predicate classes.

The last thing to note at implementation is the work with subject interfaces
which can be implemented by multiple subjects. In this case, when in compo-
sition, indirect addressing cannot always be prevented since one single subject
is merged with or nested into multiple subjects through the interface. These
interfaces are thus more expensive than single interfaces or direct composition of
subjects.

Using this implementation technique, the general performance of a subject-
oriented operating system is similar to that of a modular one, since the technique
for loading new modules into the system is similar to that for composing new
subjects to the existing ones. The main difference is, that a subject-oriented
operating system contains more hooks for connecting the new operations than
the modular one, where subroutines of new modules are called at fixed points
of the code. However, these more hooks hardly decrease the performance of the
system.
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8. Related work

8.1. Operating systems supporting modules

Open source operating systems, e.g. Linux [19], [4], FreeBSD [18], NetBSD
[20] and OpenBSD [21] belong to the most customizable systems. In their early
versions this was achieved by providing everything in source code, and forcing
the user to configure it according to the actual needs then recompile it. Later
loadable modules were introduced that allowed customization of compiled code
by loading the appropriate modules. In newest versions of their kernels, most
functions are available as loadable modules.

A special family of modules, enabling high-level scalability of system secu-
rity are Linux Security Modules [16] by Wright, Cowan, Morris, Smalley and
Kroah-Hartman. The kernel contains hooks at given places to call functions of
these modules, whenever they are present. However, Linux Security Modules can
primarily be used to further restrict access of specific object, but hardly ever to
permit access of objects inaccessible by default. Furthermore, security modules
were only designed to guard objects, so their availability for auditing is limited
as well.

A more general, but lower level alternative of Linux Security Modules are pro-
cess encapsulation, allowing processes to be run in unique environments, simulat-
ing a virtual world for each process, where object access rights can be overridden
in any direction, and auditing is possible as well. Among many implementations,
one of the most general ones is process jailing [11] by van ’t Noordende, Balogh,
Hofman, Brazier and Tanenbaum.

8.2. Subject-oriented programming

Subject-oriented programming (SOP) [17], [12], [6], [13], [14], [7], [9], [10], [15],
[8] and [5] by Harrison, Ossher et al. is an advanced programming paradigm for
software development. Its main goal is to further improve object-oriented appli-
cation development by allowing software components, called subjects to partially
define objects, and later composing them together by a special software tool. The
main difference between original SOP and that described in this paper is the ab-
straction level. Since the original one was invented for high-level application
development, it works with hidden abstract data representation in a high-level
running environment. Contrarily, the tool proposed in this paper allows full con-
trol of the representation of the objects, and is able to run on the raw hardware.
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8.3. System predicate classes

System predicate classes [3] and [1] were introduced by the authors to enable
several features of object-oriented programming at the lowest level of software.
With the help of overlappable reserved fields, predicate-based inheritance and
polymorphism-by-value they provide a powerful OOP -like tool that can be used
even for operating system development. An application of the technology for the
programming language C is SysObjC [2].

9. Conclusion

In the paper we presented a new technology that allows development of highly
flexible operating systems having good performance, while not requiring advanced
skills from users, like e.g. kernel compilation. To achieve this, we combined two
existing technologies, subject-oriented programming and system predicate classes.
While the first one was originally intended to use in high-level application de-
velopment, the latter one was especially invented for system programming. As
subject-oriented programming is primarily based on object-oriented programming,
which is a high-level paradigm as well, system predicate classes allow using most
of its features, e.g. classes, inheritance, virtual methods, encapsulation, poly-
morphism also at system level.

The main benefit of our suggested technology is that it allows flexible com-
bination of operating system components, which results in a highly configurable
and customizable operating system, able to run in various platforms from em-
bedded systems to large scale servers and suitable for very different applications
from real-time systems through multimedia to database management. The main
difference between a subject-oriented operating system kernel and a modular one
is that the latter has a fixed core, only configurable through fixed parameters or
by recompilation, while in a subject-oriented system every part of the software
is replaceable. Further difference is, that modules have fixed hooks where their
functions are called, while subject-oriented composition rules may compose any
method bodies together. The main benefit of our technology is that it achieves
this flexibility without significant performance loss, when using the implementa-
tion techniques that we suggested.

Unfortunately, beside these benefits our technology has a drawback as well: it
cannot be used in existing operating systems. Subject-oriented paradigm requires
a complete new design of an operating system. However, we hope that because
of its promising benefits, operating systems that make use of our technology will
appear in the next couple of years. To help this, we also plan to develop an
experimental system, that allows us to further improve the presented technology.
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