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BASED TOOLS
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Abstract. Application of computer based systems in safety critical ar-
eas like automotive on-board equipments, railway control etc. poses high
dependability requirements against software artifacts. This paper outlines
a coherent tool-chain providing formally well-established support for the
key phases of developing dependable software involving simulation, static
model checking, automatic code generation, test case synthesis and run-
time error detection. Our approach focuses on modeling behavioral aspects
of event triggered state-based systems using UML 2.0 statecharts as spec-
ification formalism. The application example analyzed in the paper was
taken from the railway control domain.

1. Introduction

The software development standards for safety critical systems, like, e.g., EN
50128 for computerized railway control and protection systems, prescribe several
mandatory or highly recommended methods and techniques to reach a given
safety integrity level (SIL), e.g. static analysis, failure assertion programming
and structural testing. Some of these methods can be effectively supported by
automatic tools, however, their application in the design and verification phases
need (i) clear understanding of the corresponding formalisms and models and (ii)
the interpretation of delivered results. In the framework of a project supported by
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the Hungarian National Office of Research and Technology1 we have elaborated
a coherent set of tools and techniques based on UML statecharts models. UML
statecharts as a modeling language could be effectively used in the design of
event-triggered state-based control systems, however, its use in safety critical
applications was hindered by its ambiguous standard semantics and usability
problems appeared in connection with the formal semantics developed so far. In
order to overcome these issues we defined a novel formal operational semantics
of statecharts definitely for being used by software engineers.

On the solid basis of the formal semantics we constructed a coherent chain of
tools to increase the confidence of the developers in the correctness of their design
by substituting tedious and typically error-prone manual work with automatic
solutions (Figure 1): (i) a simulator for statecharts, (ii) static analysis tools for
checking of the completeness and consistency of statechart specifications, (iii) an
automatic code generator for synthetizing source code on the basis of statecharts,
(iv) a test generator for achieving various structural test coverage criteria and
(v) a synthesis method for the automatic construction of run-time verification
procedures that aim at checking high-level safety properties.
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Figure 1. Overview of the development process

The conceptual structure of our work is as follows. Section 2 introduces our
formal semantics for statecharts; the rest of the discussion follows the scenario
of a software development process: statecharts prepared in the analysis and de-
sign phases are checked for consistency by static checking tools (Section 3) then
implemented by the supported of code generators (Section 4); since the effective
testing of complex software is a challenging task, Section 5 outlines a test se-
quence generation method for automatic construction of trigger sequences that
force a statechart implementation to traverse all the states or perform all the
transitions. Section 6 introduces two runtime error detection techniques for au-
tomatic identification of abnormal behavior performed by the running software.
Our experiences gained during the application of the toolchain are summarized
in Section 7, finally Section 8 concludes the paper and outlines the directions
of future research.

In order to illustrate our proposals, we will use a single example throughout
the entire paper (Figure 2). The example represents the simplified statechart

1Project number: GVOP-3.1.1-2004-05-0523/3.0
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Figure 2. Statechart of a railway crossing controller

model of a railway crossing controller being responsible for blinking the traffic
lights on the road and moving the bar to a vertical (open) or horizontal (closed)
position. Both top level states (grantedToCars and grantedToTrain) are decom-
posed to two concurrent regions each: the top regions operate the bar, the bottom
ones are responsible for blinking the corresponding lights (i.e. the two red bulbs
in grantedToTrain and the single white bulb in grantedToCars). The operation of
the two top-level states is similar, e.g. the top region of grantedToTrain contains
two substates barMovingDown and barDown; the entry activity of barMoving-
Down starts the motor to move the bar down; having reached the horizontal
state, a position switch sends the barBottomPS event moving the region to the
barDown state (the exit activity of barMovingDown switches off the motor). The
bottom region has two substates leftRedLightOn and rightRedLightOn, whose en-
try and exit activities switch the corresponding light bulb on or off; the transition
between these states (i.e. the blinking) is triggered by a timer event. The crossing
is equipped with two train sensors that send a trainApproaching or a trainGone
event in case of the arrival and the passing of the train. These events trigger the
transitions between the top-level states.

2. A formal operational semantics for statecharts

Having decided to aim at automated checking and implementation of systems
specified by statecharts, we are obviously in an essential need to assign unambigu-
ous meaning to statecharts. Unfortunately the UML standard does not define a
formal semantics for statecharts thus multiple approaches have been published in
the literature based on formal specification languages [1], graph transformation,
model transition systems [2] or Extended Hierarchical Automata [3]. Common
drawbacks of most previously published formalisms are that (i) they focus on
quite restricted subsets of statechart artifacts, (ii) they were developed for ob-
soleted versions of UML and (iii) their model-checking point of view results in
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their extensive use of mathematical formalisms that are hard to understand for
software engineers, seriously restricting this way their applicability in engineer-
ing practice. According to these considerations we decided to define a formal
semantics for statecharts that is both mathematically well established and easily
applicable. The key steps of the approach are as follows: (i) first we establish
the syntactic foundations by introducing the concept of precise statecharts and
defining their metamodel; then (ii) we outline a formalism for explicit represen-
tation of compound transition and activity structures, finally (iii) we outline the
definition of semantics for statecharts by a Kripke transition system and the
translation of this formalism to easy to understand imperative algorithms.

2.1. Syntactic foundations: The metamodel of precise statecharts

The syntactic basis of our approach is the UML metamodel. In order to
rule the complexity we distinguished two sets of modeling facilities: (i) basic
concepts are the ones that represent some fundamental artifacts of finite state-
transition systems like state, transition, trigger etc. while (ii) advanced concepts
(junction, choice, history and submachines) that are shorthand notations making
the visual modeling comfortable but do not increase the expressive power of the
language. In our approach we focus on statecharts containing basic concepts,
only all call such statecharts precise statecharts (PSC). In order to maintain
the support for convenient advanced concepts we formally define a set of formal
transformation rules for substituting advanced constructs with basic ones [4]
thus our achievements support this way all relevant UML statechart modeling
artifacts.

2.2. Formalism for compound transition and activity structures

From the point of view of software engineers, the main deficiencies of the stan-
dard are related to compound transition structures, and the ordering of activities
when a compound transition is fired. To solve these problems, we introduced the
transition conglomerate and compound activity structure concepts.

It is easy to see that there are many cases when some transitions of a state-
chart can not be considered in isolation, e.g. transitions connecting a fork pseu-
dostate and target states (e.g. the ones originating in the fork pseudostate f1 and
targeting barMovingUp and whiteLightOn in the example) are practically mean-
ingless without the transition originating in a state and targeting the fork vertex
(e.g. the one originating in grantedToTrain and targeting f1). In order to facil-
itate consistent and uniform discussion of these compound transition structures
(possibly involving multiple transitions and pseudostate vertices) we introduced
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the concept of transition conglomerates. An example for transition conglomer-
ates is the structure mentioned above. We identified six transition conglomerate
classes (Figure 3) and formally defined them by tuples, e.g. the class mentioned
in the example above can be described by the tuple (ssrc, t, f, Tout, Strg) where f
is the fork pseudostate, t is the transition targeting f , ssrc is the source state of t,
the set Tout contains the transitions originating in f and the set Strg contains the
target states of the transitions in Tout. In the context of transition conglomerates
we were able to provide a precise and intuitive formalization of the concepts of
least common ancestor region (LCA), priority and conflict relations [4].

s

<<internal>>

t
strgssrc

strg... ...

Ssrc Tin

j

t
ssrc

t

f
Tout Strg

...... ... ...

Ssrc Tin

j

t

f
Tout Strg

......

s

<<local>>

t

A B C D E F

t

Figure 3. Transition conglomerate classes

When firing a transition conglomerate, multiple activities are to be performed:
(i) first the exit activities of source states are executed in a bottom-up order
(i.e. child states left before their parents); then (ii) effects of transitions are
performed according to their sequence; finally (iii) the entry activities of target
states are performed in a top-bottom order. Note that in parallel regions the ac-
tivities belonging to the individual steps are performed in an unspecified order,
even possibly in parallel. Unfortunately, similarly to compound transition struc-
tures, the UML standard does not introduce a high-level concept for handling
compound activity structures either; however their unambiguous representation
would be highly beneficial for exploiting the parallel processing capabilities of
modem computing platforms. In order to overcome this weakness of the stan-
dard we introduced a formalism representing compound activity structures based
on PERT graphs (Figure 4 presents the PERT graph corresponding to the firing
of the transition conglomerate of the previous example in the barDown, rightRed-
LightOn, grantedToTrain configuration).
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Figure 4. Activities performed on firing a transition conglomerate
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2.3. Specification of the semantics

Based on the toolkit outlined above we specified the formal semantics by a
Kripke transition system (KTS). A KTS is defined by a three-tuple K = (S, L, T )
over a PS set of state labels and PT set of transition labels, where S is the set
of states, L : S → PS is the state labeling function and T ⊆ (S × PT × S) is
the labeled state transition relation. In our case the state of the KTS represents
statuses of the statechart involving (i) the actual configuration, (ii) the actual
evaluation of variables and (iii) the actual phase of operation (e.g. uninitialized,
performing a run-to-completion step, terminated) thus the pS ∈ PS state labels
represent three-tuples of this information. A transition of the KTS corresponds
to a step between two statuses of the statechart representing (i) the event that
triggered this step, (ii) the transition conglomerates that were fired and (iii) the
compound activity structure performed in the step. The specification of the formal
semantics is practically the definition of (i) the initial state of the KTS and (ii)
the declarative definition of the T labeled transition relation. Having specified
the semantics by the KTS we translated it to imperative algorithms implemented
in the Microsoft AsmL executable specification language [5].

To put together the discussion above the key beneficial features of our seman-
tics as compared to previously published ones are as follows: (i) it is directly based
on the most recent UML metamodel thus the models exported from modeling tools
are directly usable without any intermediate formats; (ii) both mathematically
well-established and easily usable in the engineering practice; (iii) provides an un-
ambiguous formalism for the representation of compound transition structures;
(iv) provides a PERT-graph based formalism for the representation of compound
activity structures enabling this way the exploitation of parallel computing re-
sources of modern platforms and (v) the executable definition of the semantics
enable straightforward implementation in imperative programming languages and
proving the correctness of the implementation.

The first element of our toolchain the statechart simulator tool (Figure 5, left)
directly implements the semantics: the modeler constructs an event sequence and
lets the application simulate the response of the state machine. The simulator
calculates the trajectory in the state space and the activity structures to be
performed. In the example of the figure after receiving the trainGone, timer,
timer, barTopPS, timer event sequence the railway crossing reaches the (barUp,
whiteLightOff, grantedToCars) configuration.

3. Static checking of statechart models

The detection of insufficiencies like incompleteness and inconsistency of the
statechart specification is crucial since during the verification steps the imple-
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Figure 5. Simulation and analysis of statechart models

mentation is checked with regard to this specification, thus the insufficiencies will
find their way to the final product. Not surprisingly, experience shows that the
majority of computer-related accidents originate in specification errors [6]. The
compact representation of UML statecharts (including hierarchy, parallelism and
nontrivial model elements) is a typical source of such errors.

The most important completeness and consistency criteria can be formalized
on the basis of the formal operational semantics of the statecharts, since it “un-
folds” hierarchy, parallelism and the nontrivial model elements. Here we mention
only the following three criteria [7] (i) completeness – in order to prevent the state
machine from dropping an event, in all possible statuses of KTS, for all possible
events, there must be a step transition (possibly an internal transition) which
is triggered by the event; (ii) determinism – in each status, each event should
trigger only a single step transition; and (iii) reachability – normally all states of
a statechart are reachable from the initial configuration.

Checking these criteria directly on the KTS requires the explicit generation of
the KTS (i.e. the state space of the application), which may lead to the infamous
problem of state space explosion in case of complex models. Accordingly, we
adopted the approach of static checking: criteria are adapted to syntactic terms
(specific constructions of model elements) of precise statecharts in order to be
able to check them directly on the model, without the need of generating the
KTS. The concept of static checking is summarized in the following two steps:

• We use the rules of semantics in “reverse direction” to identify scenarios, i.e.
state configurations and firing of transition conglomerates that are affected
when a specific criterion is satisfied (or not satisfied). In this way hierarchy,
concurrency, and priority scheme are taken into account.
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• Since a criterion interpreted on a KTS may cover several scenarios in the
statechart, the criteria can be decomposed into a set of sub-criteria. These
sub-criteria are defined in syntactic terms of PSCs, e.g. we can say that if
a given basic state is not in a concurrent region, then the set of transitions
that may fire is composed by the set of transitions of this basic state and the
transitions of its parents. If we virtually inherit the transitions of parents to
the basic state, then the completeness criterion can be formulated as follows:
for each basic state, for all possible events, there must be a transition
defined, and no checking is necessary at the composite (parent) states.

In our previous work [8] we mapped the criteria to UML 1.3 statecharts,
thus in this case our task was just the adaptation of this mapping to precise
statecharts. The advantage of the PSC formalization turned out clearly: the
existence of the PSC metamodel simplified this task and the corresponding well-
formedness rules even filtered out some incomplete specifications.

Our consistency and completeness checker tool provides a way to specify those
regions of the statechart in which static checking is required (e.g. critical operat-
ing modes), implements the static checking rules, and generates the list of model
elements in which one of the criteria is violated. Our static checker tool in right
part of Figure 5 presents an aspect of investigating the consistency of the railway
crossing controller’s statechart: we selected the grantedToTrain superstate and
checked that all states of the statechart are statically reachable.

4. Automatic implementation of statecharts

The automatic implementation of such a complex formalism as a statechart
is definitely a nontrivial issue. The usual naive approaches (e.g. implementing
the state-transition logic by nested switch statements or state-transition tables)
are unable to handle such fundamental constructs as state refinement or parallel
execution, not even the well-known State design pattern [9] is capable of sup-
porting these concepts. The solutions published in various research papers are
unfortunately also restricted to a subset of UML statechart features. Even the
best-known Quantum Hierarchical state machine (QHsm) implementation tech-
nique explicitly proposed for embedded systems by Samek [10, 11] is restricted
to non-concurrent statecharts. Having taken into consideration the lack of a
full-featured embeddable solution we decided to adapt OMG’s Model Driven Ar-
chitecture (MDA) [12] initiative for this challenge. The MDA process consists
of three phases: (i) platform-independent modeling, (ii) platform-specific mod-
eling and (iii) implementation; in the usual illustration of MDA (Figure 6) we
distinguish the metamodel level (corresponding to modeling languages used in
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various steps) and the model level (corresponding to the actual models built in
the appropriate language). Below we outline our case study, the implementation
of statecharts on resource-constrained embedded platforms.

In the platform-independent modeling (PIM) phase the system is modeled
barely focusing on the services to be delivered, data structures to be implemented
etc. without taking into consideration any peculiarities of the target platform. In
our case the PIM phase corresponds to the metamodel of precise statecharts and
our algorithms defining the operational semantics.

The goal of the platform-specific modeling (PSM) phase is to map the abstract
concepts of the PIM phase to the specialties of the target platform still remaining
at the abstract modeling level (i.e. using stereotyped UML diagrams). In our
case we had to (i) first identify those characteristics of resource-constrained em-
bedded systems that may require some modifications of the PIM semantics and
(ii) actually carry out the necessary modifications both in the metamodel and
the algorithms. The dominant characteristics of resource-constrained embedded
systems identified by us were as follows: (i) low computing power, (ii) serious
memory constraints, (iii) lack of hardware support for parallel execution and (iv)
need for deterministic or even real-time operation.

In correspondence to the observations above we carried out modifications in
the metamodel and the algorithms specifying the operational semantics. We sub-
stituted the complex algorithms that calculate a possibly parallel execution order
of various activities with more simple algorithms that calculate a single valid se-
quence of activities (reducing this way the processing power requirements and
taking into consideration the lack of parallel execution possibilities. Recursive or
mutually recursive function structures were substituted with iterative algorithms
(supporting this way the pre-calculation of execution times for real-time opera-
tion). Finally configurations and similar data structures were organized into a
compact representation (reducing this way the memory consumption).

The resulting platform-specific language consisted of a modified metamodel
of precise statecharts and a set of modified algorithms. We proved the semantic
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equivalence of the PIM and PSM representations by comparing the corresponding
algorithms line-by-line and discussing the modifications and their correctness.

The final step of MDA is the implementation phase. The goal of this step is
to implement the platform specific model in a programming language that seam-
lessly fits the target platform. In our case this means the implementation of the
PSM metamodel and algorithms in the ANSI-C language, as data structures and
functions, respectively. In order to achieve this, first we prepared an annotated
metamodel of precise statecharts indicating how to implement the corresponding
model element in C (e.g. by a built-in data type, a structure, or an enumerated
type) then implemented the data structures and the algorithms. We proved the
correctness of the implementation similarly to the PIM–PSM step.

Having built the theory behind the PIM, PSM and implementation phases we
implemented the process in an automatic code generator. Our implementation
expects the models in the XML metadata interchange (XMI) format supported
by most of the UML 2.0 modeling tools, enabling this way the seamless inte-
gration into popular environments. Our experiments have shown that (besides
supporting the implementation of all model elements) for complex models (deep
state hierarchies, large number of states) applications built according to our ap-
proach delivered better performance with lower memory consumption than the
ones corresponding to the QHsm pattern [5].

5. Automatic test generation for statecharts

Testing is the most commonly used verification method in software develop-
ment. However, manual testing could be very time consuming and usually needs
expert knowledge. To assess the quality of the test suites standards usually pre-
scribe to meet certain coverage criteria, e.g. all statements and decisions must
be taken at least once. Our test generator tool supports the construction of a test
suite satisfying model based coverage criteria (i.e. state and transition coverage)
[13].

The high-level components of our tool are depicted on Figure 7. From the
statechart model and a selected coverage criterion test cases are generated. These
test cases use the events described in the model, hence we refer to them as abstract
test cases. When the statechart is implemented (either manually or by the code
generator described earlier) the model elements have to be mapped to program
structures. The running of the tests is automated using a test execution engine,
thus the abstract test cases need to be transformed to the format of the selected
execution engine. These concrete tests are then executed, and finally their code-
based coverage is measured.
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Our tool utilizes an external model checker for calculating test cases. The
following steps are performed during test generation: (i) the statechart is trans-
formed into the input format of the SPIN model checker, (ii) each test require-
ment defined by the coverage criterion is formulated as a temporal logic expres-
sion, (iii) for each expression the negation of the formula is verified by the model
checker. If there is an execution path in the model that does not satisfy the
negated formula then it is presented by the model checker as a counter-example.
This path becomes a test sequence that satisfies the original test requirement.
Finally, (iv) the input and output events that form the executable test sequence
are extracted from the counter-example and saved as an abstract test case.

The test transformation uses test skeletons that describe the test execution
engine’s format (currently JUnit or Rational Robot) and model specific templates.
The transformation task consists of the following steps: (i) the event names have
to be mapped to their representation in the code, (ii) the setup and clean up
code for the test suite has to be written, and (iii) the templates containing the
implementation specific event dispatching and action verifying code have to be
created. At the final step (iv) the transformation fills the test skeleton with the
sequences in test cases.

Below we illustrate the steps outlined above for meeting the all state coverage
criterion in the context of the railway crossing example. In order to enter all
states by the test suite for each state, a linear temporal logic (LTL) formula is
generated asserting that the state is not reached. These formulae are checked
in SPIN, and if the state can be reached from the initial configuration then the
formula is violated and a counter-example is generated, e.g. in the case of the
whiteLightOff state the following sequence is generated as a counter-example:
trainGone, {switchWLOn, startMotorUp}, timer, switchWLOff.

SPIN’s default configuration is optimized for an exhaustive search of the full
state space. However, in test generation the goal is to find a counter-example
visiting as few states as possible. Thus, a specific configuration of the model
checker is needed for efficient test generation. Through performing several ex-
periments to measure the effect of the different options offered by the SPIN tool,
the following parameter set was selected that is suitable for generating minimal
length test sequences. The depth of the depth-first search algorithm is limited
and the size of the hash table used for storing the states internally is set to re-
flect the total number of states in the statechart. Breadth-first search turned out
to be too slow, although it found the minimal length tests. For larger models,
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SPIN’s bit-state hashing state compression technique was turned on to handle
state space explosion. Each test case covers multiple test requirements, thus the
test generator searches a new test case for a requirement only if it is not already
covered.

6. Runtime error detection

Even after a carefully designed and performed testing process there may some
faults reside in the delivered system. In case of safety critical environments these
issues are typically addressed by various runtime fault tolerance mechanisms
whose entry point is the actual detection of an erroneous situation. This section
presents two runtime error detection techniques aiming at the detection of (i)
model refinement faults and (ii) implementation and operational faults. Model
refinement faults occur during the model elaboration process if a refined state-
chart violates some dependability constraints defined in the context of an earlier
(draft) model. In our approach these faults are addressed by defining a tempo-
ral logic language for the specification of key dependability requirements in the
context of early draft models and automatically checking that these temporal
correctness criteria hold for the execution of the implementation. Implementa-
tion faults may originate from the misunderstanding of the model or usual pro-
gramming bugs in case of manual coding, or from the undesired interference of
automatically generated and manually written code. In our approach these faults
are addressed by a tool that observes the runtime behavior of the implementation
and compares it to the statechart model of the application.

6.1. Detection of errors caused by model refinement faults

Temporal logic (TL) languages were originally suggested for reasoning about
concurrent programs [14]. The core concept of checking temporal criteria is to de-
fine a finite state-transition system representing an abstraction of the application
and check that specific propositions hold for execution traces of the application.
This abstraction is usually presented by a Kripke structure (KS). As previously
published statechart-related TL languages focus on model checking [15] or use
Harel statecharts as reference [16] (i.e. not the UML dialect) we decided to con-
struct a TL language based on our semantics explicitly focusing on runtime error
detection in UML statechart implementations.

Since the semantics was defined by a Kripke transition system, its translation
to a KS was barely a syntactic rewriting (i.e. labels assigned to transitions are
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copied to the labels of the corresponding target state). Having translated the KTS
to a KS, the definition of the temporal logic language consists of the specification
of the (i) Boolean operators, (ii) temporal operators and (iii) atomic predicates
of the language. We used the usual Boolean operators and the next-time (X ) and
until (U) temporal operators. The informal meaning of temporal operators is as
follows: (i) Xp is true if for the next state of the KTS p holds; (ii) pUq is true
if sometime in the future for a state of the KTS q will hold and until that point
p holds for every states. We introduced shorthand notations like the temporal
future (F) and globally (G) operators (Fp is true if for a state of the KTS
eventually p holds, Gp is true if during the entire operation of the system p holds
for all states). The actual connection of the language and statecharts appear in
the semantics of atomic predicates: we defined various predicates for referring
to the actual state configuration of the statechart, the transition conglomerates
fired, and the activities performed; note that the information we are referring
to resides in the state and transition labels of the KTS. We call this language
PSC-PLTL (propositional linear temporal logic for precise statecharts).

PSC-PLTL enables the definition of safety and liveness criteria. In the context
of the railway crossing controller example, e.g. “whenever a train is approach-
ing, one of the red lights should be on and finally the bar should be down”
can be expressed as G(EtrainApproaching → ((SleftRedLightOn ∨ SrightRedLightOn) ∧
F(SbarDown))). In this example we used the atomic predicate syntax Sx, indicat-
ing that state x is active and Ey indicating that the most recent transition was
triggered by the event y. For the runtime evaluation of PSC-PLTL formulae we
elaborated an efficient method [17]. The source code of the runtime evaluation
(specific for the criteria) is generated automatically.

6.2. Detection of errors caused by implementation faults

Our proposal for detecting implementation faults was inspired by the idea of
traditional watchdog processors (WP) [18]. A WP is a co-processor that observes
the execution of a program on the main CPU and detects if the actual execution
of the program deviates from the reference control flow specified by the control
flow graph (CFG) of the program. Nodes of the CFG are subsequent branch-free
blocks of instructions and directed edges of the graph correspond to syntactically
allowed branches. The goal of the WP is to check whether the actual execution is
a valid path in the CFG. Although traditional watchdog solutions were success-
fully applied for detecting low-level behavior errors, unfortunately none of them
are capable of supporting such high-level reference structures as state refinement
and concurrent execution featured by UML statecharts.

Our proposal was inspired by the idea of watchdog program solutions [19, 20]
and directly based on the KTS defining the semantics of the statechart. We



74 G. Pintér, Z. Micskei and I. Majzik

can imagine the application specified by the statechart, i.e. the KTS, as an
automaton that when taking a t = (sSRC ×PT × sTRG) ∈ T (labeled) transition,
actually sends the (L(sSRC), PT , L(sTRG)) tuple to its output (i.e. labels of the
source state, transition and target state). These output tuples can be considered
as words of a language thus all possible valid executions of the KTS define all
possible valid sentences of the language. From this point of view our task was
to define a checker for this language (i.e. an automaton accepting the language).
Since the language was defined by a finite state machine (i.e. the KTS) the
checker can also be implemented by a finite state machine by formally deriving
its transition relations from the statechart semantics. This idea was implemented
in a tool that generates the source code of the checker (as a software module called
PSC-WD) automatically on the basis of the PSC model.

7. Application experiences

According to experiments and estimations published in the literature the ap-
plication of model-based development techniques promises a significant improve-
ment of software quality and reduction of development costs. In case of the
traditional development of a safety critical (SIL-2) railway remote control sys-
tem the number of faults found was 11 faults/kSLOC (11 faults in thousand lines
of source code); according to precise estimations and pilot experiments [21] the
number of faults in the same product would be reduced to (ii) 6 faults/kSLOC
in case of UML-based requirement analysis and design with manual implementa-
tion, (iii) 2.5 faults/kSLOC in case of UML-based requirement analysis, modeling
and MDA-based automatic implementation and (iv) 0.25 faults/kSLOC by the
support of formal analysis tools. In similar estimations the development time can
be reduced to 42% of the traditional approach (i.e. textual requirement analysis
and design with manual implementation) by UML-based analysis and design, to
11% by MDA-based automatic implementation. Obviously the numbers cited
above are based on considerable amount of optimistic estimation; according to
our knowledge there were no such detailed experimental analyses published in the
literature – note that this kind of analysis and comparison is extremely labour in-
tensive and expensive thus no companies are interested in publishing data about
their development efficiency. Obviously neither can we present here end-to-end
comparisons just enumerate some promising experiences with our toolchain be-
low.

We successfully generated the source of various event-driven pilot applications
and deployed them to a wide range of computing environments ranging from
powerful PCs to embedded devices equipped with 8-bit microcontrollers and re-
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stricted memory [22, 5]. The execution of applications was simulated before code
generation to visually demonstrate their behavior. In the future we plan to ex-
periment with the exploitation of parallel computing resources of enterprise-level
platforms by generated code.

The static checking tool was used in a proof-of-concept experiment for the
analysis of the top-level statechart of a safety critical SIL-2 railway control ap-
plication (freedom from deadlocks and determinism was proven).

The effectiveness of our two runtime error detection techniques was demon-
strated by a fault injection campaign involving both model refinement, implemen-
tation and physical faults [5]. Our experiments have justified that the PSC-PLTL
checker detected most of errors caused by model refinement faults while the PSC-
WD detected most of implementation-related errors and a considerable number
of physical issues. The key idea of PSC-WD will be used for runtime detection of
control flow errors in the top-level control structure of a safe train driver-machine
interface developed in the SafeDMI EU project [23]. The PSC-PLTL checker was
used for the analysis of log files produced by another railway control application.

Upon the first application of our test generation technique to a real life in-
dustrial example the traditional problem of model checkers, namely state space
explosion was encountered. The case study was a protocol that synchronizes
status and control bits between two computers in a distributed control system
in presence of anticipated faults. The model consisted of 5 objects with event
queues, 31 states and 174 transitions. In the generated PROMELA code the
state vector (which identifies a state) was 216 bytes long, and during the ex-
haustive verification more than 2× 108 states were explored. Thus, the complete
verification would have needed approximately 40GB of memory; however using
bit-state hashing and proper parameterization as described in Sect. 5, test suite
generation for the all transition coverage criterion was feasible on a machine with
1GB of RAM in 65 minutes.

8. Conclusions

This paper has presented a coherent set of tools supporting the design and de-
velopment of safety critical, state based event driven systems. Key contributions
of our work involve (i) the introduction of an unambiguous formal operational se-
mantics for UML statecharts, (ii) a simulator facility, (iii) a static model checker
tool, (iv) automatic code and (v) test generation approaches and (vi) two runtime
error detection methods. The discussion focused on outlining reusable ideas of
our approaches while involved details of the actual implementation are presented
in corresponding research reports [4, 5].
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Some key novelties and improvements of this approach as compared to our pre-
vious proposals and other solutions published previously in the literature are as
follows: all facilities are built on the same solid formal foundation; the code gen-
eration solution supports practically the entire UML statechart modeling toolkit;
the test generation facility scales well to practical problems and our runtime error
detection facilities are explicitly targeted to UML statecharts. Key limitations
to be mentioned originate from theoretic reasons: although the test generation
method appears to behave well in case of practical models, the issue of possible
state space explosion can not be totally eliminated.

The viability of our tools were demonstrated in some pilot projects, e.g. in
case of a railway supervisory and control system that is connected to the in-
terlocking system of a railway station [24]. We developed the test cases of the
critical synchronization protocol and constructed the run-time error detection
code corresponding to various safety criteria formalized in PSC-PLTL. The ef-
fectiveness of the code generation solution was demonstrated by automatically
synthesizing source code for a microcontroller-based embedded platform. Pilot
experiments have shown again that ever more popular model based approaches
promise considerable increase in productivity and reduction of development costs
by replacing tedious manual work with automatic tools.
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