

GROUPS ADMITTING
ONLY QUASI–PERIODIC FACTORIZATIONS

S. Szabó (Pécs, Hungary)

Dedicated to Imre Kátai on his 70th birthday

Abstract. We will show that if a finite abelian group is a direct product of two subgroups of relatively prime orders and one of the subgroups has prime order, then each normalized factorization of the group must be quasi-periodic.

1. Introduction

Let G be a finite abelian group and let A, B be subsets of G. If each $g \in G$ can be written in the form

$$g = ab, \quad a \in A, \quad b \in B;$$

then the product AB is equal to G. If each $g \in G$ can be written uniquely in the form (1), then we say that the product AB is direct and we refer to the equation $G = AB$ as a factorization of G.

If the identity element e belongs to the subset $e A$ of G, then we say that A is a normalized subset of G. If both factors A and B of a factorization $G = AB$ are normalized subsets we call the factorization a normalized factorization.

A subset A of G is defined to be periodic if there is a $g \in G \setminus \{e\}$ such that $Ag = A$. Note that if g and h are periods of A, then so is gh provided $gh \neq e$. It follows then that the periods of A together with the identity element

Mathematics Subject Classification: 20K01 (05B45, 52C22, 68R05)
form a subgroup H of G. We will call H the subgroup of periods of A. The reader can verify that there is a subset A_1 of G such that the product A_1H is direct and is equal to A. If A is normalized then $H \subset A$ and A_1 can be chosen to be a subset of A. If one of the factors in the factorization $G = AB$ is periodic, then we call the factorization periodic.

We say that a partition $B = B_1 \cup \cdots \cup B_n$ is a regular partition of the subset B of G if there is a periodic subset $C = \{c_1, \ldots, c_n\}$ of G such that $c_1 = e$, $|C| \geq 2$ and $AB_i = AB_1c_i$ for each i, $1 \leq i \leq n$. According to [2] we call a normalized factorization $G = AB$ quasi-periodic if one of the factors has a regular partition.

In [3] one can find another definition of the quasi-periodic factorization. Namely, a partition $B = B_1 \cup \cdots \cup B_n$ of the subset B of G is defined to be regular if there is a subgroup $H = \{h_1, \ldots, h_n\}$ of G such that $h_1 = e$, $|H| \geq 2$ and $AB_i = AB_1h_i$ for each i, $1 \leq i \leq n$. The normalized factorization $G = AB$ is called quasi-periodic if at least one of the factors A, B has a regular partition. The two definitions are equivalent. A proof can be found in [7].

One might wonder if each normalized factorization of a finite abelian group G is quasi-periodic, then does it hold for each subgroup H of G. A.D. Sands [6] showed that for this question the answer is "no". Using Sands’ method in this paper we will show that if a finite abelian group G is a direct product of its subgroups H and K such that $|H|$, $|K|$ are relatively prime and $|K|$ is a prime, then G admits only quasi-periodic normalized factorizations.

2. The result

Let G be a finite abelian group and let H be a subgroup of G. If f_1, \ldots, f_n is a complete set of representatives of cosets modulo H, then the cosets Hf_1, \ldots, Hf_n form a partition of G. Therefore for a given subset A of G the sets $A_1 = A \cap Hf_1, \ldots, A_n = A \cap Hf_n$ form a partition of A. We will use this observation in the proof of the next theorem. The other observation we will use is that $G = AB$ is a factorization of G if and only if the sets Ab, $B \in B$ form a partition of G.
Theorem 1. Let \(p \) be a prime. Let \(G \) be a finite abelian group that is the direct product of its subgroups \(H \) and \(K \). If \(p \) does not divide \(|H|\) and \(|K| = p\), then each normalized factorization of \(G \) is quasi-periodic.

Proof. Let \(G = AB \) be a normalized factorization of \(G \). Since the order of \(G \) is equal to the product of the orders of \(A \) and \(B \) we may assume that \(p \nmid |A| \) and \(p|B| \). Let \(K = \langle f \rangle \). The factor \(A \) can be written in the form

\[
A = A_0 \cup A_1 \cup \cdots \cup A_{p-1},
\]

where \(A_i = A \cap Hf^i \). Further there are subsets \(D_0, \ldots, D_{p-1} \subset H \), thus

\[
A = D_0 \cup D_1 f^1 \cup \cdots \cup D_{p-1} f^{p-1}.
\]

Similarly \(B \) can be written in the form

\[
B = B_0 \cup B_1 \cup \cdots \cup B_{p-1},
\]

where \(B_i = B \cap Hf^i \). There are subsets \(C_0, \ldots, C_{p-1} \subset H \) such that \(B_i = C_i f^i \). Therefore

\[
B = C_0 \cup C_1 f^1 \cup \cdots \cup C_{p-1} f^{p-1}.
\]

We claim that \(AB_v = AB_0 f^v \) holds for each \(v, 1 \leq v \leq p - 1 \). Using the above notations the claim is equivalent to

\[
(D_0 \cup D_1 f^1 \cup \cdots \cup D_{p-1} f^{p-1})(C_v f^v) = (D_0 \cup D_1 f^1 \cup \cdots \cup D_{p-1} f^{p-1})(C_0 f^v),
\]

that is, equivalent to

\[
D_0 C_v \cup D_1 C_v f^1 \cup \cdots \cup D_{p-1} C_v f^{p-1} = D_0 C_0 \cup D_1 C_0 f^1 \cup \cdots \cup D_{p-1} C_0 f^{p-1}.
\]

In fact we will verify that \(D_u C_v = D_u C_0 \) holds for each \(u, v, 0 \leq u \leq p - 1, 1 \leq v \leq p - 1 \).

Choose an integer \(t(i) \) such that

\[
t(i) \equiv 1 \pmod{|H|},
\]

\[
t(i) \equiv i \pmod{|K|}.
\]

Such a \(t(i) \) exists for each \(i, 0 \leq i \leq p - 1 \). By Proposition 3 of [5], in the factorization \(G = AB \) the factor \(A \) can be replaced by \(A^{t(i)} \) to get the normalized factorization \(G = A^{t(i)} B \). Note that

\[
A^{t(i)} = D_0^{t(i)} \cup D_1^{t(i)} f^{t(i)} \cup \cdots \cup D_{p-1}^{t(i)} f^{(p-1)t(i)} = D_0 \cup D_1 f^i \cup \cdots \cup D_{p-1} f^{(p-1)i}.
\]
The factorization
\[G = (D_0 \cup D_1 f^i \cup \cdots \cup D_{p-1} f^{(p-1)i})B \]
provides that the sets
\[(2) \quad D_0 B, D_1 B f^i, \ldots, D_{p-1} B f^{(p-1)i} \]
form a partition of \(G \). The \(i = 0 \) and \(i = 1 \) special cases of (2) give that
\[(3) \quad D_1 B \cup D_2 B \cup \cdots \cup D_{p-1} B = D_1 B f \cup D_2 B f^2 \cup \cdots \cup D_{p-1} f^{p-1} B. \]

Choose an integer \(u \), \(1 \leq u \leq p - 1 \). Note that
\[D_u B \cap D_w B f^w = \emptyset \]
for each \(w \), \(1 \leq w \leq p - 1 \), \(w \neq u \). In order to verify the claim assume on the contrary that
\[D_u B \cap D_w B f^w = \emptyset \]
for some \(u \) and \(w \). Multiplying by \(f^{w+iu} \) we get
\[(4) \quad D_u B f^{w+iu} \cap D_u B f^w = \emptyset. \]
The congruence
\[w i \equiv w + i u \pmod{p} \]
is solvable for \(i \) and so (4) contradicts to (2). This contradiction proves our claim.

From (3) it follows that \(D_u B = D_u B f^u \). Using this equation repeatedly we get that
\[D_u B = D_u B f = D_u B f^2 = \cdots = D_u B f^{p-1}. \]
Choose an integer \(v \), \(1 \leq v \leq p - 1 \). The equation \(D_u B = D_u B f^{p-v} \) can be written in the form
\[D_u (C_0 \cup C_1 f^{1} \cup \cdots \cup C_{p-1} f^{p-1}) = D_u (C_0 f^{p-v} \cup C_1 f^{p-v+1} \cup \cdots \cup C_{p-1} f^{p-v+p-1}), \]
that is, in the form
\[D_u C_0 \cup D_u C_1 f^{1} \cup \cdots \cup D_u C_{p-1} f^{p-1} =\]
\[D_u C_0 f^{p-v} \cup D_u C_1 f^{p-v+1} \cup \cdots \cup D_u C_{p-1} f^{p-v+p-1}. \]
Groups admitting only quasi-periodic factorizations

Intersecting by H we get $D_uC_0 = D_uC_v$. This holds for each u, v, $1 \leq u \leq p - 1$, $1 \leq v \leq p - 1$. (The $u = 0$ case is not covered.)

It remains to verify that $D_0C_v = D_0C_0$ holds for each v, $1 \leq v \leq p - 1$. In fact we will show that $D_uC_0D_uC_v$ holds for each u, v, $0 \leq u \leq p - 2$, $1 \leq v \leq p - 1$. Multiplying the factorization $G = AB$ by f we get the normalized factorization $G = (Af)B$. Here

$$Af = D_0f \cup D_1f^2 \cup \cdots \cup D_{p-2}f^{p-1} \cup D_{p-1}.$$

(Now D_{p-1} will play the earlier role of D_0.) Repeating the whole argument in this setting we get the required result.

References

S. Szabó
Institute of Mathematics and Informatics
University of Pécs
Ifjúság u. 6
H-7624 Pécs, Hungary
sszabo7@hotmail.com