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1. Introduction

Let A = {f : N — C} be the set of arithmetic functions. There are many
number theoretic investigations (for example, prime number theorem, mean
behaviour of arithmetic functions) that are based on identities between vari-
ous special functions. These identities result from manipulations of arithmetic
functions like Mobius and von Mangoldt function, divisor function, etc. and
they are evidence of a more formal structure surrounding the arithmetic func-
tions. The setting for this structure is that of the ring (A, +,*) where the
addition + and the convolution * are defined, for f,g € A, by

(f +9)(n) = f(n) + g(n) (neN)

and

(Frm) =Y fdg(5) (e,

d|n

respectively. This point of view often provides simplicity and elegance to proofs.
In addition, for a given arithmetic function f € A we can form the symbol-

ism o )
/

Such an object is called a formal Dirichlet series. In the case where the Dirich-
let series converges absolutely for a given s € C, rearrangement of terms is
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permissible and multiplication yields

S5 Ly S LS s -

n,m=1 nm=l
=Z(f*9)(l .

This then is taken as a definition for multiplication of formal Dirichlet series,

namely,
oo f 7 oo ) x< *
N

n=1 n=1 n=1

The set D of formal Dirichlet series forms a ring under addition and multipli-
cation, and the map 1" of A into D defined by

describes an isomorphism between the rings A and D. For whatever s domain,

the series
P =10y = 3 L6

ns

converges, the function F' defined thereby is called generating function of f.
(It should be noted, however, that not all f € A have generating functions.
For example, if f(n) = 2™, the corresponding formal Dirichlet series converges
nowhere.)

Thus the statement of identities and inequalities in convolution arithmetic
may in many cases be expressed by means of generating functions. This moti-
vation is the starting point of our investigations.

2. Results

The simple fact that multiplying by the log-function Lo (Lo(n) = logn
for n € N) acts as an derivation on (A4, +, *) and the von Mangoldt function A
defined by Lo(n) = }_4, A(d) plays an important role in our proofs.

Theorem 1. Let f : N — C be a multiplicative function, and put

M(z) = Zf(n) forz > 1.

n<z
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Define a completely multiplicative function f by f(p) = f(p) for all primes p,
and define g by f = g* f. Then, for allz > 1

M(z)log’z= Y M (f) f(n){ 3" AA) + A(n) logn} +

n
n<z dd’'=n

o3 {(2) e () o e

n<lzx
+{Ri(2) + Ra2(z)} logz,

where

Ri() = f(n)log .

n<z

Ra(z) =) (Z f(m)> g(n)logn.

x
n<z \m<i

For a given arithmetical function w : N — C with w(1) # 0 we define A,
by
Low = w x Ay,.

Then we prove

Theorem 2. Let f,f and g be defined as in Theorem 1, and let w be an
arithmetical function with w(1) # 0. Put

M(z) =Y (f(r) —w(n)).

n<z

Then

M@ loglc= Y. M (%) fn) { 3" A@AW) + An) log'n,} +
d,

n<z d'=n
S () +ma(E) e ()} e

+{Ri(z) + Rz(z) + R3(z)}logz,
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where '
Ra@) = 3 () = w(m)los 7,
Ry(z) = Z (Z f(m)) n) logn,
n<z \m<=Z

R3(z) = - Z ( Z w(m)) (Aw(n) - A(n)f(n)) .

nlxr \m<ZE

We shall apply these identities to multiplicative functions of modulus smaller or
equal to one. For this we define, for a given a € R, the completely multiplicative

function 1, by
1 if n=1,
1.(n) = )
n'® ifn>1.

Choosing w = A1, with some constant A € C, then A,, = A1, (if A # 0),
and Theorems 1 and 2 lead to

Theorem 3. Let f be multiplicative and |f| < 1. Let A€ C and a € R.
Then

(f(n) — An'?)

du+

% Z (f(n) — An**)| <

= 2
u
n<lzc

logx

|f(p) — 0™

p<lz
+0 (i)

For an arithmetical function f : N — C we define the generating function
F of f by

as T — 0Q.

(1) F(s) =Y f(n)n™",
n=1
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where s = o + it and assume that F'(s) converges absolutely for o > 1. Then,
integration by parts shows for ¢ > 1

—1F( / —w (Z f(n)) u(o—l)e—iwt\dw
0

n<ew

and, by Parseval’s formula,

o it

This leads to

Theorem 4. Let A€ C,a € R and f : N — C. Assume that the generating
function F of f converges absolutely for o > 1. Then

271’/]8_“' Z f(n)|2 —2w(o— l)dw

n<lev

j

1

2 3
dt) ,

T _-A ta oo
L g nzsju(f(n) n'a) o[ / .F(s)—AC(s-—ia) Zdt
logx/ u? . log z s

1 —00

z | > (f(n) — An'e)

1 1 7
<
/ ot du < /
log u? log x
1 oo

1
where s = 1 + —— + it.
log x

For ¢ > 1 and a € R we put

F'{s) — AC'(s — 1a)
s

(o) = Zflm

and obtain

F(s —ia) _ Fa(s) _ f(®") 1
SO0 H(“’Z k<s+w>)( )

P

From this we deduce the representation

F (s (Z fpe -1, h(s)> ,
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where

k
h(s) = Z {log <1 + Z f(Zk) > Lp(z%)p‘s +log (1—p~%) +p"s} )

In view of | f(p*)p~**| < 1 the function h is uniformly continuous and bounded
for ¢ > 1. Especially we have

lh(s) —h(D)| <D Y |pF —p7H| <

p k=2

<D0 p7F L —exp (k(1 - 5) logp)| <

p k=2

<sz1°gp| 1<

P k=2
<L |s—1f.

Then, putting

p<z

A=exp(zm;—m_—l+h(l)>

we shall prove

Theorem 5. Let f be multiplicative and |f| < 1. Assume that
212
|7 (p) — p*|
3 —r " <c< o0
) Ep »

for some a € R.

Let (log x) ! loglogz < 8o(z) and do(x) — 0 as x — oo such that, if we put
y =y(z) = 2%

ia|2

s e =P

y(z)<p<z P

d1(x) < do(x)
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for © > xo. Then

1 ) mia
P S0 A -

n<r

=0 (exp (Z Ref(p)z—“’ — 1) . lo;'z > loﬁp |f(p) —p* ) +
p<z p<z
+O(Bol@) /10 =
= O((bo())*/1°).

As a corollary we obtain

Corollary 1. Assume that (3) holds. Then, with the notations of The-
orem 5

! e 1 - —k(1+ia)
%f(n)-lmg(l 1) <1+k§f(p’°)p“+ )+

+0 ((Go(2)) )
as & — 00.
If the series (3) diverges for all a € R we choose A = 0, and as in [6] we
obtain

Corollary 2. Assume that (3) diverges for all a € R. Then, if f is multi-
plicative and |f| < 1,

LY i) =ol)

n<c

as T — 00.
As an immediate consequence of the above results we have

Corollary 3. Let f be multiplicative and |f| < 1. Put
M(z) =" f(n).
n<z
Then the following assertions are equivalent.
(i) lim z7! M(z) =0,
I—00
1 [|M
(i) lim —— | (uldu=0,

z—oo logx u?
1
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(i) lim L/I—Ai[—ailzdu-—-o,

z—o0 logz ud

(iv) hm 0—1)/ d =0.

To+it

3. Simple properties of convolution

Our treatment of this topic follows that of Shapiro’s book [10].
The classes of functions that are distinguished are denoted by S and A, and
are defined as follows

S ={f:R-C,f(z)=0 forz <1},

A ={feS: f(z) =0 forx ¢ N}.
Then, for f,g € S, the convolution f * g in S is defined by
(4 fx@= 3 f(%)gm)
1<n<z

The "action" of this definition on functions of A is given by the following: If
f€eA geSthen fxge Aand forn €N,

(5) (Fg)m) =D 1 (5) 9@
dln

In general the binary operation * is not commutative in S, but if f,g € A then
frg=gx*f.
Consider the function € defined by

1 forx=1,
e(z) =

0 otherwise.

Clearly € € A, and
fre=f forfesS

and

(6) (ex f)(z) =

f(z) ifzeN,
for f € S.

0 otherwise
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Thus € serves as a right identity under convolution for all of S, but is a left
idendity only in A.

The relation (6) suggests that for each f € S we define an image fy € A by
fo=exf for fe S.
This definition leads to

(f*xg)xh=fx(go*h) for f,g,heS
which implies
(fxg)xh=fx(gxh) forfgheA
An element f € S is called a left unit in S if there exists a g € S such that
(M fxg=c¢.
It is called a right unit if there exists a g € S such that
g* f=e.

As a comparison terminology, if (7) holds g is called a right inverse for f, and
f a left inverse for g.

The investigation of these concepts may be initiated with the following

Further properties:

(1) A necessary and sufficient condition for f € S to have a left inverse is

that f(1) #0.
(i) If f(1) # 0, the left inverse of f is in A.
(i) If f(1) #0, and f € A, then f has a unique two-sided inverse in A.

(iv) Let h € A be completely multiplicative (i.e. h(nm) = h(n)h(m) for all
n,m € N) then

h(f xg) = (hf) * (hg) forall f,g € A,

especially
hxhy=c¢.

Here the Mobius function p is defined by

loxp=c¢,
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where 1p = ex1 and 1 € S with

1 >1,
1(3:):{

0 otherwise.

The wellknown Mébius inversion formula says that if f,g € S then f =g=x 1o
if and only if g = f * p.

Examples:

(i) Let ¢ = 1. Then f(z) = [z] and Z [%] u(n) = 1 which implies

n<zx

n . .
z Z H% = O(z), i.e.
n<z

(8) > &:) =0(1).

n<zx

(ii) Let g(x) =z for z > 1. Then
f(z) = Z % =zlogz + cix + O(1)

n<lz

8
Il

g(z) = Z u(n) {jr—) log% + 61%} +O0(z) =

n<z

= zz @log%—kq.rz#?)-i-O(z)

n<z n<x
which implies
uin z
9) Z wln) log = = O(1).
n n
n<zx
The constant c¢; equals Euler‘s constant 7.

(i) Let g(z) = zlogz. By a straightforward calculation (partial summation)

we deduce
z x
fl@) = Zﬁbg;;:
n<z
1 logn
= zlogzzg—xz e
n<lz n<lx

1
= 5w10g2 z +czlogzr — coz + O(log x)
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since with some constant cs

1 1 1
Zo_gr_; = ‘—log2w+02+0(0gx)‘
7 2 T

n<zr

This implies, by (8) and (9)

zlogr = g(a Z p,(n) + O(x)
n<z
and
1) 1og2 T =
(10) ; " log - = 2logz + O(1).

Let L € S denote the logarithm function. Then obviously L acts as a derivation
on S, that is

(11) L-(fxg)=(L-f)*g+f+xL-.g forall f,geS.
Further, we introduce the von Mangoldt function A € A by
(12) ex L =Ly =Ax1g,
ie.
(13) A=Lo*p.
The relation (12) and (13) immediately show

L3 = Lo -(1gxA) =

= LoxA+1gx*xLoA =
= lg*(A*xA+ LoA)
and
(14) px L3 =Ax A+ LoA.
On the other hand, by (8) and (9)

Lo (us L)(@) = 3 D uld)log® 5 = 37 u(d)log”d' =

n<z d|n dd'<z
= u(d) }: log? d’ =
d<z d’<’
d<z d<z d<z
Z/‘( ) el +O( )

d<z
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since

Y
Y log’n = / log? t dt + O(log” y) =
1

n<ly
= ylog2 y—2ylogy + 2y + O(log2 ).

Considering (14) and (10) produces
1+ (LoA+AxA)(z) =Y A(n)logn+ »_ A(dA(d) =

(15) n<z dd'<z
= 2zlogz + O(z).

which is known as Selberg’s Symmetry Formula.
4. Proof of Theorem 1 and Theorem 2

Let
M(z) =) /().

n<z
ie. :
M =1xf=1x(gxf)

with the notations of Theorem 1.
Then

(16) LM =Lxf+1xLyf.
Putting R; = L * f leads to

LM =1x%Lyf + R;.

Observing
Lof =Log*f+gx (Af*f) =
=f*xAf+Log*f
gives
(17) 1xLo=Mx*Af+ Ry,

where R2=1*(Log*f>.
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Collecting (16) and (17) shows

(18) LM =MxAf+ Ry + R,
with
(19) Ri=L+f Ra=1x(Log+f).

We multiply (18) with L and obtain
(20) I°M = (LM A f) + M * LoAf + L(Ry + Ry).
Then, by substituting (18) in (20) we arrive at

L*M

(M Af+ Ry + Rp) x Af +

+M % LoAf + L(Ry + Ry) =
(21) = Mx (AfxAf+LoAf)+
+(Ry + Ry) * Af + L(Ry + Ry)

which leads immediately to Theorem 1.
For the proof of Theorem 2 we put M = 1 % (f — w). This leads to

(16") LM =1+* Lo(f —w) + Ry,
where Ry = L x (f — w). Since w(1) # 0 there exists A, such that
Low =w=* Ay
holds, and, as above
1% Lo(f —w) =1*xf*xAf—1xw*Ay+ Ry =
(17 _ N
=MxAf —1xw=*(Ay — Af) + Ry,

where Ry = 1% (Lo g * f). Collecting (16’) and (17’) shows

(18) LM =M xAf+ R, + Ry + R
with

(19") Ri=Lx(f-w), Ro=1x(Log*])
and

(22) R3 = —1%wx* (Ay — Af).
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We multiply (18’) by L and obtain
(20) L?M = (LM % Af) + M % LoAf + L(R; + Ry + R3).
Then, by (18) and (20’) we arrive at

L°M =M x (Af x Af + LoAf)+

(21) )
+(Ry + Ry + R3) * Af + L(R; + Ra + R3)

which proves Theorem 2.
5. Proof of Theorem 3

Let f be multiplicative and |f| < 1. We apply either Theorem 1 or Theorem
2 with the choice w = A1, with some A € C and a € R. In the second case
Ay = Al,. In both cases we have

e
|R1(2)] <« }: ]og; = O(x)
n<z

and

n<z

|R2(z)] = O (m Z I_Q(;:’_)l log n,) =0(x)

which implies

(R1 + Ry) *Afl (z) =0 (J,Z A—:—l—)) = O(z log ).

n<zr
For the estimate of R3 we observe A,, = A1, and obtain

A(n)

|Ra(a)| < Al Y 7—l|f~('n) - n'|.

n<z

Since

n<z

I(Rs x Af)(@)| <Al (Z log,‘m) Am)|f(n) - ni?| <

z
m<3

< [Afe(ogz) Y- 2 ) — ne

n<zx
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we obtain the remainder terms in Theorem 2. The rest of the proof is based
on a summation formula the proof of which can be found in {6].

Lemma 1. Let R € S, R(z) > 0 and v € A such that

Z v(n) = cx(logz)™ 4+ O(z(log z)™ ")

n<lz

for some m > 0. Assume that there is a steadily increasing function H €
€ S,H(z) = O(x) such that for 1 <t <t
|R(t) = R(t')| < H(t) - H(t').

Then

(R+o)@) =Y R(Z)v(m) =

n<z

T

= c/ R (?) (logt)™dt + O(z(logz)™).

1

Put M(z) = Z( f(n)— An'®). Then by Theorems 1 and 2, (15) and Lemma
n<z
1 with H(t) =tand m=1
x

|M(z)|log’z < 2/1A'I<%)\logtdt+

1

+0(z log z)+
+0 (|A|logmz Mlogx) .
p<z P
Obviously
/lM(%)]lc)gtdt glogt/ M (%)]dt:
1 1

T
|M (w)]
=mloga:/—uz—du
1

from which the assertion of Theorem 3 follows.
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6. Proof of Theorem 4

By Cauchy’s inequality

M [ \M(w))?
[y, (/| ) du)

1 1
Since 1 < u?/1%87 < e2 for 1 < u < z we get

ML, o MO, [MWE,

udt2a udrza
1 1 1

1
where a = Togz’ Substituting u = ¢ and using Parseval’s Formula (2) gives

|M ()I |M (e
(loglr)z/ - du <<(/ 2“’(”") ) -
1 [ |F(s) - AC(s —ia) |?
= (g/ ( s d

(23)

=

1
where s =1+ —— +1it.

log z
Putting K(u) = Z( f(n)— An'®)log n partial summation shows that for u > 2
nlu
_ K@ [ _E®
(24) M(u) = log u +/ t(logt)2 ™’
so that
[ M) (K@, [ K@l [d
u u u
—_— < —dt <
(25) / u? du < / u? logudu + / t(logt)? / u? di <
2 2 2 t

WAL
(1+ log2> u? logudu
2
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By Cauchy’s inequality

u2 log u

and in the same way as above we arrive at

T 1/2
M (u)! K(e¥)|?
L FIEER

’w(l +a)
(26) ' (

1
where s =1+ —— +it.
log

7. Some lemmas

First we collect some simple facts about the ¢-function.

Lemma 2. Let s = o +it. Then

1 .
|C($)|<<|S—_1~| if t<3

and
i€(s)- < loglt| if |t|>3
uniformly in o > 1.

Proof. Partial summation shows

) =S [ o
1

which obviously implies ¢(s) = O(|s — 1|71) for [¢| < 3.

IK(u)' » /‘|K$)|2du / du

wlog?
2uogu

il ]”l URECRLD L

N

1/2

M
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In the same manner we conclude for every o > 1 and positive integer N

E : -5 _ [U’J —u
C(s) n = 8_1 S/ AEST du.
N

Hence
N 1 7 du
<)Y pt s | —= <
I <n s =g s [ o <
n=1 . N
<logN + —— 51 + uN 7 + constant

and the desired result is obtained by choosing N suitably.
Without loss of generality we may assume that f(p) = p*® if z < p since
these values do not influence the sum M(z). Then the following holds.

1
Lemma 3. Leto = 1+ l—&g_a—: and let 6o(r) be given as in Theorem 5. Then,
as T — 00

Yepe -1 _ (; 1Y
@) y(};: . = ("0(‘") ‘o 60(96))
and
(28) S I p|<<ao(z>|s--1llogz

p<y(z)

Proof. By Cauchy’s inequality

) 1/2
oAt s(&@-)ﬁ( > 1) <

y(z)<p<z y(z)<p<z

1\ Y2
< | do(x)lo ——)
( o(x) log 50(@))
and thus (27) holds. Further we observe

P

T
<2 Z 111 — exp((1 - 5)logp)| <
p<y(z)

<2ls—1| z 8P « bo(z)]s — 1|logz
p<y(z)

> 1f@pe

p<y(z)
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which ends the proof of Lemma 3.

From Lemma 3 we conclude
Lemma 4. LetK>0ando—1+1; Then

Lo\ /2
Fyo(s) — AC(s) < [¢(s)] {(50(1‘)10gm) +K50($)}

uniformly for |t| < K(o — 1) and every K > 0.
Proof. By Lemma 3 we have
Fa(s) _
A((s)

{Zf(P)P +h() Z_—_.___f(p - —h(l)}—_—

p<lz

= e | S0 -1 (5 - 1) +00s 1)

p<z

1 \1/2
=exp| O ((50(27) log 80—(;)) ) + O(éo(z)K)>

uniformly in |¢| < K (o — 1) which proves Lemma 4.
Lemma 5. If K(o — 1) < |t| < K then

1

F(U+1t)<< K1/2 m

Proof. Since
11— p"? <201 - f(p)p~ " +2If(p)p~" — p"|?
we have
23, p7°(1—Rep) =3 p7|1 - p*|* <
<2), 077l = fp)p~* > + 43,0 (1 — Ref(p)p~**p™*)
which implies together with (3)

¢lo)
¢(o +it)

2 4

¢(o)
Fo(o —1it)
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This proves Lemma 5 since by Lemma 2

[¢(o +1it)| < +log(3 + |t]) <«

1
o+t — 1| Ko -1)

Lemma 6. Let f be a nonnegative multiplicative function, f(p®) = O(1)
for all prime powers p*. Then

(29) ! Z f(n) < exp (Z I ) forall z > 2.

n<z p<z

Proof. Put M =1 x f. Then
LM = 1xLof+Lxf

which leads to

~ T
(logx)M(z) = ng:zf(n)logn-i—()(%lf(n)llog;) =
B o If(n)] ) _
= Zf(n)Z]ogp +0 xz n =
n<z polin nsw
= Zloorp Z fn) f(p™) +O( Zlfs?)l) <
p<z "<_~',r n<z
lf(n)] ) _
< g;fn) ;Ilogp +()(IZ - )_
_ ( Z;f(” )
Since

; 1;[<1+f‘8)) f(z‘;o ) .><<exp (Z%)

p<z

the assertation of Lemma 6 follows immediately.
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8. Proof of Theorem 5

By changing the variable ¢ into ¢ + ia we conclude

7 |F(s) — A(s — / |Fa(s) = A(s)]?

|s[? ls +iaf?

— 2 dt K

- / LIGE lfc(sn

Therefore, it is enough to estimate the integral

/ IFals) = A

s

where s = 0 + it with 0 =1 + @. For this purpose we divide the range of

integration into the three parts
L:={teR:|t| < K(oc-1)},
L:={teR:K(c—-1)<|t| <K},
L={teR:K <|t|}

and choose K = (8o(x))~%/%. For the interval I; we use Lemma 4 and obtain

/IF a(s) — AC(s)?

|sf?
1/2
(30) < { (60(:c) log 50—27)) + K(So(z)} ‘Cl(jl)2|2 dt <«
I

< (6o(z))®log .

dt €

Concerning the intervals of I, we have, by Lemma 2 and Lemma 5,

_ 2

[ pcor,

Is|?
I
/2
1/2 |Fa(s)|3/2 1/2 |C(s)la
< Igéa;f[Fa(S)l BEFrE dt+xgggc|((s)| TRE dt €
Iy Iz
3/2 3/2
1 Fa@)P2, 1 P2,

K1/4(a _ 1)1/2 |s[2 K1/2(oc —1)1/2 is|2
I

2



324 K.-H. Indlekofer

It remains to estimate the two integrals on the right hand side. We shall
proceed as in [1] and [8].
In the halfplane o > 1 we have

Fo(s)** < |exp <Z f)p~"p ‘s) =

and thus, by Parseval’s equality and Lemma 6,

3/2 it 1
%dt <K /exp (—2 Z Z]-p_1> e2w(e-1g, «

p<ew

n=1

I,

80

<</w—1/2e—2w(a—])dw < (0‘— 1)—1/2_
0

In the same way we conclude

OIS

|s[?

dt < (o —1)"1/2,
I

Collecting the estimates we arrive at

2
(31) / o (S)| I?C(SH dt < (8o(z))*logz.
Last of all we deal with the intervals of I3. Again using Parseval’s formula (2)
we get
JLeCRCh P OF, -
I
<X o [ (RO -
m>K lt m|<1
(32) ) o 2
+ Z f,rfm) imt . —s + Z nimty—s
1 — —
— Z _2/ n=1 — n=1 dt <
Sk m 4 |s
1 4/5
Since




Identities in the convolution arithmetic 325

and

1 —ia _ 1 2
) |f(p)p l logp < 8o (z)
logx = P

and by (30), (31) and (32) the proof of Theorem 5 is completed.
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