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ON PROPERTIES OF THE
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Abstract. For solving boundary value problems for the Maxwell equa-
tions, an integral equation method is useful. The Maxwell equation with
a piecewise continuous conductivity coefficient in an infinite domain is
equivalent to the three-dimensional singular integral equation over a local

domain.

In the paper properties of the singular integral operator are analyzed.
It has been proved that this operator is a Fredholm type one and is bounded
in L. Theorems are proved on the existence of the solution of the singular
integral equation and on continuous dependence of solution from the right

hand side function.

1. Introduction

Physical and other natural science problems are frequently modelled by

the vector differential equation like

(1) rot rotE = k?E +j.
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For example the Maxwell equations formulated in frequency variables can be
written as vector equation (1), and in this case j(R) € Ly(R?) is a source of an
electromagnetic field, the coefficient k2 is given by

(2) k2=pw2<6+%). Im k >0,

where p,w and € are positive constants, o(R) is a nonnegative (and often
noncontinuous) conductivity function.

For k (and o) we assume that %2 can be decomposed into a finite number
of subdomains G, in which k is a continuously differentiable function, and the
boundaries of these subdomains are surfaces of Lyapunov type (or they consist
of a finite number of such surfaces).

On the surfaces of discontinuity of £ boundary conditions have to be given.
We suppose on the tangential components of the vectors E and H = rotE that

3) E.,H, are continuous

(see [1, 9]). For conditions at infinity let a spherical surface Sg be such big
that all finite subdomains G; are inside the Sg. In the infinite domains on
the points of Sr, where o = 0, the following conditions are supposed to be
satisfied:

4) [E[=0(R™Y), [H|=0(R™)

and if o # 0 ([1, 9])
(5)  |[E[=0O(R™), H|=O(R™"), [E+ /p/e(nx H| =0 (R™").

The unicity of solution of this problem is proved in [3].

The vector equation (1) has been formulated in an infinite domain R3, and
if the coefficients of the equation are not smooth, the compatibility conditions
for the solution at the surfaces of discontinuity of the coefficients, like (3), are
not easy to satisfy.

Let the coefficient in the equation (1) be

ke(R) ifR e R\ Vo,
(6) k(R) =
kr(R) ifR € Vi,

where Vr is bounded domain, and let the solution of the equation (1) with
boundary conditions be known if k(R) = k. for R € R3. Then the Integral
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FEquation Method can be successfully used to the equation (1). By this method
the differential problem in an infinite space can be reduced to the solution of the
singular integral equation in a finite domain Vp. This reduction is important
and useful for numerical solving of the problem.

2. Fundamental solution

Let us suppose that the solution of equation (1) is known if the function j
is the Dirac é-function. (In the Maxwell equations this source corresponds to
electric dipole.) Then the integral representation using a fundamental solution
can be used for the solution of the equation (1) with arbitrary j € L2(V),
where V; is a bounded domain in ®2 ([4]).

Let the fundamental solution £ of (1) (an analogy of the Green function
for vector equations) be a solution of the following tensor equation

(7 rot rot€ = k*€ + D, D =§R - Ry)Z,

where Ry is the pole position and Z is the unit tensor. The tensor £(R, Ry)
can be expressed using the tensor potential A(R,Ry) as

(8) £=A+ v (%div,ﬁl)

(see [1]). Note, that div.A is a row vector with components div A?, where the
vectors A* are the columns of A. The tensor potential A satisfies the equation

(9) AA+ K2 (%) -divA + k2A = -D.

Let us analyze the order of the singularity of £. Let
(10) E=£6%4+¢&1,
where £° satisfies the equation

(11) rot rotE® =k €%+ D, ko = k(Ry).
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So, £° is a fundamental solution of the equation like (1) in the homogeneous
space with constant parameters. £ has a simple structure:

elkoR

4R

1

(12)  E2=4"+ 5
kO

VdiV.AO, .AO =AyZ. Ag =

, R=R - Ryl

Since the singularity of Ag in the neighbourhood of the pole is of order R7!, it
is easy to see that the singularity of the elements of £° is O(R™3).

For £! we have from (8) and (12)

1_ g RS LN 0
(13) E=A+ v<k2 divA® | + v PR divA” |,
for A! = A — A°, because AA? + k2 A° = —D. From (9) we have

1

(14) AA' + k% (i) SdivAl + K2A = k2 g <k2

% ) -divA® — (k2 - k2)A°.
Since the singularity of the right hand side of the equation (14) is O(R™2), the
singularity of the second derivatives of the elements of A! is of order R~2, and
because 1/k? is continuously differentiable function, the elements of £ (13) in
the neighbourhood of the pole have integrable singularity O(R™2).

3. Integral equation method. Separation of a standard singular
operator

Let £ be the fundamental solution of (1) if k = k.(R) from (6) for R € %3,
and let E™ be the solution of this equation with & = k. and given j. Then the
equation (1) with boundary conditions (3) and conditions at infinity (4) or (5)
is equivalent to the singular integral equation

(15) (KE)(R) =E"(R), R eR3

(see [4, 5]), where the singular operator

(16) (KE)(R) = o(R)E(R) + ][(kﬁ ~ k*)(Ro)€(R. Ro)E(Ro)dRo,

Vr
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Here by § we denote the Cauchy’s principle value of singular integrals.

So the differential equation with complicated conditions, defined in an
infinite domain, has been reduced to the singular integral equation in a bounded
domain. It is the Integral Equation Method.

The tensor £ (12) can be rewritten as

in which

etkoR

an = L o (EEE 1)
AR 4mk? R

1 1 1 1 1
- ivl—7) e — = odivl=7
* (mg 4vrkz<R>> vin( 7 ) ) viv(z7).
where kg = k.(Rg). Now from £° the tensor £° can be separated as

s__ 1 (1
(18) & =~ TR2(R) vdiv L)

In the remaining part £9 — £5 the second term in right hand side of (17) is
analytical function, further

® g w7 () @)

where R = ARo+ (1 -=MR, 0< <1, and so the singularity of £9 — ES as
well as of £ — €9, is an integrable singularity O(R~2).

Since k% — k2 = 0 for R € R?\ Vr, the domain of integration in (16) can
be enlarged to R°.

The singular integral in (16) can be rewritten as

/ (K2 — K)(Ro)( — £%)EdR, + / (k2 — k) (Ro) — (k2 — k*)(R))ESEdRo+
R3 R

(20) + ][(kf - k*)(R)ESEdR,.
§R:£
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The first two integrals have integrable integrands. In the third integral the
integrand has the singularity order R—2. Now the operator K from (16) can be
written as

(21) K=R+B,

where R is a standard singular operator

(2 RE)®) = a®E®) + 70D

with matrix F:

e ZRD- (B ®van(51), a-f Re-R)

and the operator B is

(24)  (BE)(R)= / (2 — k) (Ro) (€ — £5)(R, Ro)E(Ro)dRo+
R3

+ / (k2 = k?)(Ro) — (k2 — K?)(R))ES (R, Ro)E(Ro)dRo,
R3

the operator with a weak integrable singularity.
4. Properties of the singular operator

Let us give some known results and definitions.
If D(R, Ry) is bounded function on G C R™, the operator with integrable
singularity

(25) (Bu)(R) = / %u(Ro)dRo), 0<i<m,
G

is compact operator in L,(G), 1 < p ([8]).
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If in the singular operator is defined in R™, like (25) with A = m, the
function D(R, Rg) can be represented as f(R, &)

(26) FAEuRa)aRe), @ = (Ro-R),

§R11L

then the function f is called the characteristic function of the singular operator
(18])-

The necessary and sufficient condition for existence of a singular integral
like (26) is

(27) f f(R,&)dS =0,
S

where S is the unit sphere ([8]).
The operator R

Ru)R) = a(R)u(®) + LD u(Ro)aRo)

m"l

is a singular operator if the following conditions are satisfied:

(28 la(®o)~a(®)| <A B [(1+RAO+RP) ], AX>0

. —u/2
(29) 1/(Ro,&) ~ SR, @) < B-R* [ 1+ RP)(1+[Ro) | 7, Bou>0.

If the characteristic f(R, &) has been expanded in a series with m-dimensional
spherical functions Yé(m)

(30) f(R,@) = ZZ a,(R)Y} () (@),

then the symbol G(R, &) of the singular operator R is a series

31 #rmT (3)
G(R,d) = a(R) + Z Z V()@ (R) Yo () (@), Vnm) = W

n=1ll=-n
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(see [8]). The symbol of a singular operator does not change if a compact
operator is added.

The indez of singular operator R is the difference of the numbers of nulls
of operators R and complex-conjugate R*. If the index of an integral operator
equals zero, this operator is the Fredholm type one ([6]).

These results and definitions can be easy generalized to vector integral
operators like (16).

The operator B (24) with weak singularity (A = 2, m = 3) is compact
operator.
The function a(R) from (16), because «(R) = 1 if R € R\ Vr, satisfies
condition (28) with A = 1 and
K2\’
(%)

The components of matrix F (23) can be written as

A = max (1 4+ |RJ?) - max (R), ReVp.

k2 — k2
(32) fpa = (—ji;r—kg—) (R) - (Bapaq — 8pg), P g =1,2,3,
where a1 = sinfcos¢, ay = sinfsind, a3 = cosf are co-ordinates of unit

vector @ in the spherical system of co-ordinates { R, 8, ¢}. For these components
condition (27) satisfies obviously. So the singular integral in (22) exists.

The condition (29) satisfies, because k2 — k* =0 if Re€ R3\ Vr. So R
(22) is a singular integral operator, and F is a characteristic matrix function
of this singular operator (see (26)).

Theorem 1. The index of the standard singular operator R (22) is equal
to zero.

Proof. It is seen, that equality (32) is an expansion of fpq in a series with
three-dimensional spherical functions (see (30)), and in our case only the terms
with n = 2 are present in the series. Since v3(3) = —47/3, for elements of the
symbol matrix G = {Gpq} of singular operator R (see (31)) we obtain

1 k? k?
Gpqg = abpq — 3 1- W (Bapog — Opg) =0pg — | 1 — 7 ) o
. c c

It is a known result (see [8]), that the fulfilment of the following conditions
is sufficient for an index of singular operator R be equal to zero:

(33) /}-(Ro, —&) — f(Ra _d')
R3

7 E(Ro)dR, is a compact operator,
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and lower bounds of modules of

Gll C;'12

Ay =G, Ap=
1 1 2 |G G

, Az =det {G}

are positive.

Condition (33) is satisfied because of an equality like (19) for fpq (32). For
A, 1 =1,2,3, we obtain that

k2 5 Y k2
Ay =1- (1 - ﬁ) sin“fcos“d. Ay =1-— (1 - k—z) sin?8, Az =

(4 c

kz
E.

The lower bounds of modules are

2

K2

k2
k2

for Ay and Ay :  min (1,

), for Az :

It is obvious that these numbers not equal to zero. Therefore the index of
singular operator R is equal to zero. So operator R, as well as K, are of
Fredholm type ones.

Note that the separation of standard singular operator R is useful not only
for the analysis of properties of operator K, but because of the simple structure
of the integrand, this form of the singular operator facilitates a numerical
solution of the integral equation (15) (see for example [2]).

5. Existence of the solution of the Singular Integral Equation

Theorem 2. Singular integral operator K is bounded in Ly, continuous
and closed.

Proof. The elements of characteristic matrix F under fixed R are twice
continuously differentiable functions over components of vector &. Further,
they are bounded independently from R. The satisfaction of these conditions
is sufficient for the singular operator to be bounded in L, ((8]).

If an operator is bounded from the Banach space to the Banach space,
then it is continuous and closed ([6]). Therefore, the operator K : Ly = L is
continuous and closed.

Theorem 3. The solution of the singular integral equation (15) ezists in
Lo and is unique.
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Proof. In (3] it has been proved that the the solution of the equation
(1) with boundary conditions (3) and conditions at infinity (4), (5) is unique.
Because the equation (1) with referred conditions is equivalent to the singular
integral equation (15), the solution of this integral equation is unique as well.

Since operator K is a Fredholm type operator, the Fredholm’s alternatives
are satisfied for them. Because of the Fredholm’s alternatives ([7, 10, 11]) if
the solution of the Fredholm type integral equation is unique, it exists as well
in Lo with an arbitrary right hand side function from L.

Theorem 4. The solution of the integral equation (15) continously depends
on the right hand side function.

Proof. Since the solution of the integral equation (15) exists and is
unique with an arbitrary right side function from L., there exists inverse
operator K~! : L, = Lo, further, this operator is bounded, and therefore
(because of the Banach theorem) is continuous and closed. So the solution of
the integral equation

E=K'E"

continuously depends from E™.
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