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Abstract. Model checking can be an efficient way of verifying large, com-
plex software systems. Symbolic model checking tools like NuSMV (an ex-
tension of Symbolic Model Verifier) usually expect the model of a system
to be specified by Computational Tree Logic formulas. In the component-
based world, however, it may be reasonable to use Linear Temporal Logic
formulas with special attention to the past tense operators to describe the
functioning of a system built of isolated components by means of contracts.
In this way not only the portability of specific components is better sup-
ported, but also the overall functioning of the system may be easier to
understand as most of the constraints are present locally at the related
component’s level.

In this paper we illustrate how the analysis of the structure of behavioral
constraints (usually in the form of LTL formulas) in the local specification
of similar components may result in the reduction of the state space of the
system model, making the process of model checking considerably faster.

1. Introduction

Our dependence on the correct functioning of computer systems in our
daily life becomes more and more evident. Considering the automatic control
of heating systems or the safety systems of cars, faults — not even the subtle
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ones — are not tolerated. Only formal verification methods are able to guarantee
that a software system is error-free fromn the design to the deployment of the
actual code.

Of the most widespread formal methods model checking has already proved
its effectiveness in handling real-world problems. However, in one of today’s
favorite paradigms, component-based software development (CBSD) it encoun-
ters the problem of separately developed components, components-off-the-shelf
(COTS) used in a different environment from the original one [6, 1].

It may sound reasonable to take into consideration of building the informa-
tion on their correctness into the design and the code of components [2]. The
basis of this concept is the design-by-contract (DBC) introduced by Bertrand
Meyer [4] and later extended by Reussner [5].

The advantages of structural similarities among components can also be
exploited to reduce the number of formulas in the local specification of each
component. Please note that in this paper the notion of similarity is restricted
to the various entities originating from the very same class. It is desirable but
also beyond the scope of this paper to extend the notion of similarity among
components to increase the efficiency of this approach in real-world situations.

The idea is that components may be considered to be the implementations
of entities originating from one abstract class, in which specification formulas
can be separated according to whether they refer only to states and variables
within a given component. As these formulas have no effect on any other
component of the system, they and their truth values are stored temporarily
and consequently need to be checked only once when encountering one or more
similar modules. In other words, model checking is shifted to a higher, “class”
level. In this case the relevant formulas can be ignored, thus reducing the time
and memory needs of model checking.

2. Basic concepts of model checking

Model checking is an algorithmic way of verifying software systems for-
mally. This can be done automatically by verifying whether a specific model
meets the expectations of a formal specification. The specification is usually
available as a set of temporal logic formulas describing given properties of a
system.

The model is preferably given as a source code description in a special-
purpose language. Such a program corresponds to a finite state machine (FSM),
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usually a directed graph consisting of nodes and edges. A set of atomic proposi-
tions is associated with each node. The nodes represent states of a system, the
edges represent possible transitions which may alter the state, while the atomic
propositions represent the basic properties that hold at a point of execution.
In some cases infinite systems may also be verified using model checking in
combination with various abstraction and induction principles.

The main challenge in applying model checking in real-world problems is
dealing with the state space explosion problem. This problem occurs in systems
with many components that can make transitions in parallel. During the past
few years a considerable progress has been made using the following approaches.

e Symbolic algorithms do not actually build the graph for the FSM, they
would rather represent the graph implicitly using a formula in proposi-
tional logic. Much of the increase has been due to the use of binary
decision diagrams (BDD), a data structure for representing Boolean func-
tions recommended by Ken McMillan [3]. Recently, Satisfiability Problem
(SAT) solvers have been used to perform the graph search.

e Partial order reduction can be used to reduce the number of indepen-
dent interleavings of concurrent processes that must be considered. The
basic idea is that if two interleaving sequences are not distinguished by a
given specification then it is sufficient to analyze only one of them.

e Abstraction uses a different approach by removing the unnecessary de-
tails of a system, thus simplifying the verification process. The simplified
system usually does not satisfy exactly the same properties as the original
one, so that a process of refinement may be necessary.

¢ Open Incremental Model Checking (OIMC) is a relatively new
approach focusing on the changes of a system instead of re-checking the
entire system. An overview of this method and the algorithm used can
be found in (7, 8].

Model checking tools use their own specification languages, but most of them
support the temporal logic languages LTL and CTL. In Sections 2 and 2 we
give an overview of the syntax and semantics of LTL with the extension of past
temporal operators.

2.1. Syntax of LTL

The logic LTL is a linear temporal logic, meaning that the formulas are
interpreted over infinite sequences of states. A minimal syntax for LTL for-
mulas can be given in the following way. Given the non-empty set of atomic
propositions (AP), an LTL formula is:
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e true, false or p where p € AP,

o —f1, f1V fa, Xf1 (read “next time”) or f; U f> (read “until”), where f;
and f> are LTL formulas,

It is often necessary for describing real-world problems to use a non-minimal
version of the LTL syntax. Given the set AP, an LTL formula is:

e true, false or p, where p € AP,

o ~f1, iV fa, finfe, X f1, iU f2 or fiRf> (read “f) releases f,”, meaning
f2 is either always true, or fo is true until f; A fo is true), where f; and
f2 are LTL formulas,

e Past temporal operators: Y f; (read “previously”), H f; (read “histor-
ically” or “always in the past”), Of; (read “once”) or f; S fo (read “f;
since f,”) where f; and f, are LTL formulas.

Some often used temporal logic shorthands are:
o Ffy =true U f; (read “finally f,”),
e Gf = —-F~f (read “globally f,”).

2.2. Semantics of LTL

A path 7 is an infinite sequence of states m = sp, $1, S2, . . ., where (s;, $;41) €
€ R (an S x S transition relation) holds for all ¢ > 0. (,s;) = f denotes that
an LTL formula f holds in a world (7, s;), in other words (7, s;) is a model of
the formula f. Model checking refers to the process of checking whether the
behaviors of the system are models of the specification formulas. The relation
(m,s;) E f is defined inductively as follows:

o (m,s;) = true,

hd (71',81;) bé fG,lSC,

o (ms;) Epiff pe€ L(s;) where p € AP and L is a function labeling each
s; with the atomic propositions holding,

o (m,8;) = —f1 iff not (m,s;) = f1,
o (m8:) = fiV f2iff (m,8) E f1or (7, 8)  fo
o (m,8:) E fi A f2iff (m,8:) E f1 and (7, s:) = fa,
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L4 (7!',32‘) l=Xfl iff (77»31'4-1) '= fl,

o (m,5) = fiU fpiff for all j >4 (m,s;) = f1 or there is j > i such that
(m,s;) = f2 and for all : < k < 4, (m,s¢) = f1,

o (m,8) E fi R fo iff for every j > i (m,s;) = fo or there is j > i that
(m,85) = fi A f2 and for every i < k < j (7, ;) = fo-

If we want, we can also express the semantics of F'f; and G f, directly:
o (m,s;) = Ffy iff there is j > 4, that (7, s;) E fi1,
o (m, ;) = Gfy iff for all j >4, (m,s;) = fr-
The semantics of the past temporal operators can also be expressed:
o (ms)EYfiiff (m,s-1) = f1, where i > 0;
o (ms;) = Hfyiffforall 0 <j<i(ms;)E fi;
o (m,8;) = Ofy iff there is 0 < j < such that (7, s;) = fi;

o (ms;))E=fi S foiffforall 0 <j<i(ms;) k= fiorthereis 0 < j <14
such that (m,s;) = f2 and for all j < k <4, (m,sk) E fi1.

3. A sample system: Airport

Given a small airport with one control tower and a number of airplanes
leaving and arriving. An aircraft is either on the ground, taking off, flying or
landing. The tower and the airplanes are communicating with one another via
messages (the airplanes requesting takeoffs and landings, while the tower issuing
the relevant permits). In Chapter 3 an oversimplified version of the airport with
one control tower and one airplane is modeled and analyzed. On this high level
of abstraction the tower is symbolized as a boolean variable tower, and all the
communication between the tower and the airplane is reduced to setting and
querying the value of this variable. The simplified functioning of the control
tower can be seen in Figure 1 while the state transition model (STM) of the
airplane can be seen in Figure 2.

In Chapter 3 the functioning of the airport is extended to handle more
airplanes by one control tower. Direct communication between the airplanes is
not allowed (they should not be aware of one another) in this case because it is
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Figure 1: A simplified state diagram of the tower

-

Landing
tower :=0

Figure 2: A simplified state diagram of an airplane
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the responsibility of the control tower to synchronize the airplanes so that only
one of them can be on the runway of the airport either taking off or landing.

3.1. Airport model (with one tower and one airplane)

In the following code excerpt the airport system consists of two compo-
nents (implemented as modules in NuSMV). The airplane is explicitly present
while the tower is represented by a boolean variable tower. The airplane is
parameterized with the value of tower replacing the entire process of com-
munication with querying and setting the actual value of this variable. The
specification is represented by LTL formulas. For more flexibility, the extension
of LTL with past temporal operators may be used to express certain properties
of the airport (e.g. checking whether the doors are locked before takeoff or the
wheels are out before landing).

The following model of the airplane implemented as module plane is a one-
to-one mapping of the UML state transition diagram shown in Figure 2.

MODULE main
VAR

tower : boolean;

planel : process plane(tower);
ASSIGN

init(tower) := 1;

LTLSPEC G(tower=0 xor tower=1)

MODULE plane(tower)
VAR
state : {on_ground,req_takeoff,taking_off,flying,req_land,landing};
ASSIGN
init(state) := on_ground;
next(state) :
case
state = on_ground : {on_ground,req_takeoff};
(state = req_takeoff) & (tower) : taking_off;
state = taking_off : flying;
-- extra condition for wheels in
state = flying : {flying,req_land};
(state = req_land) & (tower) : landing;
-- extra condition for wheels out
state = landing : on_ground;
1 : state;
esac;
next (tower) :=
case
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(state = req_takeoff) xor (state = req_land) : O;
(state = taking_off) xor (state = landing) : 1;
1 : tower;

esac;

FAIRNESS !(state = req_takeoff)
FAIRNESS !(state = flying)
FAIRNESS !(state = req_land)

[

1}

LTLSPEC G!(state=on_ground & state=flying)

LTLSPEC G(state=flying -> F(state=landing))

LTLSPEC G(state=flying -> O(state=taking_off))
LTLSPEC G(state=taking_off -> O(state=req_takeoff))
LTLSPEC G(state=req_takeoff -> O(state=on_ground))
LTLSPEC G(state=landing -> O(state=req_land))
LTLSPEC G(state=req_land -> O(state=flying))

This is a part of the global specification placed within a local module because
otherwise the services provided by NuSMV would require the modification of
these formulas each time a new entity is introduced into the system. For this
reason they were built into the module plane.

LTLSPEC G ((state = req_takeoff & tower = 1) -> F (state = taking_off))
LTLSPEC G((state = req_takeoff & tower = 0) -> X(!(state = taking_off)))
LTLSPEC G ((state = req_land & tower = 1) -> F (state = landing))
LTLSPEC G((state = req_land & tower = 0) -> X(!(state = landing)))
LTLSPEC G (tower = 1 -> !(state = taking_off | state = landing))

1]

FAIRNESS
running

There are also comments in the module of the airplane referring to some extra
conditions that may be applied to make the model more life-like.

3.2. Airport model (with one tower and more airplanes)

In this example the airport is extended to handle more airplanes at a
time. The behavioral specification of the airplane is basically the same but the
global specification needs to be extended with the following formulas to verify
the correct interpretation of messages (tower = 1 means the tower is free and
the runway is clear, not the other way around) and the proper scheduling of
the airplanes in the area:

LTLSPEC G(tower=1 -> !(planel.state=taking_off |
planel.state=landing | plane2.state=taking_off |



Model checking of a system consisting of many components 191

plane2.state=landing))

LTLSPEC G(tower=0 -> (planel.state=taking_off xor
planel.state=landing xor plane2.state=taking_off xor
plane2.state=landing))

In the modular specification the formulas are separated according to whether
they refer to variables and states of other modules (the main module is also
included) or not. In the first case re-checking of the formulas is unavoidable as
there is explicit dependency between components that may be affected by other
parts of the system. However, in the latter case there is no need to re-check
the formulas that are not crossing the “borders” of the modules. The relevant
formulas to be ignored are the following:

LTLSPEC G !(state = on_ground & state = flying)

LTLSPEC G (state = flying -> F (state = landing))
LTLSPEC G (state = flying -> 0 (state = taking_off))
LTLSPEC G (state = taking off -> 0 (state = on_ground))
LTLSPEC G (state = req_takeoff -> 0 (state = on_ground))
LTLSPEC G (state = landing -> 0 (state = req_land))

In this way the model checking of similar components becomes easier with a
significant reduction on the state space of the model.

A challenging, open question is whether it is possible to further reduce the
resource needs of model checking by adapting and applying Open Incremental
Model Checking to handle incremental models with LTL specifications using
past tense operators. Studying the possibility of giving a modified algorithm
and implementing it in NuSMYV is currently underway.

Below is the model including the specification for the extended version of
the airport described earlier in this section.

MODULE main
VAR
tower : boolean;
planel : process plane(tower);
plane2 : process plane(tower);
ASSIGN
init(tower) := 1;

-- from the original specification
LTLSPEC G(tower = 0 xor tower = 1)

-- begin of the extended formulas

LTLSPEC G(tower=1 -> !(planel.state=taking_off |
planel.state=landing | plane2.state=taking_off |
plane2.state=landing))
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LTLSPEC G(tower=0 -> (planel.state=taking_off xor
planel.state=landing xor plane2.state=taking_off xor
plane2.state=landing))

-- end of the extended formulas

MODULE plane(tower)

The model describing the functioning of the airplane is exactly the same as in
the previous example, so it is not detailed here. Fairness constraints are also
unchanged. The following formulas can be removed from each module other
than the first one representing the abstract class.

LTLSPEC G !(state = on_ground & state =

flying) LTLSPEC G (state = flying -> F (state = landing)) LTLSPEC G
(state = flying -> 0 (state = taking_off)) LTLSPEC G (state =
taking_off -> 0 (state = on_ground)) LTLSPEC G (state = req_takeoff
-> 0 (state = on_ground)) LTLSPEC G (state = landing -> 0 (state =
req_land))

The following part is also unchanged with respect to the previous example,
but these formulas cannot be trusted without being re-checked each time the
system is extended with a new entity as they contain references to the actual
state of the tower (variable) making them dependable on that.

LTLSPEC G ((state = req_takeoff & tower = 1) -> F (state = taking_off))
LTLSPEC G((state = req_takeoff & tower = 0) -> X(!(state = taking_off)))
LTLSPEC G ((state = req_land & tower = 1) -> F (state = landing))
LTLSPEC G((state = req_land & tower = 0) -> X(!(state = landing)))
LTLSPEC G (tower = 1 -> !(state = taking_off | state = landing))

[l

FAIRNESS
running

Running a model check without removing the formulas identified in the previous
section results in the screen illustrated by Figure 3. The total numbers of
allocated nodes in the case of 2, 3 and 4 airplanes are 49, 666; 250, 501; 685, 005
respectively.

Applying the reduction rules described earlier to force the model checker
to ignore the relevant formulas results in the screen shown by Figure 4. The
number of formulas checked, the size of the state space, just like the time and
memory needs of model checking are seemingly down. The total numbers of
allocated nodes in the case of 2, 3 and 4 airplanes are 32,801 (34% reduction);
185, 284 (26% reduction); 530,401 (23% reduction), respectively. The pattern
is too small to provide sufficient base for further conclusions, but the fact of
the reduction in the state space is demonstrated well.
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Figure 3: NuSMYV result screen without removing some of the formulas
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Figure 4: NuSMV result screen after removing some of the formulas

The organization of the components guarantees the scalability of extending
the system with more airplanes without any difficulties. Introducing new air-
planes requires a small number of changes in the global specification. These
changes are based on the same structure, so it may be done mechanically by
the model checker (not yet supported by NuSMV).

LTLSPEC G(tower=1 -> !(planel.state=taking_off |
planel.state=landing | plane2.state=taking_ off |
plane2.state=landing | plane3.state=taking_off |
plane3.state=landing | ... | ... ))

LTLSPEC G(tower=0 -> (planel.state=taking_off xor
planel.state=landing xor plane2.state=taking_off xor
plane2.state=landing xor plane3.state=taking_off xor
plane3.state=landing xor ... xor ... ))
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4. Conclusions

Building a system from components is supposed to ease the burden on
software architects by making possible to reuse already existing parts of soft-
ware, but is also full of challenges because the deployment environments and
purposes can severely differ from the original ones.

Model checking is a formal method to verify whether the model of a system
is correct to a given specification. The main challenge concerning the usability
of model checking in the business world is to handle state space explosion.
Building a system from many similar components can help to cope with this
problem by making unnecessary to check a subset of formulas in the local
specification of components as we have shown in a life-like example.
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