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ON A FAMILY OF FUNCTIONAL EQUATIONS
WITH ONE PARAMETER

Z. Daréczy (Debrecen, Hungary)
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Abstract. Let I C R be a non-void open interval and let 0 < a <
<l,a# % be a given parameter. The functions f,g : I — R, are
solutions of the functional equation

£ (55 (2as) - 9@) = ef@)ats) - 1 - ) f(0)a(e)

(z,y € I), if and only if f and g are constant functions on I.

1. Introduction

We consider a one-parameter family of functional equations which plays
important role in the solution of Matkowski-Suté type problem ([1], [2], [3], [4],
8], [5], (6], [7]). These equations are interesting themselves independently of
the original problem.

Let I C R be a non-void open interval and let 0 < a < 1 be a given
parameter. We investigate the functional equation

W 1 (2 (20000 - o)) = af@e) - (0 - ) f0)ote)
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for all z,y € I, where f,g: I — Ry (R, is the set of positive real numbers)
are unknown functions.

For the case a = 1 we have the following proposition ([1]).

Theorem 1. If a = % and the functions f,g : I — Ry are continuous
solutions of the functional equation (1), then there ezist constants a,b € R and
c € Ry, such that

C

fz)=az+b>0 and y(x):ax+b

forallz € I.

We remark, that in the case I = R the constant a is 0 necessarily (and
beR,).

In this paper we discuss the following problems:

(1) Is the continuity in Theorem 1 necessary, i.e. there exist solutions f, ¢ :
I - Ry of (1) in the case a = % which are non continuous at the interval
I or not.

(2) What is the situation in the case a #

Nof—

2. On the non continuous solutions in the case o =

=

Theorem 2. There exist non continuous solutions f,g : I — Ry of the

functional equation (1) in the case a =

5
Proof. Let t € I be fix. We define

a; ifz=t
f(z) :={ (z €I,
a ifxz#t

and
b1 frx=t
9(z) r={ (z €I,
b oifz#t

where a3, a,b;,b are positive constants and a; # a, by # b. These functions
f,9: I — Ry are non continuous at I and solutions of (1) in the case a = 3, if

_ alb—abl
(2) 2_a(b—b1)'
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This assertion is trivial if x # ¢, y # ¢.
Ifz =t and y # t, then (1) yields

a(b—b) = =(a1b—aby),

N~

i.e. by (2) f and g are solutions of (1). By the symmetry of (1) we have the
proof of our assertion. For the equation (2) is an example the following one:
a=b=3,a =4and b, =2.

2. Main result about the equation (1) in the case a #

Our main result of this paper is the following surprising

Theorem 3. Let o €]0,1[ and o # 3. The functions f,g : I — Ry
are solutions of the functional equation (1) if and only if there exist constants
a,b € Ry such that

f(x) =a and glz)=b
forallzel.
To prove this theorem we need the following lemmas.

Lemma 1. Let 0 < a < 1, o # . If the pair (f,9) (f,g: I — Ry)
satisfies the functional equation (1) then the following equations

. z+y\ _ flz)gy) + f(y)g(z)
® () ="
4) ag(y) — (a+1)g(z) #0,

5) f=@)9ly) _ ag(z) - (a+ Dg(y)

f@g(z)  agly) — (a+1)g(z)

for all x,y € I are true.

Proof. In equation (1) we interchange z and y, then

©  1(%3Y) Reota) - o) = ofWete) — (1 - @) (@)atw)
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We add equations (1) and (6), then we have

£ (25) o= Dloto) + 5] = Ca - D @al6) + FWala)]-
From this equation by 2a: — 1 # 0 it follows (3). From (3) by (1) we obtain

f(x)g(y) + f(v)g(z)
g9(z) +9(y)

[2a9(y) — 9(2)] = af(2)g9(y) — (1 — a)f(y)g(z)
for all z,y € I. From the above equation by short computation we have

(M f@)g)lag(y) — (a+1)g(@)] = f(y)g(z)eg(z) — (e + 1)g(y)]

for all z,y € I. If z = y, then ag(z) — (o + 1)g(z) = —g(z) < 0, therefore
assertion (4) is true. If z # y in (7) and ag(y) — (@ + 1)g(z) = 0, then from
(7) we have ag(z) — (e + 1)g(y) =0, i.e.

g(z) _ _«a 9 _ @

ay) 1+a g(x) 14+a’

which is impossible. Hence (4) is true for all z,y € I. From (7) by (4) we have
(5) for all z,y € I.

Lemma 2. Let0<a <1, a# % be a fized number. If the functions
frg: I — Ry with the property f(yo) = g(yo) = 1 (yo € I) satisfy functional
equation (1), then

(8) l9(x) — g()][L — g(2)][1 - g(y)] = O
for all z,y € I.

Proof. By Lemma 1 we know that (4) and (5) are true. From (5) with
y =yo € I we have
ag(z) — (a+1)
a—(a+ 1)g(z)

f(@) = g(x)
for all z € I. We substitute this form of f in equation (5), then we obtain
(z)=(a+1)
9@) L@ 9Y) _ agl) - (a+1g(y)
(y)—(a+1) —
g(y) 20t g2y ag(y) — (a+ 1)g(a)

for all z,y € I. From this equation with the notation

F(z,y) = [ag(z) — (e + D]la — (e + 1)g(y)]ag(y) — (o + 1)g(z)]
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we have
F(z,y) = F(y,z)

for all z,y € I. From this equation with an easy computation and with the

notation A := a?(a+1) + a(a + 1)? > 0 it follows

Ag(z) — Ag(y) + Ag(y)g®(z) — Ag(z)g*(y) + Ag*(y) — Ag*(z) =0,

i.e.
lo(z) — 9(W)][1 + g(x)g(y) — g(z) — g(y)] = 0.
But this is (8) for all z,y € I.

4. Proof of the Theorem 3

In this section we give a complete proof of Theorem 3.

(i) First we suppose that the functions f,g : I — R, are solutions of the
functional equation (1) (where 0 < a <1, a # —%) and f(yo) = g(yo) =1
for yo € I. We assert, that in this case f(z) = g(z) = 1 for all z € I.
Contrary, we suppose that there exists y; € I (y1 # yo), such that

g(y1) =c#1 and c>0.
With the substitution y = y; in (8) we have
9) l9(z) — ][l - g(x)] = 0
for all z € I. We define

E={z|z€l, gz)y=1}+#0

and
E*={z|z€el, g(z)=c}#0.

By equation (9) any z € [ isin E orin E*,i.e. ENE* =@ and I = EUE*.

By Lemma 2

(10)  flz) = g(z) 2@ =@+ 1) { 1 ifrek,

@~ (CY + l)g(:v) - a—(a+1)c

ceez(atl) f 0 e px
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(i)

(1]

If z € E and y € E* then by equation (3) we have

~(a+1)
F(Ety) 2 f@et ) © + G aine
2 c+1 c+1 ’
Now, z_;—_y € Eor d j y € E*. In the first case we have
—(a+1)
c+ c—zc_(a‘:H£ o
c+1 ’
or in the second case
ac—(a+1)
€+ CatarD)e _ e (a+1)
c+1 a—(a+1)c’

In both cases we obtain ¢? = ¢, i.e. ¢ = 1, which is a contradiction.

Then g(z) =1 for all z € I and by (10) it follows f(z) =1 forall z € I.
If the pair (f,g) (f,g:I — Ry) is asolutionof (1) 0 <a <1, a#3)

then the pair (ﬁéo—)’ jo) (yo € I) is a solution of (1), too, and

fly) _ 9(wo) _

flyo) 7 alyo)
By (i) we have

f@) _ 9@ _

fwo) 7 9(yo)

for all z € I. With f(yo):=a>0 and g(yp) :=b>0 we obtain the assertion
of Theorem 3.
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