ON A FAMILY OF FUNCTIONAL EQUATIONS WITH ONE PARAMETER

Z. Daróczy (Debrecen, Hungary)

Dedicated to my friend Imre Kátai on his 70th birthday

Abstract. Let $I \subset \mathbb{R}$ be a non-void open interval and let $0 < \alpha < 1$, $\alpha \neq \frac{1}{2}$ be a given parameter. The functions $f,g:I \to \mathbb{R}_+$ are solutions of the functional equation

$$f\left(\frac{x+y}{2}\right)\left(2\alpha g(y)-g(x)\right)=\alpha f(x)g(y)-(1-lpha)f(y)g(x)$$

 $(x, y \in I)$, if and only if f and g are constant functions on I.

1. Introduction

We consider a one-parameter family of functional equations which plays important role in the solution of Matkowski-Sutô type problem ([1], [2], [3], [4], [8], [5], [6], [7]). These equations are interesting themselves independently of the original problem.

Let $I \subset \mathbb{R}$ be a non-void open interval and let $0 < \alpha < 1$ be a given parameter. We investigate the functional equation

(1)
$$f\left(\frac{x+y}{2}\right)\left(2\alpha g(y)-g(x)\right)=\alpha f(x)g(y)-(1-\alpha)f(y)g(x)$$

Mathematics Subject Classification: 39B22

This research was supported by the Hungarian National Foundation for Scientific Research under grant OTKA NK68040.

176 Z. Daróczy

for all $x, y \in I$, where $f, g: I \to \mathbb{R}_+$ (\mathbb{R}_+ is the set of positive real numbers) are unknown functions.

For the case $\alpha = \frac{1}{2}$ we have the following proposition ([1]).

Theorem 1. If $\alpha = \frac{1}{2}$ and the functions $f, g: I \to \mathbb{R}_+$ are continuous solutions of the functional equation (1), then there exist constants $a, b \in \mathbb{R}$ and $c \in \mathbb{R}_+$, such that

$$f(x) = ax + b > 0$$
 and $g(x) = \frac{c}{ax + b}$

for all $x \in I$.

We remark, that in the case $I = \mathbb{R}$ the constant a is 0 necessarily (and $b \in \mathbb{R}_+$).

In this paper we discuss the following problems:

- (1) Is the continuity in Theorem 1 necessary, i.e. there exist solutions $f, g: I \to \mathbb{R}_+$ of (1) in the case $\alpha = \frac{1}{2}$ which are non continuous at the interval I or not.
- (2) What is the situation in the case $\alpha \neq \frac{1}{2}$.

2. On the non continuous solutions in the case $\alpha = \frac{1}{2}$

Theorem 2. There exist non continuous solutions $f, g: I \to \mathbb{R}_+$ of the functional equation (1) in the case $\alpha = \frac{1}{2}$.

Proof. Let $t \in I$ be fix. We define

$$f(x) := \begin{cases} a_1 & \text{if } x = t \\ a & \text{if } x \neq t \end{cases} \quad (x \in I),$$

and

$$g(x) := \left\{ egin{aligned} b_1 & ext{if } x = t \ & & & (x \in I), \end{aligned}
ight.$$

where a_1, a, b_1, b are positive constants and $a_1 \neq a$, $b_1 \neq b$. These functions $f, g: I \to \mathbb{R}_+$ are non continuous at I and solutions of (1) in the case $\alpha = \frac{1}{2}$, if

(2)
$$2 = \frac{a_1 b - a b_1}{a(b - b_1)}.$$

This assertion is trivial if $x \neq t$, $y \neq t$.

If x = t and $y \neq t$, then (1) yields

$$a(b-b_1) = \frac{1}{2}(a_1b-ab_1),$$

i.e. by (2) f and g are solutions of (1). By the symmetry of (1) we have the proof of our assertion. For the equation (2) is an example the following one: a = b = 3, $a_1 = 4$ and $b_1 = 2$.

2. Main result about the equation (1) in the case $\alpha \neq \frac{1}{2}$

Our main result of this paper is the following surprising

Theorem 3. Let $\alpha \in]0,1[$ and $\alpha \neq \frac{1}{2}.$ The functions $f,g:I \to \mathbb{R}_+$ are solutions of the functional equation (1) if and only if there exist constants $a,b\in\mathbb{R}_+$ such that

$$f(x) = a$$
 and $g(x) = b$

for all $x \in I$.

To prove this theorem we need the following lemmas.

Lemma 1. Let $0 < \alpha < 1$, $\alpha \neq \frac{1}{2}$. If the pair (f,g) $(f,g: I \to \mathbb{R}_+)$ satisfies the functional equation (1) then the following equations

(3)
$$f\left(\frac{x+y}{2}\right) = \frac{f(x)g(y) + f(y)g(x)}{g(x) + g(y)},$$

(4)
$$\alpha g(y) - (\alpha + 1)g(x) \neq 0,$$

(5)
$$\frac{f(x)g(y)}{f(y)g(x)} = \frac{\alpha g(x) - (\alpha + 1)g(y)}{\alpha g(y) - (\alpha + 1)g(x)}$$

for all $x, y \in I$ are true.

Proof. In equation (1) we interchange x and y, then

(6)
$$f\left(\frac{x+y}{2}\right)\left[2\alpha g(x)-g(y)\right]=\alpha f(y)g(x)-(1-\alpha)f(x)g(y).$$

We add equations (1) and (6), then we have

$$f\left(\frac{x+y}{2}\right)(2\alpha-1)[g(x)+g(y)] = (2\alpha-1)[f(x)g(y)+f(y)g(x)].$$

From this equation by $2\alpha - 1 \neq 0$ it follows (3). From (3) by (1) we obtain

$$\frac{f(x)g(y) + f(y)g(x)}{g(x) + g(y)} [2\alpha g(y) - g(x)] = \alpha f(x)g(y) - (1 - \alpha)f(y)g(x)$$

for all $x, y \in I$. From the above equation by short computation we have

(7)
$$f(x)g(y)[\alpha g(y) - (\alpha + 1)g(x)] = f(y)g(x)[\alpha g(x) - (\alpha + 1)g(y)]$$

for all $x, y \in I$. If x = y, then $\alpha g(x) - (\alpha + 1)g(x) = -g(x) < 0$, therefore assertion (4) is true. If $x \neq y$ in (7) and $\alpha g(y) - (\alpha + 1)g(x) = 0$, then from (7) we have $\alpha g(x) - (\alpha + 1)g(y) = 0$, i.e.

$$\frac{g(x)}{g(y)} = \frac{\alpha}{1+\alpha}$$
 and $\frac{g(y)}{g(x)} = \frac{\alpha}{1+\alpha}$,

which is impossible. Hence (4) is true for all $x, y \in I$. From (7) by (4) we have (5) for all $x, y \in I$.

Lemma 2. Let $0 < \alpha < 1$, $\alpha \neq \frac{1}{2}$ be a fixed number. If the functions $f, g: I \to \mathbb{R}_+$ with the property $f(y_0) = g(y_0) = 1$ $(y_0 \in I)$ satisfy functional equation (1), then

(8)
$$[g(x) - g(y)][1 - g(x)][1 - g(y)] = 0$$

for all $x, y \in I$.

Proof. By Lemma 1 we know that (4) and (5) are true. From (5) with $y = y_0 \in I$ we have

$$f(x) = g(x)\frac{\alpha g(x) - (\alpha + 1)}{\alpha - (\alpha + 1)g(x)}$$

for all $x \in I$. We substitute this form of f in equation (5), then we obtain

$$\frac{g(x)\frac{\alpha g(x) - (\alpha + 1)}{\alpha - (\alpha + 1)g(x)}g(y)}{g(y)\frac{\alpha g(y) - (\alpha + 1)}{\alpha - (\alpha + 1)g(y)}g(x)} = \frac{\alpha g(x) - (\alpha + 1)g(y)}{\alpha g(y) - (\alpha + 1)g(x)}$$

for all $x, y \in I$. From this equation with the notation

$$F(x,y) = [\alpha g(x) - (\alpha + 1)][\alpha - (\alpha + 1)g(y)][\alpha g(y) - (\alpha + 1)g(x)]$$

we have

$$F(x,y) = F(y,x)$$

for all $x, y \in I$. From this equation with an easy computation and with the notation $A := \alpha^2(\alpha + 1) + \alpha(\alpha + 1)^2 > 0$ it follows

$$Ag(x) - Ag(y) + Ag(y)g^{2}(x) - Ag(x)g^{2}(y) + Ag^{2}(y) - Ag^{2}(x) = 0,$$

i.e.

$$[q(x) - q(y)][1 + q(x)q(y) - q(x) - q(y)] = 0.$$

But this is (8) for all $x, y \in I$.

4. Proof of the Theorem 3

In this section we give a complete proof of Theorem 3.

(i) First we suppose that the functions $f,g:I\to\mathbb{R}_+$ are solutions of the functional equation (1) (where $0<\alpha<1$, $\alpha\neq\frac{1}{2}$) and $f(y_0)=g(y_0)=1$ for $y_0\in I$. We assert, that in this case f(x)=g(x)=1 for all $x\in I$. Contrary, we suppose that there exists $y_1\in I$ ($y_1\neq y_0$), such that

$$q(y_1) = c \neq 1$$
 and $c > 0$.

With the substitution $y = y_1$ in (8) we have

(9)
$$[g(x) - c][1 - g(x)] = 0$$

for all $x \in I$. We define

$$E := \{ x \mid x \in I, \ q(x) = 1 \} \neq \emptyset$$

and

$$E^* := \{ x \mid x \in I, g(x) = c \} \neq \emptyset.$$

By equation (9) any $x \in I$ is in E or in E^* , i.e. $E \cap E^* = \emptyset$ and $I = E \cup E^*$. By Lemma 2

$$(10) \qquad f(x)=g(x)\frac{\alpha g(x)-(\alpha+1)}{\alpha-(\alpha+1)g(x)}=\begin{cases} 1 & \text{if } x\in E,\\ c\frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1)c} & \text{if } x\in E^{\star}. \end{cases}$$

If $x \in E$ and $y \in E^*$ then by equation (3) we have

$$f\left(\frac{x+y}{2}\right) = \frac{f(x)c + f(y)}{c+1} = \frac{c + c\frac{\alpha c - (\alpha+1)}{\alpha - (\alpha+1)c}}{c+1}.$$

Now, $\frac{x+y}{2} \in E$ or $\frac{x+y}{2} \in E^*$. In the first case we have

$$\frac{c + c\frac{\alpha c - (\alpha + 1)}{\alpha - (\alpha + 1)c}}{c + 1} = 1,$$

or in the second case

$$\frac{c + c\frac{\alpha c - (\alpha + 1)}{\alpha - (\alpha + 1)c}}{c + 1} = c\frac{\alpha c - (\alpha + 1)}{\alpha - (\alpha + 1)c}.$$

In both cases we obtain $c^2 = c$, i.e. c = 1, which is a contradiction. Then g(x) = 1 for all $x \in I$ and by (10) it follows f(x) = 1 for all $x \in I$.

(ii) If the pair (f,g) $(f,g:I\to\mathbb{R}_+)$ is a solution of (1) $(0<\alpha<1,\ \alpha\neq\frac{1}{2})$ then the pair $\left(\frac{f}{f(y_0)},\frac{g}{g(y_0)}\right)$ $(y_0\in I)$ is a solution of (1), too, and

$$\frac{f(y_0)}{f(y_0)} = 1, \qquad \frac{g(y_0)}{g(y_0)} = 1.$$

By (i) we have

$$\frac{f(x)}{f(y_0)} = 1, \qquad \frac{g(x)}{g(y_0)} = 1$$

for all $x \in I$. With $f(y_0) := a > 0$ and $g(y_0) := b > 0$ we obtain the assertion of Theorem 3.

References

- [1] **Daróczy Z. and Páles Zs.,** Gauss-composition of means and the solution of the Matkowski-Sutô problem, *Publ. Math. Debrecen*, **61** (1-2) (2002), 157-218.
- [2] Daróczy Z. and Páles Zs., The Matkowski-Sutô problem for weighted quasi-arithmetic means, *Acta Math. Hungar.*, 100 (3) (2003), 237-243.

- [3] Daróczy Z. and Páles Zs., A Matkowski-Sutô-type problem for weighted quasi-arithmetic means, *Annales Univ. Sci. Budapest. Sect. Comp.*, **22** (2003), 69-81.
- [4] Daróczy Z. and Páles Zs., On functional equations involving means, *Publ. Math. Debrecen*, **62** (3-4) 2003), 363-377.
- [5] Głazowska D., Jarczyk W. and Matkowski J., Arithmetic mean as a linear combination of two quasi-arithmetic means, Publ. Math. Debrecen, 61 (3-4) (2002), 455-467.
- [6] **Jarczyk J.**, Invariance of weighted quasi-arithmetic means with continuous generators, *Publ. Math. Debrecen*, **71** (2007).
- [7] Jarczyk J. and Matkowski J., Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math., 88 (1) (2006), 39-51.
- [8] Matkowski J., Invariant and complementary quasi-arithmetic means, *Aeguationes Math.*, **57** (1) 1999), 87-107.

Z. Daróczy

Institute of Mathematics University of Debrecen H-4010 Debrecen, P.O.B. 12 Hungary daroczy@math.klte.hu