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Abstract. We proved that if multiplicative functions f, g and a positive
integer k satisfy the condition

Y lg(n +k) = f(n)| = O(z),

then either

> 1fm)]=0(), Y lg(n)| = O(z)

n<z n<c

or there are functions F, G € M and a complex constant s such that
f(n) =n°F(n), g(n) =n°G(n), 0<Res<1

and G(n + k) = F(n) are satisfied for all positive integers n.
1. Introduction

Let N and P denote the set of all positive integers and the set of all prime
numbers, respectively. Let M (M?*) be the set of complex-valued multiplica-
tive (completely multiplicative) functions. (m,n) denotes the greatest common
divisor of the integers m and n. Here m || n denotes that m is a unitary divisor
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of n, i.e. that m|n and (Z,m) = 1. We denote by L the subset of those
functions f € M for which the condition

> If(n) = O@)

n<lz

holds. It is obvious that for f € £ and g € L the relation

(1) > lg(n+k) = f(n)| = O(x)
n<z
holds for each k£ € N.

In [1], K-H. Indlekofer and I. Kétai proved that if f € M* and g € M*
satisfy the condition (1), then either f € £, g € L or there are a complex
number s, functions F, G € M* such that

f(n) =n°F(n), g(n) =n°G(n) (0<Res<1)
and
G(n+k)=F(n)

hold for all n € N. The same result has been obtained in [2, 3] for the case
when f = g and f € M. For other generalization of this question we refer to
the work [4] of K-H. Indlekofer and I. Kétai.

The main purpose of this note is to extend the above result of K-H.
Indlekofer and I. Katai. We shall characterize the functions f € M and g € M
satisfying (1) with some fixed positive k. 'The general case concerning the
characterization of those f,g € M for which

> lg(An+ B) — Ef(an +b)| = O(z),

n<z
where a > 0,b, A > 0, B are fixed integers and F is a complex constant, seems
to be a hard problem.
We shall prove the following

Theorem. Assume that f,g € M and k € N satisfy the condition (1).
Then either

(a) feL, geL

or
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(b) there are functions F, G € M and a complex constant s such that
f(n) =n°F(n), g(n)=n°G(n), 0<Res<1
and
(2) Gn+k)=F(n)

are satisfied for all n € N.

Remarks. (I) All solutions of (2) for F,G € M have been determined
in [5], [6], [7] and [8].

(II) We shall use the method that was used in [8] to reduce the problem
to the case f,g € M* and apply the result of [1].

2. Auxiliary lemmas

In this section we assume that the conditions of the theorem are satisfied,
i.e. the functions f,g € M satisfy the condition (1) with some positive integer
k.

We say that a function f € M is of a finite support if

fe*) =0 (e=1,2..)
holds for all but finitely many primes p.

Lemma 1. If f or g is of a finite support, then f € L, g € L.

Proof. Assume that f is of a finite support, that is f(p*) = 0 (a =
=12,..)ifpg A= {p1,...,pr}. Let A =p;...p,. For an arbitrary positive
integer n let n = Aa(n)Ea(n), where Aa(n) is the product of those prime
power divisors p* of n for which p € A, and Ea(n) is coprime to A. Then by
(1), we have

®3) > lg(m)| = O(=).

m<z,Ea(m—k)>1

If g(n) = 0 for all n > 2, then f,g € L. Assume that ¢® is a prime power for
which g(g®) # 0. It is well-known that the greatest prime divisor of ¢” — k
tends to infinity as v — oo, so

Ea(g" —k) > 1if v 2> v4(A).
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This together with (3) shows that for all large z

4 > lg(a")] = O(x).

"<z

Assume that g € £. Then it follows from (4) that there is an infinite sequence
my < mg < ... of positive integers coprime to q for which

> lg(m)| # O()

m, <z

and so, using the fact g(¢°) # 0, one can deduce that

> l9(gPm)| # Oa).

m, <z

These together with (3) imply that
Ea(m, —k)=1 and E,;(qgm,, -k)=1

hold for every large v. This contradicts Thue’s theorem (see e.g. [9]),
consequently g € £ and f € L.

The case when g is of a finite support can be treated similarly.

Lemma 2. If there are positive integers A and D such that

(5) Y 1f)]=0@) and > |g(n)| =O0(x),

n<z,(n,A)=1 n<z.(n,D)=1

then fe L and g € L.

Proof. By using Lemma 1 we can assume that none of f and g is of finite
support. If A =1 or D =1, then the assertion is true. Let

A=nft-m and D=gf* g,
where r,s € Nand o;,8; E N, m,q;, € P (1 =1,--- .15 5=1,---,9).

We may assume that for each 7; there is at least one I; € N such that
f (ﬂﬁ") # 0. Since f is not of a finite support, there are positive integers

Q1, -, Qs for which (Q;,Q;) =1(1<i<j<s)and f(Q:) #0, (Q;,A) =1
(¢=1,---,8). For u,v,j € Nyu # v let

qfu,v,j | Qu—Qy and T := max [y,

u,v,J;uFv
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Then there is a jo € {1,---,s} for which if 7' --- 7% < z, then
‘]j?l" ” ﬂil e W:’.Q.’iu +k

with
T if gj 1.7, or g; fk,

IN

Vi
logk if gj|(my -, k).

Thus, by (5) we infer that

Yo lglrlt e Qg + k) = O(),

t [P
mlnlr<g

consequently

Yoo It mi Q)| = O(x).

ty t,
meem <z

The last relation together with (5) shows that f,g € £. Lemma 2 is proved.

Lemma 3. If there are positive integers A such that

(6) Y If)=0@),

n<z,(n.A)=1

then there is a positive integer D for which

(7) Y gl =O0().

n<z,(n,D)=1

Similarly, if (7) holds for some positive D, then there is a positive integer A

such that (6) also holds.

Proof. We shall prove only the first assertion. We may assume that none

of f and g is of a finite support.

Let A = n{* ... & and Fa(n) as in the proof of Lemma 1. Since g is not
of a finite support, there are @, -, Q¢ (t > r) mutually coprime integers for

which g(Q;) #0 (5 =1,---,t). Let

ﬂ_?u,v.j ” Qu . Q‘u and 71 = max /B'u,,v,j.

u,v,J;u#Y
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By (1) we have

> l9(Qjm) — £(Q;m — k)| = O(=).

m<z,(m.Q1+Qu)=1

We shall prove that

®) > |£(Qym — k)| = O(x),

m<z,(m,Q1-Qr)=1

which completes the proof of Lemma 3 with D = Q; - - - Q.
Since t > r, there is one @Q;, such that

(9) Ea(Qjom — k) | (my - mp)T

holds for all m € N, (m, Q1 --- Q¢) = 1. Consequently, (8) follows from (6) and
(9).

The case when (7) holds for some positive integer D can be treated
similarly. The proof of Lemma 3 is finished.

Lemma 4. If
(10) Z |f(6m +1)| = O(z),
or )
(11) Z lg(dm +1)| = O(x)

are satisfied for some 6,d € N, then f€ L, g€ L.

Proof. Assume that (10) holds for some é € N. We shall prove that there
is a positive integer A such that

S )] = 0)

n<z,(n,A)=1

and so the assertion of Lemma 4 follows from Lemma 3.

For every reduced residue class ! (mod d) let Egl),-‘-,Eg()é)_l be co-

prime integers belonging to ! (mod §) and satisfying f(E;l)) #0 (@G =
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=1,---,¢(8) — 1), if there are so many Ey) . Then for each positive integer
t=1! (mod J), (t,EY) - Eg(;'é)_l) =1, we have

l l
tEY . Bl =1 (mod d)

and so by (10) we get

> () = O(x)
1<z, (6B Bl )=1
If for some [ the maximal size h of the set Egl), e ,E,(f) constructed above is
less than ¢(8) — 1, then
> £ (&) = Oa).

t<zt=l (mod 8).(t.EV. EM)=1

Hence the assertion of Lemma 4 follows.
The case (11) can be proved similarly as above.

Lemma 5. If there is a positive integer ng or mg such that
(no.k) =1 and f(no) =0
or
(mo,k) =1 and g(mo) =0,
then fe L,g€ L.

Proof. We shall prove that for every positive integer N either f(N) =
=g(N+k)=0or f(N)g(N —k) #0.

Assume first that there is N € N such that f(N) = 0 and g(N + k) # 0.
Applying (1) withn =N [N(N + k)?m + 1], we have

> " 1g(N*(N + k)ym +1)| = O(=).

n<lz

This relation with Lemma 4 shows that f € £ and g € L.

Assume now that there is a positive integer N such that f{N) # 0 and
g(N + k) = 0. Since

N* N +k)’m+ N+ k= (N +k) [N*(N + k)m + 1]
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and
(N +k N*]N +kym+1)=1,

it follows from (1) and our assumptions that

ST IF(IN(N +k)ym + 1)] = O().

m<z

Hence, we infer from Lemma 4 that f € £ and g € L.
Thus, we have proved that for every N € N either

F(N)Y=g(N +k) =0 or f(N)g(N +Fk)#0.

1 if f(n) #0, 1 if g(n) #0,
F(n) = and G(n) =
0 if f(n)=0 0 if g(n) =0.

Let

Then
FeM,GeM and G(n+k) = F(n) forall neN.

If there is ng € N for which (ng,k) = 1 and f(ng) = 0, then Theorem 2 of [3]
shows that

Sp:={neN| F(n)# 0} and Sg:={n€N|G(n) # 0}

are finite sets. Hence f € £ and g € L.

In the case when there is mg € N such that (mg, k) = 1 and g(mg) = 0.
we also have f € £ and g € £. The proof of Lemma 5 is complete.

3. Proof of the theorem

In this section we assume that f € M and g € M satisfy the condition
(1) and f € £, g € L. Then, it follows from Lemma 5 that f(n)g(n) # 0 for
allneN, (n,k) =1. Let

H(n) := % ontheset neN, (n,k)=1.
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By using the method of [7]-[8], one can deduce from (1) and our assumption
that the functions f,g and H are completely multiplicative functions on the
set (n, k) = 1, furthermore

H{(n) = xk(n),

where xi denotes a character (mod k). Let
f*(n) :=xx(n)f(n) and g*(n):= xx(n)g(n).
Then f* € M*, g* € M* and

dYolg*n+k) - frm)l= Y. lgln+k) - f(n)]| = O=).

n<z n<z,(n,k)=1

By the theorem of [1], the last relation implies that there are a complex number
s and functions U,V € M* such that

f*(n) =n°U(n) and g*(n) =n°V(n) (Res<1),

where
V(n+k)=U(n) forall neN.

Finally, let
(12) f(n) =n’F(n) and g(n) =n°G(n).
Then F e M, G € M and
(13) G(n+k) = F(n) = xx(n) forall neN,(n,k) =1.

One can deduce from (1) and (12) that

(14) > 1G(n + k) - F(n)] = O(x).

n<z
By using the method of [1], we get from (13) and (14) that

G(n +k) = F(n) forall neN.

The theorem is proved.
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