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INFINITE PRODUCTS
WITH STRONGLY B—-MULTIPLICATIVE EXPONENTS
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To Professor Kdtai on the occasion of his 70th birthday

Abstract. Let Ny g(n) denote the number of ones in the B-ary expansion
of an integer n. Woods introduced the infinite product

2n+1
Pi= H <2n+2>

n>0

(~1)N1.2(™

and Robbins proved that P = 1/ V2. Related products were studied
by several authors. We show that a trick for proving that P2 =1 /2
(knowing that P converges) can be extended to evaluating new products
with (generalized) strongly B-multiplicative exponents. A simple example

18
(-1)N1.B™

0(&s) -7

n>0

1. Introduction

In 1985 the following infinite product, for which no closed expression is
known, appeared in [8, p.193 and p.209]:

Mathematics Subject Classification: 11A63, 11Y60



36 J.-P. Allouche and J. Sondow

rR=]] (Eéy;t;gigzitzl)e(n)’

e 4n(4n + 3)
where (¢(n))n>0 is the 1 Prouhet-Thue-Morse sequence, defined by
e(n) = (_1)N1.2(n)

with Nj 2(n) being the number of ones in the binary expansion of n. (For more
on the Prohet-Thue-Morse sequence, see for example [5].)

On the one hand, it is not difficult to see that R = -2%, where

e(n)
2n
Q= H <2n+ 1)
n>1

Namely, splitting the simpler product into even and odd indices and using the
relations £(2n) = e(n) and €(2n + 1) = —e(n), we get

H 4in £(n) H in + 2 —e(n) _
4n +1 in +3 N
n>0

n>1

3 dndn+3) ™ 3
_-2—1!;[1<(4n+1)(4n+2)> " 2R’

(Note that, whereas the logarithm of R is an absolutely convergent series, the
logarithm of @ - and similarly the logarithm of the product P below - is a
conditionally convergent series, as can be seen by partial summation, using the

fact that the sums )  &(k) only take the values +1, 0 and -1, hence are
0<k<n

Q

bounded.)
On the other hand, the product @ reminds us of the Woods-Robbins

product [18, 12]
on+1\*™ 1
P:=1] (2Z : 2) =2
n>0 v

(generalized for example in [13, 1, 2, 3, 4, 14]).

In 1987 during a stay at the University of Chicago, the first author,
convinced that the computation of the infinite product @ should not resist
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the even-odd splitting techniques he was using with J. Shallit, discovered the
following trick. First write QP as

oP = EE(O)H( oan 241\ 11-[ ()
“\2 s \2n+1 2n+2 =2 ] n+1

Now split the indices as we did above, obtaining

n \ ™ om \ ™ on + 1) 5™ .
H(n+1) - H<27L+1) H(2n+2) = QP
n>1 n2l n>0

This gives QP = %QP‘I: as the hope of computing @Q fades, the trick at least
yields an easy way to compute P = 1/4/2. By extending this trick to B-ary
expansions, the second author [14] found the generalization of P = 1/v/2 given
in Corollary 5 of Section 4.2.

It happens that the sequence (€(n))n>o is strongly 2-multiplicative (see
Definition 1 in the next section). The purpose of this paper is to extend the
trick to products with more general exponents. For example, we prove the
following.

Let B > 1 be an integer. For k = 1,...,B — 1 define N g(n) to be the

number of occurrences of the digit k in the B-ary erpansion of the integer n.
Also, let

sg(n) = Z kN g(n)

0<k<B

be the sum of the B-ary digits of n, and let q51 be an integer. Then
Ny n
1—[ ( Bn+k )(—1) kB (™) 1
eted Bn+k+1 VB

nk m(2sp(n)+k)
q

H H ( Bn + k >sm—sm _ _—1_—
50 odien Bn+k+1 VB
T k#0 mod ¢

and

= 1.

L omk 7(2s g(n)+k)

( Bn+k )sm q cos a
n>0 0<k<B Bn+k+1
T  k#0 mod q



38 J.-P. Allouche and J. Sondow

Note that the use of the trick is not necessarily the only way to compute
products of this type: real analysis is used for computing P in [12] and to
compute products more general than P in [13]; the core of [1] is the use of
Dirichlet series, while [2] deals with complex power series and the second part
of [3] with real integrals. It may even happen that, in some cases, the use of the
trick gives less general results than other methods. For example, in Remark 5
we show that Corollary 5 or [14] can also be obtained as an easy consequence
of 2, Theorem 1].

2. Strongly B-multiplicative sequences

We recall the classical definition of a strongly B-multiplicative sequence.
(For this and for the definitions of B-multiplicative, B-additive, and strongly
B-additive, see [6, 9, 7, 11, 10].)

Definition 1. Let B > 2 be an integer. A sequence of complex numbers
(u(n))n>o0 is strongly B-multiplicative if u(0) = 1 and, for all n > 0 and all
ke{0,1,...,B—1},

u(Bn + k) — u(n)u(k).

Example 1. If z is any complex number, then the sequence u defined by
u(0) := 1 and u(n) := 2°8(™ for n > 1 is strongly B-multiplicative.

Remark 1. If we do not impose the condition u(0) = 1 in Definition 1,
then either u(0) = 1 holds, or the sequence (u(n))n>0 must be identically 0. To
see this, note that the relation u(Bn + k) = u(n)u(k) implies, with n = k = 0,
that u(0) = u(0)2. Hence u(0) = 1 or u(0) = 0. If u(0) = 0, then taking n = 0
in the relation gives u(k) = 0 for all k € {0,1,..., B — 1}, which by (1) implies
u(n) =0 for all n > 0.

Proposition 1. If the sequence (u(n))n>0 is strongly B-multiplicative, and
if the B-ary expansion of n > 1 isn = Ze](n)BJ then u(n) = ]_[u(ej(n))

In partzcular the only strongly B-multzplzcatzve sequence with u(l) = u(2) =
=...=u(B—-1) =0, where 6 =0 or 1, is the sequence 1,6,6,6,.

Proof. Use induction on the number of base B digits of n.

We now generalize the notion of a strongly B-multiplicative sequence
different from 1,0,0,0,....

Definition 2. Let B > 2 be an integer. A sequence of complex numbers
(u(n))n>0 satisfies Hypothesis Hp if there exist an integer no > B and complex
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numbers v(0),v(1),...,v(B — 1) such that u(ng) # 0 and, for all n > 1 and all
k=0,1,...,B-1,
u(Bn + k) = u(n)v(k).

Proposition 2. (1) If a sequence (u(n))n>0 satisfies Hypothesis Hp, then
values v(0),v(1),...,v(B — 1) are uniquely determined.

(2) A sequence (u(n))n>o has u(0) = 1 and satisfies Hypothesis Hp with
u(Bn + k) = u(n)v(k) not only for n > 1 but also for n=0, if and only if the
sequence is strongly B-multiplicative and not equal to 1,0,0,0,.... In that case,
v(k) = u(k) for k=0,1,...,B —1.

Proof. If the sequence (u(n))n>o satisfies Hypothesis Hp, then v(k) =
=u(Bng + k)/u(ng) for k = 0.1,..., B— 1. This implies (1).

To prove the "only if” part of (2), take n = 0 in the relation u(Bn + k) =
= u(n)v(k), yielding u(k) = u(0)v(k) = v(k) for k = 0,1,...,B — 1. Hence
w(Bn + k) = u(n)u(k) for all n > 0 and £ = 0,1,...,B — 1. Thus (u(n))n>0
is strongly B-multiplicative. Since u(ng) # 0 for some ng > B, the sequence is
not 1,0,0,0,....

Conversely, suppose that (u(n))n>o is strongly B-multiplicative and is not
1,0,0,0,.... Then there exists an integer £ > 1 such that u(fy) # 0. Hence
ng := Bfy > B and u(ng) = u(Bfly) = u(fo)u(0) = u(fy) # 0. Defining
v(k) :=u(k) for k =0,1,..., B — 1, we see that (u(n))n,>¢ satisfies Hypothesis
‘Hp, and the proposition follows.

Example 2. We construct a sequence which satisfies Hypothesis H g but is
not strongly B-multiplicative. Let z be a complex number, with z ¢ {0, 1}, and
define u(n) := zNo.#(™ where Ny p(n) counts the number of zeros in the B-ary
expansion of n for n > 0, and Ny g(0) := 0 (which corresponds to representing
zero by the empty sum, that is, the empty word). Note that for all n > 1 the
relation Ng g(Bn) = Ng g(n) + 1 holds, and for all £ € {1,2,...,B — 1} and
all n > 0 the relation Ny g(Bn + k) = No,g(n) = No,p(n) + No,g(k) holds.
Hence the nonzero sequence (u(n))n>o satisfies Hypothesis H g, with v(0) := 2
and v(k) :=1 =wu(k) for k = 1.2,..., B — 1. But the sequence is not strongly
B-multiplicative: u(B x 1+ 0) = 2z # 1 = u(1)u(0).

Remark 2. The alternative definition Ng g(0) := 1 (which would
correspond to representing zero by the single digit 0 instead of by the empty
word) would also not lead to a strongly B-multiplicative sequence u, since then
u(0) = z # 1, which does not agree with Definition 1 (see also Remark 1). On
the other hand, the new sequence would still satisfy Hypothesis H g, with the
same values v(k), as the same proof shows, since u(0) does not appear in it.
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3. Convergence of infinite products

Inspired by the Woods-Robbins product P, we want to study products
given in the following lemma.

Lemma 1. Let B > 1 be an integer. Let (u(n))n>o be a sequence of
complex numbers with |u(n)] < 1 for all n > 0. Suppose that it satisfies
Hypothesis Hp with |u(k)] < 1 for all k € {0,1,...,B — 1}, and that

Y. w(k)| < B. Then for each k € {0,1,..., B — 1}, the infinite product

0>k<B
H( Bn+k )“W
n3d Bn+k+1

converges, where 8 - a special case of the Kronecker delta - is defined by

0 ifk#0,

Ok =
1 ifk=0.

Proof. For N =1,2,..., let

F(N) := Z u(n).

0<n<N
Also define for 5 =1,2,...,B—1

G@) =) v(n

0<n<j

and set G(0) := 0. Then, for each b € {0,1,...,B — 1}, and for every N > 1

FBN+b)= Y um+ Y  un)=

0<n<BN BN<n<BN+b

S > uBn+H+ Y wBN+O=

0<n<N 0<£<B 0<é<b

=Y w®+ Y. > umu®+uN) > ().

0<¢<B 1<n<N 0<¢<B 0<e<b

Hence, using |u(N)] < 1 and |G(b)| < B-1< B,
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|[F(BN +b)| = |F(B) + (F(N) — u(0))G(B) + u(N)G(b)| <
<IF(B) = u(0)G(B)| + [F(N)IG(B)| + B.

This gives the case d = 1 of the following inequality, which holds for d > 1 and
et € {0,1,...,B—1}, and which is proved by induction on d using {F{e;)| < B:

F Z e, Bt
0<t<d

< |F(B) — u(0)G(B)| (1+ > |G(B)|‘) +B(l+ > lG(B)I‘).

1<t<d-1 1<t<d

<

Hence

P <

F ( > et

0<t<d

! B(3d+1) if |G(B)| < 1,
d+1_ .
3BICEL i |G(B)| > 1.

This implies that for some constant C = C(B,v), and for every N large enough,

Clog N if |G(B)| < 1,
[F(N)| < . e
C|G(B)|¥%F = CN™S%5"  if |G(B)| > L.

Since |G(B)| < B by hypothesis, we can define a € (0,1) by

3 if [G(B)| < 1,
lel6PI if |G(B)| > 1.

Hence for every N large enough |F(N)| < CN<. It follows, using summation
by parts, that the series Xn: u(n) log Bﬁi{il converges, hence the lemma.

Remark 3. (1) Here and in what follows, expressions of the form a?,
where a is a positive real number and 2 a complex number, are defined by
a? := e?1°82 and loga is real.

(2) For more precise estimates of summatory functions of (strongly)
B-multiplicative sequences, see for example [7, 10]. (In [10] strongly B-
multiplicative sequences are called completely B-multiplicative.)
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4. Evaluation of infinite products

This section is devoted to computing some infinite products with exponents
that satisfy Hypothesis H g, including some whose exponents are strongly B-
multiplicative.

4.1. General results

Theorem 1. Let B > 1 be an integer. Let (u(n))n>o be a sequence
of complez numbers with |u(n)| < 1 for all n > 0. Suppose that u satisfies
Hypothesis Hg, with complex numbers v(0),v(1), ..., v(B-1) such that |v(k)| <

0<k<B
between nonempty products holds:

II II Bn ik uuwu—wm>_ 1 II e\ Hk)—u(0)u(k)
Bn+k+1  Bwo) k+1

0<k<B n>§ 0<k<B
w(k)#L

<1forke{0,1,...B—1} and| > v(k)‘ < B. Then the following relation

Proof. The condition

>, v(k)

0<k<B

equal to 1 on {0,1,..., B — 1}, so the left side of the equation is not empty.
Since B > 1, so is the right.

We first show that

Bn+k u(n) 1 AN
@ 1 (i) =zoll ()

0<k<Bn2>éi

< B prevents v from being identically

(note that, by Lemma 1, all the products converge). To see this, write the left
side as

12 B-1\"" Bn Bn+1 Bn+B-1\“"
B Bn+1Bn+2 Bn+ B

and use telescopic cancellation. Now, splitting the product on the right side of
(*) according to the values of n modulo B gives
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1;[ (n-l— 1)”(") -

Bn+k u(Bn+k)
1 (ziest) -

0<k<B n>6

k u(k) Bn+k u(n)v(k)
-1 (75) I O(ries) -

0<k<Bn>1

( k >u(k)—u(0)'u(k) H H ( Bn+k )u(n)v(k)
B k+1 0<k<B S5, Bn+k+1

=

0<k<

Using (*) and the fact that convergent infinite products are nonzero, the
theorem follows.

Example 3. As in Example 2, the sequence u defined by u(n) = zNo.8(n)

with 2z # {0,1}, satisfies Hypothesis Hp, and Y, wv(k) = 2+ B —1. If
0<k<B
furthermore |2| < 1, then

(1=2)zNo.B(™

et n 4+

Corollary 1. Fiz an integer B > 1. If (u(n))n>o is strongly B-
multiplicative, satisfies |u(n)| < 1 for all n > 0, and is not equal to either
of the sequences 1,0,0,0,... or 1,1,1,..., then

H H Brn+k u(n)(l—u(k))=l
Bn+k+1 B’

n>0 0<k<n

Proof. Using Theorem 1 and Proposition 2 part (2) it suffices to prove

that | > wk| < B. Since |u,| < 1 for all n > 0, we have | Y wux| < B.
0<k<B 0<k<B

From the equality case of the triangle inequality, it thus suffices to prove that

the numbers ug,u1,...,ug_1 are not all equal to a same complex number z

with |z| = 1. If they were, then, since up = 1, we would have ug =u; = ... =
=upg-1 = 1. Hence (u(n))n>0 = 1,1,1, ... from Proposition 1, a contradiction.

Addendum. Theorem 1 and Corollary 1 can be strengthened, as follows.
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(1) If B, u, and v satisfy the hypotheses of Theorem 1, then

Bn+k
> (- o(k) Y un)log -

0<k<B n>8k ntk+1
w(k)#1
_ k
=—u(Olog B+ > (u(k) — u(0)v(k))log ;——-

0<k<B

(2) If B and u satisfy the hypotheses of Corollary 1, then

Bn +k
u(n)(1 — u(k))log ————— = —log B.

Proof. Write the proofs of Theorem 1 and Corollary 1 additively instead
of multiplicatively.

Remark 4. The Addendum cannot be proved by just taking logarithms
in the formulas in Theorem 1 and Corollary 1. ‘10 illustrate the problem, note
that while

(=1)"8i
e n¥i =1

n>0

(because the product converges to e2™*), the log equation is false:

(=1)"8¢ )
Z =21t # 0 =logl.
=5 2n+1

Example 4. With the same u and z as in Example 3, Addendum (1)
yields

Z Nos(n) log Bn log B

ot Bn+l z-1
Hence
B 2No. ()
n ) 1
H = B=z-1,
251 (Bn +1

(Note the similarity between this product and the one in Example 3. Neither
implies the other, but of course the preceding log equation implies both.)
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If we modify the sequence u as in Remark 2, we get the same two formulas,
because the value Ny g(0) does not appear in them.

Corollary 2. Fiz integers B,q,p with B > 1,q¢>p >0, and B =1 mod q.
Then

. m(2n+k)p
q

Bn+k sinL:251n
H H (Bn+k+l) -

n>0 U<k<B
~  k#modgq

-

and

w(2n+k)p

BTL-{—]C sinzf—;zcos 3
II 11 (Bn+k+1) =1

n>0 0<k<B
= kZmodyg

Proof. Let w := e*™®/4, Since B = 1 mod ¢, we may take u(n) := w"
Addendum (2), yielding the formula

Bn+k
H H w™(1 - wk)log B n-;; —log B.
—n>0 0<k<B + + 1
k#Emodq
Writing w™ (1 —w¥) = —2iw™" % sin %‘2, and multiplying the real and imaginary

parts of the formula by 1/2, the result follows.
Example 5. Take B = 5, p = 1, and ¢ = 4. Squaring the products, we

get
Define o(n) to be +1 if n is a square modulo 4, and -1 otherwise, that is
+1 i nmn=0or 1 mod 4,
o
-1 ifn=2or 3 mod4
Then

H 5n 4+ 1 a(n) 51 + 2 o(n)+o(n+1) 5n+3)a(n+1) _ l
250 5n + 2 on+3 5n+4 5

and
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Il 504+ 1\ /5 42\ 5, g "(")_1
s 5n + 2 5n+ 3 5n 44 -

4.2. The sum-of-digits function sg(n)

Other products can also be obtained from Corollary 1. We give three
corollaries, each of which generalizes the Woods-Robbins formula P = 1/4/2 in
the Introduction. Recall that sg(n) denotes the sum of the B-ary digits of the
integer n.

Corollary 3. Fiz an integer B > 1 and a complez number z with |z| < 1.
If 2 ¢ {0,1}, then

H H B’fl+k' Z”’(,l)(]_l".)z_l‘
Bn+k+1 B’

n>0 U<k<ll
2k %1

Proof. Take u(n) := 2°3(™ in Corollary 1 and note that sg(k) = k when
0<k<B.

Example 6. Take B = 2 and 2 = 1/2. Squaring the product, we obtain

H (2n+ 1)0/2)*'2("* 1
oo \2n+2 4

Corollary 4. Let B,p,q be integers with B > 1 and g > p > 0. Then

. (2<p(n)+k)p
q

H H B’I’l+k sin"—:Esm :—1_
Bn+k+1 VB

n>0 0<k<B
—  k#modq

and

. 2
sin w:n cos ¢ ~u(q")+k)p

11 (5resi)

n>0 0<k<B
~  k#modyg

Proof. Use the proof of Corollary 2, but replace B = 1 mod ¢q with
sg(Bn+k) = sg(n) + k when 0 < k < B, and replace w™ with w®8("),
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Example 7. Take B = 2, ¢ = 4, and p = 1. Squaring the products and
defining o(n) as in Example 5, we get

H <2n+1>0(32(n)) __l_ and H (2n+1)0(32(n)+1) 1
50 2n+2 2 250 2n+2

In the same spirit, we recover a result from [3, p.369-370].

Example 8. Taking B = ¢ = 3 and p = 1 in Corollary 4, we obtain two
infinite products. Raising the second to the power —2/4/3 and multiplying by
the square of the first, we get:

Define 6(n) by
1 ¢n=0or1mod 3,
f(n) := {
-2 4fn =2 mod 3.
Then

H (3n + 1)9(s(™) (3 4 2)8(ss(M)+1) (3, 4 3)0(s3()+2) — 1
n>0

Corollary 5 ([14]). Let B > 1 be an integer. Then

H H Bn +k (—1)*’"“”:L
Bn+k+1 VB’

n>0 0<k<u
odd

Proof. Take z = —1 in Corollary 3 (or take ¢ = 2 and p = 1 in Corollary
4).

Example 9. With B = 2, since s3(n) = Nj 2(n), we recover the Woods-
Robbins formula P = 1/4/2. Taking B = 6 gives

0 ((Gn +1)(6n + 3)(6n + 5) ) ey
(6n + 2)(6n + 4)(6n + 6) NG
Remark 5. Corollary 5 can also be obtained from [2, Theorem 1], as
follows. Taking x equal to —1 and j equal to 0 in that theorem gives

+1 1
Mg T 1B
:L:(«)( e g BTy B T 28D
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where |z] is the integer part of . But the series is equal to

Z Z (—1)8“(Bm+k)10g§7n+k+l=

m>00<k<B Bm + B

— Z(_l)sﬂ(m) Z (=1)k logM =

m>0 0<k<B Bm+ B

Bm+k
= Y1 Y g
m>0 k odd Bm+k+1
- O<k<I3

where the last equality follows by looking separately at the cases B even and
B odd.

4.3. The counting function N; g(n)

We can also compute some infinite products associated with counting the
number of occurrences of one or several given digits in the base B expansion
of an integer.

Definition 3. If B is an integer > 2 and if j is in {0,1,...,B — 1}. let
N; B(n) be the number of occurrences of the digit j in the B-ary expansion of
n when n > 0, and set N; g(0) := 0.

Corollary 6. Let B,q,p be integers with B > 1 and ¢ > p > 0. Let J be a
nonempty, proper subset of {0,1,...,B —1}. Define Nyg(n) := Y. N;g(n).
Jj€J

Then the following equalities hold:

. m(2N; yln)+1)p

Bn+k \*" 4 T
H H B k 1 =B sin q
k€J n>8x ntet
and
2Ny 3(n)+1)p
I (g2t)™ 7 =
s Bn+k+1
Proof. Let w = €>"P/4. We denote ug;p(n) := wViB(™) and

ug,7,8(n) := [[ uq,,8(n) =w™*2() Note that, for every jin {1,2,..., B—1},
j€J

the sequence (uq ; B(n))n>0 is strongly B-multiplicative and nonzero, hence
satisfies Hypothesis Hpg. The sequence (ug,0.5(1))n>0 also satisfies Hypothesis
‘Hp, as is seen by taking 2 = w in Example 2. Therefore the sequence
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(uq,5,B(N))n>0 satisfies Hypothesis Hp, with, for £k = 0,1,..., B — 1, the value
v(k) :=w if k € J and v(k) := 1 otherwise.

Now |ug,yp(n)] = 1 for n > 0, and |v(k)| = 1 for k = 0,1,...,B — 1.

Furthermore, | > wv(k)| < B, since v is not constant on {0,1,...,B — 1}.

0<k<B
Thus we may apply Addendum (1) with u(n) := uq, s g(n), obtaining
Bn+k
l—w)Zth’“(”)l = —log B.
Py erd S Bntk+1
Writing (1 — w)wN4#() = —2iuNio(m)+3 gin 2, and taking the real and

imaginary parts of the summation, the result follows.

Example 10. Taking ¢ = 2 and p = 1 in the first formula gives

s
H H ( Bn+k >(—1)NI‘B( ZL
Py} Bn+k+1 VB

An application is an alternate proof of Corollary 5: take J to be the set of odd
numbers in {1,2,...,B — 1}; since sp(n) = >, kN p(n), it follows that
0<k<B

> Nin(n)

(—1)7€” = (=1)s8(™.

Remark 6. Corollary 6 requires that J be a proper subset of {0,1,...,B—
—1}. Suppose instead that J = {0,1,...,B —1}. Then N; g(n) is the number
of B-ary digits of n if n > 0 (that is, Ny p(n) = {logBJ +1), and Ny g(0) = 0.
In that case, Corollary 6 does not apply, and the products may diverge. For

example, when B = ¢ = 2 and p = 1 the logarithm of the first product is equal
to the series

—log2 +Z( 1) liEs ) logn-l_1

n>1

which does not converge. However, note its resemblance with Vacca’s (conver-
gent) series for Euler’s constant [16]

B logn | (-1)"
7'_T;[log2J n
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Corollary 7. Let B,q,p be integers with B > 1 and ¢ > p > 0. Then for
k=0,1,...,B — 1 the following equalities hold:

. m(2Ny p(ny+l)p

H( Bn+k )5‘“ L _p T
ey Bn+k+1
and
B k cos T2N) p(n)+1)p
n+ ) K
H 0 =1.
e (Bn+ k+1

Proof. Take J := {k} in Corollary 6. (The case k = 0 and p = 1 is
Example 4 with z = €27/9))

Example 11. Taking ¢ = 2 and p = 1 in the first formula (or taking
J = {k} in Example 10) yields

m (o)™
35 Bn+k+1 VB

In particular, if B = 2 the choice k = 1 gives the Woods-Robbins formula
P =1/v/2, and k = 0 gives

H (27;21 1) (_])N(.Ag(n) = %

n>1

Remark 7. For base B = 2, the formulas in Example 11 are special
cases of results in [4], where N;2(n) is generalized to counting the number of
occurrences of a given word in the binary expansion of n. On the other hand,
the value of the product @ in the Introduction,

(-=1)N1.2tm

2n
Q= ( ) ,
1};[1 2n+1

remains a mystery.

Example 12. Take B = ¢ = 3 and p = 1. Raising the first product to
the power 2/+/3 and squaring the second, we obtain:

Define n(n) by
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0 in=1mod 3,
-1 ifn=2mod 3,

and define 6(n) as in Ezample 8. Then for k=0,1, and 2

+1 ifn =0 mod 3,
n(n) {

3ntk )M 3tk O\ HMea(FD
T = —— and =1.
nl:!k(3n+k+1> 32/3 an H (3n+k+l) !

4.4. The Gamma function

It can happen that the exponent in some of our products is a periodic
function of n. For example, this is obviously the case in Corollary 2. To take
another example, it is not hard to see that if B odd, then (—1)28(® = (—1)".
Hence Corollary 5 gives

Bn+k \©V 1
(%) H H (Bn:l-_k?) =—\/§ (B odd).

n>0 0<k<B
k odd

(This formula can also be obtained from Corollary 2 with ¢ = 2 and p = 1.)
For instance

(="
3n+1 1
P1,3 = < ) = —.
nIZIO 3n+2 V3

The product P; 3 can also be computed using the following corollary of
the Weierstrass product for the Gamma function {17, Section 12.13}.

If d is a positive integer and a1 +az + -+ +aq = by + ba + - - - + by, where
the a;j and b; are complex numbers and no b; is zero or a negative integer, then

H (n+a1) - (n+aq) _ T'(by) - T'(bg)
o (R4 b1) - (n+ ba) T(ay)---T(aq)’

Combining this with the relation I'(z)'(1 — z) = 7/ sin 7z gives P13 = 1/V/3.
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The computation can be generalized, using Gauss’ multiplication theorem
for the Gamma function, to give another proof of Corollary 5 for B odd.
Likewise, an analog of the odd-B case of Corollary 5 can be proved for even k:

II 11 (BfZZi 1)<-1>" = %E ((BB—»—])1/2> (B odd).

n>1 0<k<B
K oven

Multiplying this by the formula

IT 11 (Bf:ZiJ(_l)nz%—l((BB—_l)l/z)—l (B odd),

n>1 0<k<B
k odd

which is (**) rewritten, yields Wallis’ product for n. (For an evaluation of
preceding two products when B = 2, see [15, Example 7].)

References

[1] Allouche J.-P. and Cohen H., Dirichlet series and curious infinite
products, Bull. Lond. Math. Soc., 17 (1985), 531-538.

[2] Allouche J.-P., Cohen H., Mendés France M. and Shallit J., De
nouveaux curieux produits infinis, Acta Arith., 49 (1987), 141-153.

[3] Allouche J.-P., Mendés France M. and Peyriére J., Automatic
Dirichlet series, J. Number Theory, 81 (2000), 359-373.

[4] Allouche J.-P. and Shallit J.O., Infinite products associated with
counting blocks in binary strings, J. Lond. Math. Soc., 39 (1989), 193-204.

[5] Allouche J.-P. and Shallit J., The ubiquitous Prouhet-Thue-Morse
sequence, Sequences and their Applications, Proceedings of SETA’98, eds.
C. Ding, T. Helleseth and H. Niederreiter, Springer, 1999, 1-16.

[6] Bellman R. and Shapiro H.N., On a problem in additive number
theory, Ann. Math., 49 (1948), 333-340.

[7] Delange H., Sur les fonctions g-additives ou g-multiplicatives, Acta
Arith., 21 (1972), 285-298.

(8] Flajolet P. and Martin G.N., Probabilistic counting algorithms for
data base applications, J. Comput. Sys. Sci., 31 (1985), 182-209.

[9] Gel’fond A.O., Sur les nombres qui ont des propriétés additives et
multiplicatives données, Acta Arith., 13 (1968), 259-265.



Infinite products with strongly B-multiplicative exponents 53

[10]
(11]
[12]
(13]
(14]
(15]
(16]
(17)

(18]

Grabner P., Completely g-multiplicative functions: the Mellin transform
approach, Acta Arith., 65 (1993), 85-96.

Mendés France M., Les suites a spectre vide et la répartition modulo
1, J. Number Theory, 5 (1973), 1-15.

Robbins D., Solution to problem E 2692, Amer. Math. Monthly, 86
(1979), 394-395.

Shallit J.O., On infinite products associated with sums of digits, J.
Number Theory, 21 (1985), 128-134.

Sondow J., Problem 11222, Amer. Math. Monthly, 113 {2006), 459.
Sondow J. and Hadjicostas P., The generalized-Euler-constant func-
tion y(z) and a generalization of Somos’s quadratic recurrence constant,
J. Math. Anal. Appl., 332 (2007), 292-314.

Vacca G., A new series for the Eulerian constant v = .577..., Quart. J.
Pure Appl. Math., 41 (1910), 363-364.

Whittaker E.T. and Watson G.N., A course of modern analysis,
Cambridge University Press, Cambridge, 1978.

Woods D.R., Problem E 2692, Amer. Math. Monthly, 85 (1978), 48.

J.-P. Allouche J. Sondow
CNRS, LRI, Batiment 490 209 West 97th Street
F-91405 Orsay Cedex, France New York, NY10025, USA

allouche@lri.fr jsondowQalumni.princeton.edu



