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SOME REMARKS
ON THE ϕ AND ON THE σ FUNCTIONS

I. Kátai (Budapest, Hungary)
M.V. Subbarao (Edmonton, Canada)

Abstract. Some theorems are proved for the functions n−ϕ(n), σ(n)−
−n, ϕk(n), σk(n), where ϕ(n) is Euler’s totient function, σ(n) is the sum

of divisors function, ϕk and σk are the k’th iterate of ϕ and σ.

1. Let ϕ(n) be Euler’s totient function, and σ(n) be the sum of divisors
of n.

We shall use the following notation: ω(n) = number of distinct prime
factors of n; ϕk(n) = k-fold iterate of ϕ(n), σk(n) = k-fold iterate of σ(n);

ψ(n) := n− ϕ(n); ρ(n) := σ(n)− n;

P = set of primes. p, q with or without suffixes always denote prime numbers.
Furthermore we shall write x1 := log x, x2 = log x1, . . . .

W. Sierpinski asked in 1959 ([12], pp. 200-201) whether there exist
infinitely many positive integers not of the form ψ(n). J. Browkin and A.
Schinzel [15] proved that none of the numbers 2k · 509203 (k = 1, 2, . . .) belong
to ψ(N). Erdős proved earlier in [14] that there are infinitely many integers
not of the form ρ(n).

The second named author asked whether are there infinitely many n for
which ω(n) = k = fixed and ψ(n) = prime, or not. If n = p, then ψ(p) = 1, if
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n = p2, then ψ(p2) = p. If n = pq, p 6= q, then ψ(n) = p + q − 1 which can be
prime for appropriate choices of p, q.

By using Vinogradov’s method for the odd Goldbach problem one can get
the following

Lemma 1. Let εx → 0, slowly, Ex := exεx
1 , Ex ≤ U < V < x, ∆U =

=
U

(log U)κ
, ∆V =

V

(log V )κ
, where κ is a large constant, and let

(1.1)
M [U,∆U ; V, ∆V ] := #{p + q − 1 ∈ P, p ∈ [U,U + ∆U ], q ∈ [V, V + ∆V ]}.

Then
(1.2)

M(U,∆U ; V, ∆V ) =
cπ([U,U + ∆U ])π([V, V + ∆V ])

log(U + V )

(
1 + O

(
1

log 4

))
,

where c is an absolute positive constant.

We omit the proof.

Hence one can deduce the following

Theorem 1. Let M(x) be the number of those n ≤ x, for which ω(n) =
= 2, ψ(n) ∈ P holds. Then

(1.3) M(x) = c
x

x2
1

x2(1 + ox(1)).

Proof. Let U0 = Ex, Uj+1 = Uj + ∆Uj , Vj = Uj . Let us estimate those
prime tuples p, q for which

(1.4) pq < x, p < Ex, p + q − 1 ∈ P.

By [1], Corollary 2.4.1, we obtain that for every fixed p, the number of

those q <
x

p
for which q ∈ P, (p− 1) + q ∈ P , is less than

ci
(p− 1)
ϕ(p− 1)

x/p

log2 x/p
,

which by summing up to p < xεx , is less than

(1.5) c2
x

x2
1

log log Ex = O

(
x

x2
1

εx · x2

)
.
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Let

(1.6) A1 =
∑
i≤j

UiVj<x

M(Ui, Ui + ∆Ui; Vj , Vj + ∆Vj),

(1.7) A2 =
∑
i≤j

(Ui+∆Ui)(Vi+∆Vi)<x

M(Ui, Ui + ∆Ui; Vj + ∆Vj).

The difference A1 − A2 is clearly less than the number of those p, q ∈ P
for which p + q − 1 ∈ P, and

(1.8) p ∈ [Ui, Ui + ∆Ui], q ∈ [Vj , Vj + ∆Vj ],

for such choices of i, j for which

(1.9) UiVj < x, (Ui + ∆Ui)(Vj + ∆Vj) > x.

Let i, j be fixed, so that (1.9) is satisfied. If p, q is such a couple for which
(1.8) holds, then

(1.10)
x− c2x

(log Ui)κ
< pq < x +

c2x

(log Ui)κ
,

and we have to estimate those q ∈ P, for which

x

p
− c2x

p(log Ui)κ
< q <

x

p
+ c2

x

p(log Ui)κ
,

q + p− 1 ∈ P holds, then sum over p ∈ (Ui, Ui + ∆Ui).
Then, by sieve ([1], Corollary 2.4.1) this is less than

(1.11)
∑

p∈[Ui,Ui+∆Ui]

x

ϕ(p)(log Ui)κ(log x)2
¿ x

x2
1

· 1
(log Ui)2κ

.

Furthermore

(1.12)
∑

x>n>Ex

1
n(log n)κ

À
∑

n∈[Ui,Ui+∆Ui]

1
Ui(log Ui)κ

(∆Ui) =
∑ 1

(log Ui)2κ
,
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and the right hand side is bounded in x, therefore

A1 −A2 = O

(
x

x2
1

)
.

To complete the proof of Theorem 1, it remains to apply Lemma 1 to (1.6).
The proof is completed.

Similar theorem can be proved for ρ(n).

2. Let m be such an integer for which (m, ϕ(m)) = 1. Let p ∈ P, (p, m) =
1. Then

(2.1) ψ(mp) = mp− (p− 1)ϕ(m) = p(m− ϕ(m)) + ϕ(m).

Remark. According to the Hardy-Littlewood conjecture, if (A,B) =
= 1, A,B > 0, then in the set

{Ap + B | p ∈ P},

there exist infinitely many primes.
Erdős [2] investigated the set of those m for which (m, ϕ(m)) = 1. He

proved that the set {m | (m,ϕ(m)) = 1, m ≤ x} is almost the same as {m |m ≤
≤ x, p(m) > x2} and proved that

#{m ≤ x | (m, ϕ(m)) = 1} = (1 + ox(1))x
∏

p<x2

(
1− 1

p

)
.

One can prove easily that for every fixed k ≥ 2 there exist infinitely many
m with ω(m) = k for which (m,ϕ(m)) = 1. Consequently, if the Hardy-
Littlewood conjecture holds, then for every fixed integer k ≥ 2 there exist
infinitely many n for which ψ(n) = prime, ω(n) = k + 1.

Similar assertion can be proved for σ(n).

3. As we mentioned earlier, Erdős [2] proved that

x−1#{n ≤ x, (n, ϕ(n)) = 1} = (1 + ox(1))
∏

p<x2

(1− 1/p) .

We shall investigate the set

(3.1) Bk+1 = {n ≤ x, (n, ϕk+1(n)) = 1}.
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For k ≥ 1 let wk(x) =
∏

p<xk
2

(
1− 1

p

)
.

For a fixed prime Q let κ0, κ1, . . . be a sequence of completely additive
functions defined for primes p as follows:

κ0(p) =

{ 1 if p = Q

0 if p 6= Q
, κj+1(p) =

∑
q∈P

q|p−1

κj(q).

Let

(3.2) ρk(Q)(= ρk(Q|x)) =
∏
p<x

κk+1(p) 6=0
p∈P

(1− 1/p) .

To emphasize the value Q on which κj depend, we write κj(p|Q) instead
of κj(p).

Let

(3.3) Nk(Q|x) = #{n ≤ x | Q |/ ϕk+1(n)}.

In a paper of Indlekofer and Kátai [3] the following two theorems are
proved, which will be quoted now as Lemma 2 and Lemma 3.

Lemma 2. Let x3x2 ≤ Q ≤ x2
2. Then

N1(Q|x) = xρ1(Q)
(

1 + O

(
x2x3

Q

))
,

log
1

ρ1(Q)
=

x2
2

2Q
+ O

(
x3

2

Q2
+

x2 log Q

Q

)
.

Lemma 3. Let ε > 0, k ≥ 2 be fixed, xk+ε
2 ≤ Q ≤ xk+1−ε

2 . Then

Nk(Q|x) = ρk(Q)x
(

1 + O

(
1
x2

))
,

and, moreover

log
1

ρk(Q)
= Ak+1(x) + O

(
1
Q

)
+ O

(
x2k+1

2

Q2

)
,

Ak+1(x) =
xk+1

2

(k + 1)!(Q− 1)
+ O

(
x

k+ε/2
2

Q

)
.
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We shall say that p0, p1, . . . , ph is a chain of primes if pj+1 − 1 ≡ 0 (mod
pj) (j = 0, . . . , h− 1) holds.

We shall give an upper estimate for Nk(Q|x) for those Q which satisfy the
conditions given in the Lemmas 2 and 3.

Let Mk(Q, x) be the number of those n ≤ x, for which p(n) = Q, and
Q|/ϕk+1(n). Let Q, q0, . . . , qk be an arbitrary chain of primes, i.e. qk−1|qk −
−1, . . . , q0 | q1 − 1, Q|q0 − 1. If Q|/ϕk+1(n), then clearly (qk, n) = 1. Hence we
obtain that

(3.4) Mk(Q, x) ≤ cx

Q

∏

p<Q

(
1− 1

p

)
· ρk(Q),

where ρk(Q) is defined in (3.2).

Let us estimate ρk(Q). Let κ̃j be a truncation of κj , more exactly let
κ0 = κ̃0, and

(3.5) κ̃j+1(p) =
∑

q|p−1

q<p1/6

κ̃j(q).

Let

AV =
∑

q<V

κ̃k(q)
q − 1

, B2
V =

∑

q<V

κ̃2
k(q)

q − 1
.

From the Bombieri-Vinogradov inequality (see e.g. in [10]) one can deduce the
following Turán-Kubilius type inequality:

(3.6)
∑

p∈[V,2V ]

(κk+1(p)−AV )2 ¿ V

log V
·B2

V + O

(
V

(log V )D

)
,

where D is an arbitrary large constant.
Assume that k = 1. Then AV = B2

V , and so

(3.7) #{p ∈ [V, 2V ], κ2(p) = 0} ≤ c
V

(log V )
· 1
AV

+ O

(
V

(log V )DAV

)
.

Furthermore

AV =
∑

q<(2V )1/6

κ̃1(q)
q − 1

=
∑

Q<q<(2V )1/6

q−1≡0(mod Q)

1
q − 1

.



Some remarks on the ϕ and the σ functions 119

Assume that V 1/6 ≥ exp(Q1/T ), where T is an arbitrary fixed number.
Then, from the Siegel-Walfisz theorem we obtain that

AV ≥ 1
(Q− 1)

(2V )1/6∫

exp(Q1/T )

1
u log u

du− c1,

with an absolute constant c1. Then

(3.8) AV ≥ 1
(Q− 1)

{
log log(2V )1/6 − 1

T
log Q

}
− c1.

Let Q ≤ x2/x3, V0 be defined so that

log log(2V0)1/6

Q− 1
=

1
ε1

,

where ε1 is an arbitrary (small) positive constant. Then

(3.9) AV ≥ 1
2ε1

,

if ε1 is small enough.
Thus ∑

V0<p<x

κ̃2(p) 6=0

1/p = x2 − log log V0 −
∑

κ̃2(p)=0

1/p + O(1),

and ∑
κ̃2(p)=0
V0<p<x

1/p ≤ 2c ε1(x2 − log log V0),

consequently

(3.10) w2(x) ≤ exp(−(1− ε2)x2)

with an arbitrary ε2 > 0.

We proved the following

Lemma 4. Let Q ≤ x2/x3, ε2 be an arbitrary positive number. Then

(3.11) M1(Q, x) ≤ cx

Q log Q
exp(−(1− ε2)x2).
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Assume now that k ≥ 2, and that Q ≤ xk−ε
2 , where ε is an arbitrary small

positive constant.
For integers l and m let

δ(x,m, l) =
∑
p≤x

p≡l(mod m)

1/p.

Lemma 5. For l = 1 or −1 and m ≤ x, x ≥ 3 we have

(3.12) δ(x,m, l) ≤ c1x2

ϕ(m)
,

where c1 is an absolute constant.

For l = 1, this is Eq. (3.1) of [4]. The proof of (3.1) in l = −1 is the same,
so we omit.

Let

(3.13) Aj(y) =
∑

p≤y

κj(p)
p

, D2
j (y) =

∑

p≤y

κ2
j (p)
p

.

In [4] the following assertion has been proved.

Lemma 6. With some constant cj, for z > e2, we have

(3.14) Aj(z) < cj
(log log z)j

Q
.

Let m be an arbitrary positive integer, and let y > e2j−2Q2
. Then

(3.15) Aj+1(y) =
(log log y)j+1

(j + 1)!(Q− 1)
+ O

(
(log log y)j

Q(m−1)/m

)
.

The constants implied by the error terms may depend on j and m.

Since

D2
k+1(y) =

∑

p≤y


 ∑

q|p−1

κk(q)




2

=

=
∑

q

κ2
p(q)δ(y, q, 1) +

∑

q1 6=q2

κk(q1)κk(q2)δ(y, q1q2, 1),
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by Lemma 5 and (3.13) we obtain that

(3.16)
D2

k+1(y) ≤ cD2
k(y) log log y + c(log log y)A2

k(y) ≤

≤ cD2
k(y) log log y + c

(log log y)2k+1

Q2
.

We have

D2
1(y) = A1(y) ≤ c

log log y

Q
,

whence

D2
2(y) ¿ (log log y)2

Q
+

(log log y)3

Q2
,

D2
3(y) ¿ (log log y)3

Q
+

(log log y)5

Q2
,

and in general

(3.17) D2
k+1(y) ≤ c

(log log y)k+1

Q
+

(log log y)2k+1

Q2
.

From (3.6) we obtain that

(3.18)
#{p ∈ [V, 2V ], κk+1(p) = 0} ¿

¿ V

log V
· B2

V

A2
V

+ O

(
V

(log V )DA2
V

)

we can substitute AV = Ak+1(V ), B2
V = Dk+1(V ).

From (3.18), (3.17), (3.15) we can deduce that

1
V

log V

#{p ∈ [V, 2V ], κk+1(p) = 0} ¿

¿ Q

(log log V )k+1
+

1
log log V

,

whenever V ≥ V0 and V0 > e2j−2Q2
(see Lemma 6).

Let V1 be so defined that

Q

(log log V1)k+1
= ε1,
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where ε1 is a small constant, i.e. V1 = exp

(
exp

((
Q

ε1

))1/k+1
)

.

Then, for V > V1 we have

#{p ∈ [V, 2V ], κk+1(p) 6= 0} ≥ (1− 2ε1)
V

log V
,

whence we can deduce that

log wk(x) = −
∑

κk+1(p)6=0

1
p
≤ −(1− 2ε1)

x∫

V1

du

u log u
+ O(1) =

= −(1− 2ε1)(log log x− log log V1) + O(1) ≤ (1− 3ε1)x2.

Thus the following assertion is true.

Lemma 7. Let k ≥ 2, Q ≤ xk−ε
2 , ε > 0 be fixed. Let ε1 > 0 be another

arbitrary small constant. Then

Mk(Q, x) ≤ cx

Q log Q
exp(−(1− ε1)x2).

Lemma 8. Let
S(x|Q) :=

∑
n≤x

p(n)=Q

1.

Then, uniformly in 1 ≤ Q ≤ x1 (say), we have

S(x|Q) =
x

Q

∏

p<Q

(
1− 1

p

)
(1 + ox(1)) =

=
x

Q

e−γ

(log Q)
(1 + ox(1)),

see [1].

Now we shall prove the following

Theorem 2. Let k ≥ 1. Then

1
x

#{n ≤ x | (n, ϕk+1(n)) = 1} =
(1 + ox(1))e−γ

(k + 1)x3
.



Some remarks on the ϕ and the σ functions 123

Proof. By using the notation (3.1), we have

#Bk+1 =
∑

Q<xk+1
2

#
(
B(Q)

k+1

)
+ #

(B∗k+1

)
=

∑
1
+#

(B∗k+1

)
.

where

B(Q)
k+1 = {n ∈ Bk+1, p(n) = Q}, B∗k+1 = {n ∈ Bk+1, p(n) > xk+1

2 }.

Assume that k ≥ 2. We split
∑

1 =
∑(1) +

∑(2) +
∑(3) +

∑(4), where in∑(1)
, Q ≤ xk−ε

2 , in
∑(2)

xk−ε
2 ≤ Q ≤ xk+ε

2 , in
∑(3)

xk+ε
2 ≤ Q ≤ xk+1−ε

2 , and
in

∑(4)
, xk+1−ε

2 ≤ Q ≤ xk+1+ε
2 .

From Lemma 8 we obtain that

∑(2) ¿ x
∑

xk−ε
2 ≤Q≤xk+ε

2

1
Q log Q

¿ ε
x

x3
,

and similarly that ∑(4) ¿ ε
x

x3
.

From Lemma 7 we have
∑(1) ¿ x exp

(
−x2

2

)
, say, and by Lemma 3, that

∑(3) ¿ x/x2
2.

Thus

#(Bk+1) ≤ #(B∗k+1) + O

(
εx

x3

)
.

Finally we shall prove that

p(n) > xk+1+ε
2 , n ≤ x

implies that n ∈ Bk+1, for all but a small percentage of the integers.

If n ∈ Bk+1, p(n) > xk+1
2 and (n, ϕk+1(n)) 6= 1, then there is a prime

number Q for which Q|n, and Q|ϕk+1(n).
Thus either Q2|ϕk(n) or there is some q0 ≡ 1(mod Q) for which q0|ϕk(n).

In the first case Q|ϕk(n) obviously holds. Thus always exists a chain of primes
Q → q0 → . . . → qj , such that n = Qm, qj |m.
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Thus

E := #
{
n ≤ x, p(n) > xk+1+ε

2 , (n, ϕk+1(n)) 6= 1
} ≤

≤ c
∑

Q>xk+1+ε
2

k∑

j=0

#
{
n = Qm ≤ x, p(m) > xk+1+ε

2 , qj |m
}

,

where qj is the final term in the chain Q → q0 → . . . → qj .
Let

E
(j)
Q := {n = Qm ≤ x, p(m) > xk+1+ε

2 , qj | m}.
Then

E
(j)
Q ¿ x

Q

∏

p<Q

(
1− 1

p

)
·
∑ 1

qj
.

Since
∑ 1

qj
≤ cx2

∑ 1
qj−1

≤ . . . ≤ cxj+1
2

Q
,

therefore

E
(j)
Q ¿ x

Q2

xj+1
2

log Q
,

and so
∑

Q>xk+1
2

k∑

j=0

E
(j)
Q ¿ x

xε
2

∑ 1
Q log Q

¿ x

xε
2

.

Thus

E = O

(
x

xε
2

)
.

We proved that

#(Bk+1) = #
{
n ≤ x | p(n) > xk+1

2

}
+ o(1)

x

x3
.

Hence the theorem readily follows.

The case k = 1 is similar, somewhat easier.

4. By using the above method, one can prove the assertions formulated in
the following
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Theorem 3. Let k ≥ 1, l, h 6= 0 be fixed integers,

S
(l)
k (x) = #{n ≤ x, (n, ϕk(n + l)) = 1},

T
(l)
k (x) = #{n ≤ x, (n, σk(n + l)) = 1},

R
(l,h)
k (x) = #{p ≤ x, (p + h, σk(p + l)) = 1},

Q
(l+h)
k (x) = #{p ≤ x, (p + h, ϕk(p + l)) = 1}.

Then

S
(l)
k (x)
x

= (1 + ox(1))
e−γ

kx3
,

T
(l)
k (x)
x

= (1 + ox(1))
e−γ

kx3
,

R
(l,h)
k (x)
li x

= (1 + ox(1))
e−γ

kx3
,

Q
(l,h)
k (x)
lix

= (1 + ox(1))
e−γ

kx3
,

γ = Euler’s constant.

5. Let
N(x) := #{n |ϕ(n) ≤ x}.

Erdős proved in [5] that
N(x)

x
→ A ( 6= 0), and in [6] he noted:

Let α(n) be a nonnegative multiplicative function, and assume that there
exists its density function f(x). Let

M(x) = #{n | nα(n) ≤ x}.

Then
M(x)

x
→

∞∫

0

f(u)du.

Bateman [7] proved that

N(x) = Ax + O (x · exp (−c
√

x1 · x2)) ,

A =
ζ(2)ζ(3)

ζ(6)
,

with some c > 0, by using analytic method. Later Balazard and Smati [8]
deduced the same result with elementary method.
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We can see that, for k ≥ 1,

ϕk+1(n)
ϕk(n)

∼ wk(x) =
∏

p<xk
2

(1− 1/p) ,

for almost all n ≤ x. This was observed first by Erdős [11].
Let us write

(5.1)
ϕk+1(n)
ϕk(n)

= wk(x)Γk(n),

(5.2) Γk(n) =
∏

p|ϕk(n)

p>xk
2

(1− 1/p) ·
∏

p|/ϕk(n)

p≤xk
2

1
1− 1/p

.

Then

(5.3) ϕk+1(n) = wk(x) . . . w1(x)Γk(n) . . . Γ1(n)ϕ(n),

and so ϕk+1(n) ≤ x holds if and only if

(5.4) Γk(n) . . . Γ1(n)ϕ(n) ≤ x

wk(x) . . . w1(x)
= Y,

where

(5.5) Y = (1 + ox(1))k!xk
3x.

If ϕk+1(n) ≤ x, then n ≤ c x xk+1
2 , which directly follows from the

inequality
ϕ(n) ≥ cn

log log n
.

Thus ϕk+1(n) ≤ x implies that n ≤ Z = c x xk+1
2 for a suitable c.

Let ε > 0 be an arbitrary constant. We shall prove that

(5.6)
1
Y

#{n < Z
∣∣ |Γk(n) . . . Γ1(n)− 1| > ε} → 0,

as x →∞.
Hence, by the analogon of Erdős’s theorem directly follows
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Theorem 4. Let k ≥ 1 be an arbitrary fixed integer. Then

# {n |ϕk+1(n) ≤ x} = (1 + ox(1))#
{
ϕ(n) ≤ k!xk

3x
}

.

Proof. It remains to prove (5.6). If

|Γk(n) . . . Γ1(n)− 1| > ε,

then, for some j ∈ {1, . . . , k}.

(5.7) |Γj(n)− 1| > δ, where 1 + δ = (1 + ε)1/k.

Let
√

x ≤ U ≤ x2, and count those integers n ∈ [U, 2U ] for which (5.7)
holds. Let ε1 > 0 be a small constant. We have

∑

x
j−ε1
2 <p<x

j+ε1
2

1
p
≤ log

j + ε1

j − ε1
+ O

(
1
x3

)
≤ 3

j
ε1,

whenever x is large enough. Thus

(5.8) Γj(n) = e−βj(n) · eγj(n) · e0(ε1),

where

(5.9) βj(n) = −
∑

p>x
j+ε1
2

p|ϕj(n)

log(1− 1/p),

(5.10) γj(n) =
∑

p|/ϕj(n)

p≤x
j+ε1
2

log
1

1− 1/p
.

Let

(5.11) Bj(U) =
∑

U≤n≤2U

βj(n),

(5.12) Cj,r(U) =
∑

U≤n≤2U

γr
j (n).
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By sieve method one can prove that

∑
p|/ϕj(n)

n∈[U,2U]

1 ¿ U

(log U)c
if p ≤ (log log u)j−ε1 ,

whith a suitable constant c > 0 (see (4.2) and Theorem 3.4 in [9]), whence

(5.13) Bj(U) ¿ Ux3

xc
1

follows.
Let us estimate (5.12). We have

Cj,r(U) ¿
∑

x
j+1+ε1
2 <q1,...,qr

1
q1 . . . qr

∑
q1...qr|ϕj(n)

n∈[U,2U]

1+

+
r−1∑
s=1

∑

x
j+1+ε1
2 <q1<...<qs

1
qa1
1 . . . qas

s

∑
q1...qs|ϕj(n)

n∈[U,2U]

1 =

=
∑

1
+

∑
2
.

The main contribution of
∑

q1...qr|ϕj(n)
n∈[U,2U]

1 is smaller than

∑ U

π1 . . . πr
,

where πν is the tail of the chain of primes

qν → p(1)
ν → p(2)

ν → . . . → p(j−1)
ν → πν

for every ν, thus
∑ 1

πν
≤ (log log U)j

qν
¿ xj

2

qj
,

consequently

Cj,r(U) ¿ Uxjr
2

(∑ 1
q2

)r

.

Since ∑

q>x
j+ε1
2

1
q2
¿ 1

xj+ε1
2 · x3

,
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we obtain that
Cj,r(U) ¿ U · x−rε1

2 ,

and so

(5.14)
∑

n≤Z

γr
j (n) ¿ Z

xrε1
2

.

Since r can be arbitrary large, therefore

#{n ≤ Z | γj(n) > δ} ¿ Z

x2k+1
2

.

Hence the theorem is straightforward.
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Eötvös Loránd University and
Research Group on Appl. Number Theory
of the Hungarian of Academy of Sciences
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