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SOME REMARKS
ON THE ¢ AND ON THE + FUNCTIONS

I. Katai (Budapest, Hungary)
M.V. Subbarao (Edmonton, Canada)

Abstract. Some theorems are proved for the functions n —p(n), o(n) —
—n, r(n), ox(n), where p(n) is Euler’s totient function, o(n) is the sum
of divisors function, ¢y and oy are the k’th iterate of ¢ and o.

1. Let ¢(n) be Euler’s totient function, and o(n) be the sum of divisors
of n.

We shall use the following notation: w(n) = number of distinct prime
factors of n; pi(n) = k-fold iterate of p(n), or(n) = k-fold iterate of o(n);

$(n) :=n—g(n); pn):=o(n)—n

P = set of primes. p,q with or without suffixes always denote prime numbers.

Furthermore we shall write z1 := logz, x5 =logzq,... .

W. Sierpinski asked in 1959 ([12], pp. 200-201) whether there exist
infinitely many positive integers not of the form (n). J. Browkin and A.
Schinzel [15] proved that none of the numbers 2¥ - 509203 (k = 1,2,...) belong
to ¥(N). Erd8s proved earlier in [14] that there are infinitely many integers
not of the form p(n).

The second named author asked whether are there infinitely many n for
which w(n) = k = fixed and (n) = prime, or not. If n = p, then ¢(p) = 1, if
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n = p?, then ¢ (p?) = p. If n = pq, p # q, then ¥(n) = p + ¢ — 1 which can be
prime for appropriate choices of p, g.

By using Vinogradov’s method for the odd Goldbach problem one can get
the following

Lemma 1. Let ¢, — 0, slowly, E, := e*1", E, <U <V <z, AU =

= L, AV = L, where Kk is a large constant, and let
(log U)" (log V)~

(L.1)
M[U,AU; V,AV]:=#{p+q—1€P, pe [UU+AU|, g€ [V,V + AV]}.

Then
(1.2)

_ _en([U,U + AUD([V,V + AV]) 1
M(U,AU; V,AV) = o0 £ V) (1+O(log4))’

where ¢ is an absolute positive constant.
We omit the proof.
Hence one can deduce the following

Theorem 1. Let M(x) be the number of those n < x, for which w(n) =
=2, ¢(n) € P holds. Then

(1.3) M(z) = c%xga + 04 (1)).

Proof. Let Uy = E;, Ujy1 = U; + AU;, V; = U;. Let us estimate those
prime tuples p, ¢ for which

(1.4) pg<zxz, p< E,, p+tq—1€P.

By [1], Corollary 2.4.1, we obtain that for every fixed p, the number of
those ¢ <  for which q€P, (p—1)+qeP,is less than
p

o p=1) z/p
“o(p—1)log*z/p’

which by summing up to p < z®=, is less than

T T
(1.5) 02;% loglog B, = O <$%51 ~x2) .
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Let
(1.6) A = Z MUy, Ui + AU;; V;, Vi + AV;),
U e
(1.7) Ay = > M (U, U; + AU;; Vi + AV).

i<j
(U; +AU;) (Vi +AV) <z

The difference Ay — A, is clearly less than the number of those p,q € P
for which p+¢q—1 € P, and

(1.8) pE [Ui7Ui+AUi], q €< [VJ,VJ-‘FAVJ],
for such choices of i, j for which
(1.9) U,V <z, (Ui + AU;)(V; + AV;) >z

Let 4, j be fixed, so that (1.9) is satisfied. If p, ¢ is such a couple for which
(1.8) holds, then

T — CX Co
1.10 T <o —
( ) (log U;)* Pg <+ (log U;)~

and we have to estimate those ¢ € P, for which

x @f x
S << S e,
p  p(logUs)~ p " p(logl;)~
g +p—1€ P holds, then sum over p € (U;,U; + AU;).
Then, by sieve ([1], Corollary 2.4.1) this is less than

X T 1
(1.11) > P
vel Ty $PIogUi)r(loge)? = 2t (log Ui)*

Furthermore

1 ! !
(1.12) Z iog ) > Z W(AUi) = Z (og U;)2%

>n>FE, nelU,;,U;+AU;]
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and the right hand side is bounded in z, therefore

Al—A2:O<x2>.
Ty

To complete the proof of Theorem 1, it remains to apply Lemma 1 to (1.6).
The proof is completed.

Similar theorem can be proved for p(n).

2. Let m be such an integer for which (m,p(m)) =1. Let p € P, (p,m) =
1. Then

(2.1) Y(mp) = mp — (p — 1)p(m) = p(m — p(m)) + o(m).

Remark. According to the Hardy-Littlewood conjecture, if (A, B) =
=1, A, B > 0, then in the set

{Ap+B|peP},

there exist infinitely many primes.

Erdds [2] investigated the set of those m for which (m,p(m)) = 1. He
proved that the set {m | (m,p(m)) = 1, m < x} is almost the same as {m | m <
< x, p(m) > x5} and proved that

#m < | (mop(m) = 1} = (1+ 0, () [] (1‘ ;>

One can prove easily that for every fixed k > 2 there exist infinitely many
m with w(m) = k for which (m,¢(m)) = 1. Consequently, if the Hardy-
Littlewood conjecture holds, then for every fixed integer k > 2 there exist
infinitely many n for which ¥ (n) = prime, w(n) = k + 1.

Similar assertion can be proved for o(n).

3. As we mentioned earlier, Erdds [2] proved that

e {n <z, (n,0(n) =1} = (1+0,(1) J] @ -1/p).

p<z2
We shall investigate the set

(3.1) Biy1={n <z, (n,or41(n)) =1}
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For k > 1 let we(x) = [] (1_1).

p<zk p

For a fixed prime @ let kg, k1,... be a sequence of completely additive
functions defined for primes p as follows:

1 ifp=Q
Ko(p) = { » Kj+1(p) = Z k5(q)-

0 itr#Q i
Let
(32) p@(=p@2))= [[ (-1/p).
Nker1<(:)#0

To emphasize the value @ on which k; depend, we write x;(p|Q) instead
of k;(p).
Let

(3-3) Ni(Qlz) =#{n <z | Q[ vrs1(n)}.

In a paper of Indlekofer and Kétai [3] the following two theorems are
proved, which will be quoted now as Lemma 2 and Lemma 3.

Lemma 2. Let x375 < Q < x% Then

Ni(@la) =@ (140 (757,

Q
1 x2 3 xologQ
1 _ L2 Ly | T2108 >
Q) 262“)(622+ Q

Lemma 3. Let ¢ >0, k > 2 be fired, 25 < Q < 25T17°. Then

Nu(Ql2) = k(@) (1 e (1)> ,

T2

and, moreover

log

I 1 z3k !
(@ ‘A“l(””)+0<Q>+O< o )

A s
Ak+1(x):(k+1)!(Q—l)+O 0 )
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We shall say that po,pi,...,ps is a chain of primes if p;4; —1 = 0 (mod
pj) (7=0,...,h—1) holds.
We shall give an upper estimate for Ny (Q|x) for those @ which satisfy the

conditions given in the Lemmas 2 and 3.

Let My (Q,x) be the number of those n < z, for which p(n) = @, and
Qf¢r+1(n). Let Q,qo,-..,qr be an arbitrary chain of primes, i.e. qp_1|qx —
—1,...,q | ¢1 =1, Qlgo— 1. If Qfpr+1(n), then clearly (gi,n) = 1. Hence we
obtain that

cr 1
(3.4 @< S ] (1 - p) (@),

where p(Q) is defined in (3.2).

Let us estimate py(Q). Let k; be a truncation of x;, more exactly let
Ko = Ko, and

(3.5) Rj1(p) = Z 7 (q).
K
Let )
ki (q) 2 k()
Ay = B? =
\% Z q-— 1 ) \% q— 1
q<V q<V

From the Bombieri-Vinogradov inequality (see e.g. in [10]) one can deduce the
following Turan-Kubilius type inequality:

\%4 \%4
(3.6) E (Frr1(p) — Av)? < logV -By +0 ((10gV)D> ,
pelV,2V]

where D is an arbitrary large constant.
Assume that k = 1. Then Ay = B, and so

%4 1 \%
BT #eVaV] m) =0 < eqos 2 +0 (oo )
Furthermore

Z F1(q) Z 1

AV = = .
q<(2V)1/6 a1 Q<a<@@n)1/6 T !
q—1=0(mod Q)
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Assume that V1/6 > exp(QY/7), where T is an arbitrary fixed number.
Then, from the Siegel-Walfisz theorem we obtain that

(2V)1/6
1 1
Ay > du —
YE@Q- / ulogu”" Y
exp(QY/T)

with an absolute constant ¢;. Then

(3.8) Ay > {log log(2V)Y/¢ — %log Q} —c1.

o
@-1)
Let @Q < xo/x3, Vp be defined so that

loglog(2Vp)Y/¢ 1
Q-1 G 1
where €1 is an arbitrary (small) positive constant. Then

1
3.9 Ay > —
(39) Vo

if g1 is small enough.

Thus
Z 1/p = xo —loglog Vo — Z 1/p+0Q1),
o Fa(p)=0
and
Z 1/p < 2ceq(xe — loglog Vp),

Ro(p)=0

Vo<p<z
consequently
(3.10) wo(z) < exp(—(1 — e2)x2)

with an arbitrary 5 > 0.
We proved the following

Lemma 4. Let Q < x9/x3, €2 be an arbitrary positive number. Then

(3.11) M(Q,x) <

Qlf)mgQ exp(—(1 — e2)x2).
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Assume now that k > 2, and that @ < xlg ~¢, where ¢ is an arbitrary small
positive constant.

For integers [ and m let

d(x,m,l) = Z 1/p.

p<x
p=l(mod m)

Lemma 5. Forl=1 or —1 and m <z, x > 3 we have

C122

(3.12) oo, m, ) <

where ¢1 1s an absolute constant.

For [ = 1, this is Eq. (3.1) of [4]. The proof of (3.1) in I = —1 is the same,
so we omit.

Let

(]
=
S

(3.13) A=Y “j;p), D2(y) =

<y

In [4] the following assertion has been proved.

Lemma 6. With some constant c;, for z > e?, we have

(3.14) Ai(z) < cj(k’ngng)j.

Let m be an arbitrary positive integer, and let y > e? °Q Then

(loglogy)i+t (loglogy)’
(3.15) Aj(y) = G+DI(Q-1) +0 ( Q(m—1)/m ) '

The constants implied by the error terms may depend on j and m.

Since

D%H(i‘/) = Z Z k1 (q) =

P<y \4qlp—1

= ZKi(Q)é(yv% 1) + Z ki(q1)kr(q2)0(y, 192, 1),

91742
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by Lemma 5 and (3.13) we obtain that

D} 1 (y) < eDj(y)loglogy + c(loglogy) Az (y) <

(3.16) log log )2+ +1
< eD%(y)loglogy + c%
We have o
oglo
D3 (y) = Ai(y) < c—2 %Y,
Q
whence ) s
loglogy)®  (loglogy)
D3(y) < :
2( ) Q Q2
loglogy)®  (loglogy)®
D? Y) K ( ,
3( ) Q Q2
and in general
loglogy)"*'  (loglogy)>*+!
3.17 D% . (y) < c(
( ) k+1( ) Q QZ
From (3.6) we obtain that
#{p € [V.2V], kp1(p) =0} <
3.18 vV B Vv
1 L m T0 (Dz)
logV A3, (log V)P AY,

we can substitute Ay = Ag1(V), B = Di1(V).
From (3.18), (3.17), (3.15) we can deduce that

1
7 #{p € [V,2V], krra(p) =0} <
log V'

Q n 1
(loglog V)k+1  loglog V'’

whenever V > Vj and Vp > 2’ @’ (see Lemma 6).
Let V4 be so defined that

Q

(log log V7 )*+1 =&
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0 1/k+1
where €7 is a small constant, i.e. V; = exp | exp <<>) .
€1

Then, for V> V; we have

#{p € V.2V, hips(p) £ 0} > (1— 251>%,

whence we can deduce that

x

1 du
log wy(z) = — Z ];Si(liQel)/ulogquO(l):
Kk+1(p)#0 Vi

= —(1 —2¢1)(loglog x —loglog V1) + O(1) < (1 — 3ey)x2.

Thus the following assertion is true.

Lemma 7. Let k > 2, Q < nge, € > 0 be fired. Let e; > 0 be another
arbitrary small constant. Then

cx
M < —(1 — .
K(Q,x) < 01020 exp(—(1 —e1)x2)
Lemma 8. Let
S@Q):= > 1.
p(T'ﬁiQ

Then, uniformly in 1 < Q < x1 (say), we have

T 1
s =511 (1 - p) (14 0a(1)) =
- %(lf);?)u 4 0p(1)),

see [1].
Now we shall prove the following
Theorem 2. Let k> 1. Then

(1+o0,(1))e™

1
#n <] (neia(n) =1} = (k+1)x3
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Proof. By using the notation (3.1), we have
#Bii= Y. #(BI) +# (Bip) =D +# (Bip).
Qeaht!

where

B = {n € Byy1, p(n) = Q}, By, = {n € Byyu, p(n) > x5}

Assume that k£ > 2. We split 21 = Z(l) =+ 2(2) + 2(3) + 2(4)7 where in
YW Q<atE in N <@ <™ in 0O 2ftT <@ <af e and
in W, ghtloe < < ghtlte

From Lemma 8 we obtain that

(2) 1 T
Lz L e—,
Z QlogQ T3

k— k
zf T <Q<alte

and similarly that
4) T
E Le—.
T3

From Lemma 7 we have Z(l) <L rexp (—%), say, and by Lemma 3, that

Thus
#wﬂn<#wmn+o(”).

T3

Finally we shall prove that
p(n) > aktite n<a

implies that n € By41, for all but a small percentage of the integers.

If n € Biy1, p(n) > 25T and (n,pry1(n)) # 1, then there is a prime

number @ for which Q|n, and Qlprt+1(n).

Thus either Q2| (n) or there is some gy = 1(mod Q) for which go|p(n).
In the first case Q|px(n) obviously holds. Thus always exists a chain of primes
Q — qo — ... — gj, such that n = Qm, ¢;|m.
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Thus
E:= # {Tl < &€, p(n) > £L'§+1+E, (n>@k+1(n)) 7é 1} <

k
<c Y D #{n=Qm<z, p(m) > g5lm},

Q>z129+1+5 j=0

where ¢; is the final term in the chain Q@ — ¢o — ... — g;.

Let
EY = {n=Qm <z, p(m) > a5, g, | m}.
Then
s () 2y
p<Q
Since -
j
ca:2
— < cz < ,
Z 2> — P~ )
therefore -
J
W < T Ty
@ Q%logQ’
and so
k 0 B
EY << — .
Thus
T
E=0(—]).
()
We proved that
#(Bri1) =#{n<z|pn)>az5""} +o

303
Hence the theorem readily follows.

The case k = 1 is similar, somewhat easier.

4. By using the above method, one can prove the assertions formulated in
the following
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Theorem 3. Let k> 1, I,h # 0 be fized integers,

S (x) = #{n <=z, (n,pn(n+1) =1},
T (@) = #{n < @, (n,on(n +1) =1},
R (@)= #{p <z, (p+h, ox(p+1)) =1},
U (@) = #p <, (p+h rlp+1) =1}
Then
0] - 1O -
2 o - a5
T3 X €3
REM () - QMM () _
oo e S = (e,

v = Euler’s constant.

5. Let
N(z) :=#{n|p(n) < z}.

N
Erdds proved in [5] that (2) — A (#0), and in [6] he noted:
x

Let a(n) be a nonnegative multiplicative function, and assume that there
exists its density function f(x). Let

M(z) = #{n | na(n) < z}.

Then -
—— — [ f(u)du.
-

Bateman [7] proved that

N(z) = Az + O (2 - exp (—ey/a1-3))
_ @)B)
)

with some ¢ > 0, by using analytic method. Later Balazard and Smati [§]
deduced the same result with elementary method.
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We can see that, for k > 1,

n
P @y = T -1/,
Pk (n) K
p<xy
for almost all n < . This was observed first by Erdés [11].
Let us write

Pr+1(n)
5.1 = = wi(x)Tk(n),
(5.1) L) — o @)l(n)

1
(52) = 1 a-vp- 11 =77
b

pleg(n) pleg (n)

1J>av’2c pfzg
Then
(5.3) Vr+1(n) = wi(z) ... w1 ()T (n)...T1(n)p(n),
and so pg+1(n) <z holds if and only if

T
5.4 r ... L
(5.4 ) Ty () € e .
where
(5.5) Y = (14 0,(1))klabz.
If pry1(n) < z, then n < cmxé“, which directly follows from the
inequality
(n) > _m
o) = loglogn’

Thus @4 1(n) < z implies that n < Z = cz 5™ for a suitable c.

Let € > 0 be an arbitrary constant. We shall prove that

(5.6) %#{n<Z | ITk(n)...T1(n) — 1| > e} — 0,

as r — OQ.

Hence, by the analogon of Erdés’s theorem directly follows
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Theorem 4. Let k > 1 be an arbitrary fixed integer. Then
#{n]ori(n) <ot =1+ o0, ())# {p(n) < klafa}.

Proof. It remains to prove (5.6). If
Tx(n)...Ti(n) — 1] > ¢,
then, for some j € {1,...,k}.
(5.7) ITj(n) —1| > 8, where 1+6=(1+¢)/k

Let /2 < U < 22, and count those integers n € [U,2U] for which (5.7)
holds. Let €1 > 0 be a small constant. We have

' 1\ _3
> Slog],+€1+0< )Sjel,

1
i ive, P J—&
xé €1 <p<xé+51

whenever z is large enough. Thus

(5.8) ;(n) = e . () . 0

where

(5.9) Bi(n)=— > log(1-1/p),
P>zé+51
plej(n)

(5.10) m)= > lo !

: Vi = gl_l/p.
p/(v),_-(n)
PST;+51

Let

(5.11) B;(U) = Z Bi(n),
U<n<2U

(5.12) Cir(U)= > Ain).
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By sieve method one can prove that

U )
E 1< Toale if p < (loglogu)’~°t,
plej(n) ( 08 )
nelU,2U]

whith a suitable constant ¢ > 0 (see (4.2) and Theorem 3.4 in [9]), whence

(5.13) B;(U) <

follows.
Let us estimate (5.12). We have

Ci(U) < > ; o1+

] q1 qr
Jtltey q1---qrle;(n)
Ty <q1,.--5qr ne[U,zgj]
r—1 1
t2 2 at - .gse 2 1=
s=1 _i+l+e; Lo 35 g aslej(n)
T2 <q1<--<gs nE[U,2{I]
=2t
1 2
The main contribution of > 1 is smaller than
q1---qrlej(n)
ne(U,2U]
Y
Ty .. . Ty ’
where 7, is the tail of the chain of primes
1 2 i—1
G — D = 2 oD oy

for every v, thus
J J
Z 1 < (loglogU) <2

— )

Ty qv q;

consequently

Since
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we obtain that

Cir(U) < U - 257,

and so
. Z
(514) Z ’Yj (n) < xrsl :
n<Z 2

Since r can be arbitrary large, therefore

Z
#{n<Z|vn) >} < JETaEE
2

Hence the theorem is straightforward.
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