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NON-NORMAL LIMIT THEOREM
FOR A NEW TAIL INDEX ESTIMATION

L. Szeidl (Pécs, Hungary)

Dedicated to Professor Imre Kdtai on the occasion of his 65th birthday

Abstract. The recent work deals with a new tail index estimation based
on empirical power processes (Szeidl [14]. Szeidl and Zolotarev [16]). It is
proved that this estimation converges to the tail index with probability 1, it
converges in mean square and the limit distribution of linearly normalized
estimation is non-Caussian law.

et X;,X,.... be a sequence of independent, nonnegative and identically
distributed random variables with common distribution function F(z). We
suppose that the asymptotic condition

(1) Fz)=1-F(z)=2"%L(z), z—

holds. where a > 0 is constant and L(x) is a slowly varying function at infinity.
The condition (1) means that the tail distribution function regularly varies at
4+ with index «, i.e.

Jlim (1= F(te) /(1= F(t) =27, z>0.

In the last decades several mathematicians have been dealing with the
estimation of the tail index « (see, for example, the papers of Hill [8], De Haan
and Resnick [5], Hall [7], Cs6rgd, Deheuvels and Mason [3], Csorgd and Viharos
[4], Viharos [17], Resnick and Starica [11] and others). The known estimations
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are essentially based on the usage of ordered samples. The paper of Csdrgd
and Viharos [4], partly gives a good survey on the statistical behavior of the
estimation of this type. Below, we are going to introduce and analyze the
asymptotic behavior of a new estimation for the tail index that comes up when
investigating the empirical power processes (Szeidl [14], Szeidl and Zolotarev
[16]).

Consider the empirical power processes
Zyt)=) X}, 0<i<x n=12...
Jj=1

Let A > 1 and s > 1 be given constant numbers and let us define the sequence
of random moments ¢, s, 7 = 1,2.... with the help of the empirical power
processes Zy,(t), for which ¢; ¢ = 0 and in the case n > 2

_ [min{t: Za(t) =2} if max{X; 1< j<n}> A
e =1 . if max{X;:1<j<n} <A

Let us introduce the sequence of statistics

. 1
On,s — _fn.ss n _>_ 1
s
with the help of random moments t, ;. This paper deals with the statistical
properties of the estimates &, ., n=1.2,....
By choosing appropriate (deterministic) functions a,(t), ba(t) # 0, n =
= 1.2,... the process Z,(t) = (Z,(t)—an(l))/ba(t) cn the interval 0 < ¢ < a/2
can be approximated by Gaussian process (Csérgs, M. et al. [2], Szeidl [13,
14], while on the interval a/2 < t < oo the limit process is continuous with
probability I and has stable marginal distributions (Szeidl [13, 14]), Szeidl and
Zolotarev [16]). In the special case, on the interval o < t < oo choosing the
deterministic functions as follows

an(t) =0, n=12,...
bao(t) = DL, where D, =sup{u:n>u°L7 (u), u> 0},
the finite dimensional distributions of the process Z ,(t) = Z,(t)/bn(t) converge

to the suitable finite dimensional distributions of the process ((t/a), a < t <
0o, where the integral in the definition of the process

o0

)=t | Nwut"Tdu, 1<t<oo

(=3
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is defined in the sense of quadratic mean and {N(u), w > 0} denotes a
homogeneous Poisson prccess with intensity 1. The random variables ((t)
defined above take only nonnegative values with probability 1, their distribution
functions G;(z) are stable and the characteristic functions can be determined
explicitly, see Szeidl [14], and its canonical form (see Zolotarev 18] p. 17.) is
the following

¢

gr(N) = / eMdGy () =

-

= exp{—|A['/*1(1 — 1/)e =1 7/2080A 0 A e R 1<t < .

So for the given values z the distribution function of random variables ¢(¢) can
be numerically determined.

Note that the convergence of one-dimensional distributions means special
case of the classical limit theorems (see Gnedenko, Kolmogorov [6]).

[t is clear from the definition of D,, that it can be expressed in form of D, =
= nt/(h(n))¥/® (see, for example. Ibragimov and Linnik [9]), where h(n) is a
slowly varying function at +ac. From this, it immediately follows that for all
fixed constant s > 1 the quotient of the coefficients of random variables Z,(sa)
and Z,((s 4 £)a) in the definition of Z,(sa) and Z,((s 4+ €)a) for arbitrary
constant 0 < |2 < s —11is
nf(h(n))°.

It means that the exponents of the coefficients differ from each other in
a positive value. This ohservation makes possible the estimation of the tail
index o using empirical power processes. The next theorems deal with the
asyniptotic properties of the sequence of estimates &, s, n =1,2,... .

Theorem 1. If the condition (1) holds, then &, — o, n — o0 with
probability 1.

Theorem 2. Suppose that the condition (1) holds, then for all real
numbers x > 0 the following statement is true

(2)  lim P( i logh(n)| L) = G, (e7%%) + 1 = G (™).

S o logn |7 logn

Theorem 3. Suppose thai the condition (1) holds. Let p > 0 be an
arbitrary positive constant, then the following relation holds

(3) Elans —af? <a™P(z, +0(1/logn)). n—oc,



310 L. Szeidl

where |
log 1 -log d, (s
€n :inf{s: oglogn + log dn(c) <s}, n=23...,
logn
and /
On(€) = max[L(n*/*(=O)] 1/L(nV/ 0%, n=1,2,... .
Corollary 1. If there exists a finite limit value lim L(z) = co, then for
all real numbers z > 0 the following statement is true
An s l x o
lim P (|22 14229005 T ) o G + 1~ Gyle®).
n—oc logn log n

The case 0 < co < o0 coincides with the so called Zipf of Pareto type
distribution functions, for which L(z) == co + o(1), i.e. the asymptotic relation

1—-F(z)=(co+ o(1))xz7™%, 2z — o0

holds. In this case h(n) = ¢o + o(1).

Remark. For all slowly varying at infinity function [ the following
convergence is true (see Seneta [12])

lim log l{n) =0

n-x logn

which is important from the point of view of Theorem 2.
Corollary 2. Since 8, = sup 9,(=) is a slowly varying function (see
ie1<1/2
later formula (21), then logd,/logn — 0, n — o and £, — 0, n — oc. Thus,
from the Theorem 3 it follows that the relation E|é,s — afP — 0, n — oc is
true for all p > 0, therefore the sequence of estimates &, s is asymptotically
unbiased and strictly consistent.

Proof of Theorem 1. The assertion of Theorem 1 is equivalent to the
convergence of ¢, s — s&, n — oc with probability 1, which is valid (see Petrov
[10] p. 215., Lemma 6) for every € > 0 if and only if the following convergence

is true
o0
p ( U {ltm,s — saf > a‘a}) —0, n—oo.

m=n

It is evident that we can suppose that 0 < = < 1.
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The event {|t;, s — sa| > ca.} can be expressed with the disjoint events in
the following way:
{|tm.c — 3a| > ca} =

2 {tm,s = 0} U{0 <t < (s—2}a} U{lms > (s+€)a} =
At s =0 U{Zn((s =)o > m*)} U{Zm(s 4+ )a < m®, b, s >0} =
={Zn((s —)a>m )} U {Z, (s +)a < m}.

From this it can be seen that

P ( U {ltm.s — sa' > &‘a}) = P( U {Zn((s —2)a> ms)}) +

m=n m=n

+P ( O {Zn((s+e)a < ms)}) .

m=n
At first we prove that for every 0 < & < 1 the following convergence is true

Za((s —g)a)
(4) Zalls ) . 2 0. n — oo with probability 1,
n

from which by the above mentioned lemma it follows that

- Zm((s‘“":)a)

Since
Znl(s = 5)a) = 3 XS0
j=1

is a sum of i.i.d. r.v., and since for the sequence ar = k%, k=1,2,...

o

3" = = Onfan) (= ol1fn)), n—oc
k=n

then (see Petrov [10] p. 226., Theorem 16) the convergence (4) is satisfied, if

the following condition holds:

o
(5) STPXUTe >0 <o

n=1
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From (1) it immediately follows that
P(‘Y(s—s)a > ns) =P (X > ns/[(s—e)a]) —n-1 —-E/(s—e)L(n[s/(s—e)a])’

where the function L(n®/(¢=€)#) is slowly varving and the exponent —1—¢/(s—
g) of n in the right hand side is less than —1, therefore (see Seneta [12], 1.5.§.)
the series (5) is convergent for all 0 < £ < 1.

Now we prove the convergence

I,=P ( U {Zm((s+&)a) < ms}) — 0, n—oc.

M="

With the use of the well-known inequality log(1l + z) < z, |z] < 1 we have

[ngiP (Zm((s+2) - ip(zlx“”)%m) <
m=n = \J
< i P (ﬂ{x < m/lsre)edy i (X < merteraal)]” =
-5 -z e
o {mlog (1~ P (X 2 m/ -9} <
< gexl) {-mP (X 2 mellesno) ]

By (1) we get
mP <X > m‘“”i(“*")"]> =

— s/ (ms/i<s+s>a‘:> = me/(s+o) ], (ms/l'(s+s)a;) ,

therefore

oS
3 exp {_me/<s+e) L (ms/:<s+e>a3‘)} < oo,

m=1
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from which it follows the convergence

oo

I, < Z exp {—me/(”“)L (ms/i(“‘)“i)} — 0, n— 0.

m=n

Proof of Theorem 2. From the definitions of &, and ¢, , it follows
that for arbitrarily chosen sequence r, > 0 and for sufficiently large n we have

P(éfﬁ—uM’_’l> .r)z
@ log n logn
= tns — SO+t log h(n)so zsar\ _
, logn log
log h(n) zsa
) = P (b s PR g )
oo hi; .
3Pt —saqy g msa)
. logn logn

=P (tn,s < un,s,r'x‘ )+ P(tn s> Vns Q) ==
= P(Z'n(un,s,o) > ns\ + P(Z (Vn ea) <n )

where

log h(n) oo FS& 4 b = s log h(n)‘ L TS
logn " logn - logn logn

Un s o = SO —

First of all we note that in case of any sequence of real numbers
En—0, n—x (s+,>0)
we can get (see Szeidl [14])

Zn((s + En)a)

(7) Znl(s+€n)o) = [)(S—Fn

where the sign < denotes the convergence in the distribution. It is clear that
the following relations are true

Zn((un.sa)) > ns‘D;un‘s,a> -

P
= p(?n(u,,m) > exp{slogn — un,s,al0g Dr}),
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Zn(’/n,s,a)

12
Dnn,s,a

= P(Zp(Vns.0) < exp{slogn — v, o log D, }).

PZn(ims) < %) = P <nDgenen ) -

9)

Since from the well-known result concerning slowly varying functions (see
Seneta [12], §.1.5.) for arbitrary slowly varying at infinity function /(z) and for
any contant 3 > 0,

(10) tim (08U
n—oo  logn

and moreover

slogn — up g 0log D, =

e _ logh(n) =z 1 " -~
(an = slogn 1 sa (1 log 1 Togn C)l(logn {-log h(n)) =

=s| a4+ flogh(n) + Iog- h(") — 8r, N — 0,

logn log n
and
slogn — v, e0log Dy, =

B _logh(n) = 1 o hin)) —

(12) =8 logn + s (1 W 1 I@; Z(logn + lOo h(n)) =
. “_7
S xlog h(n) = log™ h(n) sz, n— o,
logn log n ’

therefore from the relations (6)-(12) we can get immediately the assertion (2)
of Theorem 2.

Let us consider the sequence of r.v.s Z,(as), n = 1,2,..., 5o < s < sy,
where 1 < sy < 5, < oc. By the definition

Zn(as) =X+ ...+ X2, n=12,....

Here the distribution function of the i.i.d. r.v.s X2 is the following
Foe(z) = P(X& < z) = F(z}/*%), z>0.

Let us denote

Fos(x) = F(zV/*) = 1 -7 e L(a!/>), z>0.
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In our case for a fixed constant s, sp < s < s; the Corollary 2.1. of
Borovkov [1] states that there exists a function ¢,s(t) | 0, ¢ | 0 such that

P(Z,(as) > 4 )

sup —((“—))i) <14 pas(1/1).

z,z>t nF,(x

For the proof of Theorem 3 we need to verifv that this asymptotic relation
holds uniformly in s, sp < s < s1.

Lemma 1. If the condition (1) holds, then there exists a function p(t) |
0. t | 0 such that

sup P(Z,(as) > x)

nl Sl‘i’/"lt) SSSSS.
>t nF:zs(I) Y( / ) 0 1

Proof of Lemma 1. Using the proofs of Theorem 2.1. and Corollary
2.1. of Borovkov [1] it is enough to prove that there exists a constant ¢ and a
function $(¢) | 0, ¢ | 0such that the following assertions are true (2/(us) < y,
i} 00X = py — oc)

2/(us)
(13) G(p) = / e dF, (1) < 14 cFas(1/1),
0
¥
(14) H(p,y) = / eHdFos(t) < e Fas(y) (14 3(1/N)).
1/(us)

Firstly we prove (13). Let us denote

x

M, = 2/(us). g(z) = / (eI L (t)dt.
1

We note that by the known property of regularly varying functions (see
Seneta [12]) the following asymptotic relation satisfies

1
PO — SRl T — oc.
g9(z) T (z),
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From this relation it follows that

2 o .
9(z) < a—(sO__—‘Ia(s” Vi(x), =2,

1)
if z; is large enough. It is easy to see that the following inequalities hold
G(p) =
M, M,
=1-€Foo(Ms) +p / Mo (t)dt < 14 pet + pe?/ s [ t YLt es)dt =
0 1

M}es
=1+ pe” + pase?/* / uu* " L(u)du =

M:/as
=1+ pet + pase?/* / polsmse)y (s -D=1 1) dy <
1

<14 pet + yasez/s" ,\.[}_'e':’/sg(;"\'fj logy <

<1+ pe* + pase"/“’]\/fsl_s"/smf\/fs(s‘-‘“’1)/"L(Msl/°’s) <

3

<14 pet + al* —4——)FM(MS) <14 Fas(i/p).

aS()*l‘

Proof of (14).

Yy Yy
H(p,y) = / Mt dF, (t) < e*/°F oo (M) + p / €M F oo (t)dt =
M, M
(y=M)p
— Py (M) + ¥ / eHF o (y — u/p)du.
0
With simple calculation we have
(v—M)p A2/ a )
e Faly = w/pdu < Fosiy) [ e2os= by, -

Fas(y)
0 0

A--2/s \ 1/s Lo\ Vas
o (0 =)/
A—s L(yl/as) :

= Fa,S(y)
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By the Karamata theorem the slowly varying function L can be represented
as follows

(15) L(z) = exp ¢ Og(2) + / Q-(r—x)-dr . x>0,
1

where Jp(z) and ¥(z) are bounded measurable functions, ¥(z) =0, 0 < z <
1, 9(z) is continuous for 1 < & < > and Yo(x) — Fo, ¥ (z) — 0 as z — o0.
Using this representation of the function L we get

1/as
L{[(\ = w)/uM/e*) [9(=)|
? O ] —_—
FGiey S P Oy )+ da
(A=)t s

where the function
O(u, y. ) = [Poi[(A — u)/u] /) — Fo(y*/ )|

is uniformly bounded and it uniformly converges to zero on every finite interval
0<u<ugas A= puy — oo, 1 — 0. Let us denote

U1 = max{|¥(z)| : z > 1},

then
gl foes
[o(z)| 1 A
o dzr < 19](180 log/\_u
A-us 1o
From the relations above we get immediately
Hipy) <
A--2/s
< eMF . s(y) / exp{—u ~ (1/s0 + ¥1/asg)log(l — u/X) -+ O(u,y, p) }du.
0

Since 0 < u < A —2/s, thus forall k >1

—log(1—u/X) <
<A+ (/N2 4+ N R (=N /N (k4 1) <
< (w/N)A+1/24 .+ k) + (1 —w/N) /N (k+1) <
< (u/N)log(k + 1) 4+ us; /2{k + 1).
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Choosing k = [v'A] we can get the following inequality for A = puy — o0, g — 0

H(p,y) < e¥Fas(y)x
x /exp {=ut ull/so + 9 Jas) A log([WA + 1) +s1(WN + 1)) } du =
0

:e#y-F_a,s(y)(l + _95(1/)‘))

where Z(1/A) — 0, as A — oc.
Proof of Theorem 3. First we note that if the inequality max X; > A
<isn
holds, then by the definition of the process Z,, we have Z,(u) > A%. u > 0.

From this relation it follows immediately

slogn

toe < minfu s 4% = '} < 2
:

Let g, 0 < £ < 1/2 be an arbitrary constant. then

o PE|ans — aff = (sa) PE|t, s — saff <
<Pty <sa(l—¢)) +a PPP(|t,, — sa] < &)+
(16) + P(sa(l+¢) < tn,; < (s+ Do)+

+ (sa)7? (#) P(tns> (s+ 1)a) =
'—_I]_(S) + 12(5) + 13(5) + ]4.

Observe that from the definition of ¢,, . we have immediately

ths <t Z,() >n’,
and

tno >t Zn(t) < 0.
Using the asymptotic formula of Lemma 1 it is easy to verify that uniformly in
g, 0 <& <1/2 the following relation holds (¥,, — 0, n — o0)

I1(g) = P(Zn(sa(l —€)) > n®) < (1 + wp)nFy s1-e)(n) =
= (1+¥n)exp {~[/(1 - =)]logn +log L(nl/"‘(l‘f))} = Li(e).
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We have with simple calculations

(17) () < a7 = In (o),

and

I3(s) < P(sa(l+4¢) < t,s) = P(Zp(sa(l +¢)) <n®) <
<P (]rilja%nX < 771/"(17‘)> = [P(X; < n¥/el=ann -

= [l = P(X; > n!/>20F)m - exp {nlog[l - P(X; > nl/a(1+6))]} <
< exp {—nP(Xl > nl/a(l‘e))} = exp {—nn"l/(HE)L(nl/“(l"'s))} =
= exp {—nE/(l‘E)L(nV“(l"‘E) )} = I3 (g).

Since
P{t,:> s+ 1)a) = P(Z,((s+ 1)a)<n®) <

<P ( max X; < nsf(“l)") - [1= P(X; > n¥/(+Day =

1<5<n

== exXp {_nn—s/(s»Ll)L(ns/(s~.v1)4.\')} = exp {_,nl/(sJ_-l)L(ns/(sJ_-l)a)} ,

therefore
) Iy € Iy = (sa) P( lAgn) exp <—7zl/("*‘l)L(ns/(“'l)o‘) = o(1/logn).

We have the following estimations for sufficiently large »
(19)

1
I1(zn) = (1+ wa)exp {—a/(1 = e logn + L(n'/*0~*) b < (14 )

logn’
]31(5n) =
= exp {— explen logn — <2 /(1 + £,) logn + log L(nl/“(“s"))]} <

< exp {—explloglogn — 2 /(1 + £,) log n]} = exp {—lognexp[—¢}, logn]} .
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Using the representation (15) it is easy to get the following inequality

nl/a(l-—e)
. 9
b, = sup dn(e) < exp 190('n1f/‘°‘(]‘€/)+ / ﬁld:c <
lel<1/2 J z
(20) .
n>e
<A, =expl 9]+ / I—U-(::—)Ida: ,
/ x
where

¥, = sup [¥g(x)] < oc.
x>0

Since the function A, is slowly varying at the infinity, thus by the relation (10)

we get

a 2
[=)

8"/21, log n S
therefore

1
(21) 131(511) < m = 0(1/ 10%7’2)s n — 0.

Summarizing the relations (16)-(21) we have proved the Theorem 3.
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