H^p MULTIPLIERS ON THE DYADIC FIELD

J.E. Daly (Colorado Springs, CO, USA)
S. Fridli (Budapest, Hungary)

Dedicated to Professor I. Kátai on the occasion of his 65th birthday

Abstract. In this paper we consider a classical multiplier condition, the Hörmander-Mihlin condition, originally introduced for the trigonometric case. It implies that the multiplier operator is bounded on L^p, $1 < p < \infty$. Here we study the corresponding problem with respect to the Walsh transform and the noncompact dyadic Hardy spaces $H^p[0, \infty)$, $0 < p < 1$. We also show that our result is sharp. We note that a similar program was carried out for the trigonometric case and the classical Hardy spaces, and for the Walsh system and the dyadic Hardy spaces on $[0, 1]$ in our previous papers [1] and [2].

1. Introduction

Set $\mathbb{R}^+ = [0, \infty)$. The binary expansion of $x \in \mathbb{R}^+$ is $x = \sum_{j=-\infty}^{\infty} x_j 2^{-j-1}$, where $x_j = 0$ or 1. In case of dyadic rationals, i.e. when there are two expansions of this form, we take the one that terminates in 0’s. Then the Walsh functions are defined as

\begin{equation}
(1.1) \quad w_x(y) = (-1)^{x+y-1} \sum_{y \in \mathbb{R}^+} x_k y^{-k-1} \quad (x, y \in \mathbb{R}^+).
\end{equation}

This research was supported by OTKA under grant T047128.

AMS Subject Classification: Primary 42C10, Secondary 42A45, 44A35.
We note that if $x = 2^k (k \in \mathbb{Z})$ then $w_x(y) = w_{2k}(y) = (-1)^{y-k-1}$. Consequently, w_{2k} is equal to the k-th Rademacher function.

Let the Walsh-Dirichlet kernels be denoted by D_t:

$$D_t(y) = \int_0^t w_x(y) \, dx \quad (t, y \in \mathbb{R}^+)$$

It is known (see [5] or [12]) that

$$D_{2^n}(y) = \begin{cases} 2^n & 0 \leq y < 2^{-n}, \\ 0 & 2^{-n} \leq y < \infty \end{cases} (n \in \mathbb{Z}).$$

It is known that the Walsh system can be considered as the dual group of a locally compact Vilenkin group, the dyadic group. Taibleson ([13]) has developed a distribution theory for local fields. Following his concept of distributions we will consider the dyadic Hardy spaces $H^p(\mathbb{R}^+) (0 < p < 1)$ as subspaces of the space of dyadic distributions. More precisely, $H^p(\mathbb{R}^+)$ will be defined by means of atomic decomposition of distributions. To this order let the intervals of the form $[k 2^{-n}, (k + 1)2^{-n}) \ (k \in \mathbb{N}, n \in \mathbb{Z})$ be called dyadic intervals. The Lebesgue measure of a measurable set A will be denoted by $|A|$. Then a function $a : \mathbb{R}^+ \mapsto \mathbb{R}$ is a p-atom if there exists a dyadic interval I such that

i) $\text{supp } a \subset I,$

ii) $\|a\|_{L^\infty(\mathbb{R}^+)} \leq |I|^{-1/p},$

iii) $\int_I a = 0.$

We say that a dyadic distribution f belongs to $H^p(\mathbb{R}^+) (0 < p < 1)$ if there exist α_k real numbers with $\sum_{k=0}^{\infty} |\alpha_k|^p < \infty$ and a_k p-atoms such that

$$f = \sum_{k=0}^{\infty} \alpha_k a_k.$$ \hspace{1cm} \text{(1.3)}

The decomposition is understood in the sense of distributions. The $H^p(\mathbb{R}^+)$ norm is defined by

$$\|f\|_{H^p(\mathbb{R}^+)} = \inf \left(\sum_{k=0}^{\infty} |\alpha_k|^p \right)^{1/p}$$

with taking the infimum over all decompositions of the form (1.3).
Let $\phi : \mathbb{R}^+ \to \mathbb{R}$, then the Walsh multiplier operator T_ϕ is said to be bounded on $H^p(\mathbb{R}^+) \ (0 < p < 1)$ if for every $f \in H^p(\mathbb{R}^+)$ there exists a $T_\phi \in H^p(\mathbb{R}^+)$ such that
\[
\hat{T_\phi f}(x) = \phi_k \hat{f}(x) \quad (0 \leq x < \infty),
\]
where \hat{f} stands for the Walsh-Fourier transform. Throughout the paper C will denote an absolute positive constant not necessarily the same in different occurrences.

2. Results

In our first theorem we consider a Hörmander-Mihlin ([7], [9]) type condition. We prove that it is sufficient to give boundedness on certain $H^p(\mathbb{R}^+)$ spaces.

Theorem 2.1. Let $1 < r \leq 2$ and $\frac{r}{2r-1} < p < 1$. Suppose that $\varphi \in L^\infty(\mathbb{R}^+)$ is differentiable and the inclusion $\varphi' \in L^r_{\text{loc}}(\mathbb{R}^+)$ holds. If

\[
\left(\int_{2^j}^{2^{j+1}} |\varphi'(t)|^r \, dt\right)^{1/r} \leq C 2^{-j(1-1/r)} \quad (j \in \mathbb{Z})
\]

then T_φ is bounded on $H^p(\mathbb{R}^+)$.

In our next theorem we show that Theorem 2.1 is sharp in the sense that the condition on p can not be relaxed by replacing the right side by any number smaller than $r/(2r-1)$.

Theorem 2.2. Let $1 \leq r \leq 2$. If $p < r/(2r-1)$ then there exists a differentiable $\varphi \in L^\infty(\mathbb{R}^+)$ that satisfies (2.1), but T_φ is not bounded from $H^p(\mathbb{R}^+)$ to $L^p(\mathbb{R}^+)$.

For previous results on multipliers on the dyadic Hardy spaces, and Hardy spaces over locally compact Vilenkin groups we refer the reader to the papers [1], [3], [4] and [11].
3. Proofs

For the proof of Theorem 2.1 we need the following lemma which is a Sidon type inequality. The trigonometric version of it was proved by Móricz [10].

Lemma 3.1. Let \(n, N \in \mathbb{Z} \), and \(1 < q \leq 2 \). Then for any \(\gamma \in L^1_{\text{loc}}(\mathbb{R}^+) \) we have

\[
\left(2^N \right) \int_0^{2^N} \left| \int_0^t \gamma(t) D_t(x) \, dt \right| \, dx \leq C_q 2^{-N(1-1/q)} \left(\int_0^{2^N} |\gamma(t)|^q \, dt \right)^{1/q}.
\]

Proof. Without loss of generality we may assume \(n > N \). Let us start with the following decomposition formula ([6]) for the Dirichlet kernels

\[
D_t(x) = w_t(x) \sum_{j=-\infty}^{\infty} t_j w_{2^{-j-1}}(x) D_{2^{-j-1}}(x) \quad (t, x \in \mathbb{R}^+).
\]

Before using this in the left side of (3.1) note that the integration with respect to \(x \) is over the interval \([2^N, \infty)\). By (1.2) we have that \(D_{2^{-j-1}}(x) = 0 \) holds for any \(x \geq 2^N \) if \(j \leq N - 1 \). Hence

\[
\left(2^N \right) \int_0^{2^N} \left| \int_0^t \gamma(t) D_t(x) \, dt \right| \, dx = \left(2^N \right) \int_0^{2^N} \left| \sum_{j=1}^{\infty} w_{2^{-j-1}}(x) D_{2^{-j-1}}(x) \int_0^{2^N} t_j \gamma(t) w_t(x) \, dt \right| \, dx.
\]

After changing the order of integration and summation we obtain

\[
\left(2^N \right) \int_0^{2^N} \left| \int_0^t \gamma(t) D_t(x) \, dt \right| \, dx \leq \sum_{j=N}^{\infty} \left(2^N \right) \int_0^{2^N} w_{2^{-j-1}}(x) D_{2^{-j-1}}(x) \int_0^{2^N} t_j \gamma(t) w_t(x) \, dt \right| \, dx.
\]

We proceed by introducing the notation \(g_j(x) = \text{sgn} \int_0^{2^N} t_j \gamma(t) w_t(x) \, dt \), and rewriting \(D_{2^{-j-1}} \) as \(2^{-(j+1)} \chi_{[0,2^{j+1}]} \), where \(\chi_{[0,2^{j+1}]} \) is the characteristic function of \([0,2^{j+1}]\). Then, after performing a change in the order of integration, our estimate takes the form

\[
\left(2^N \right) \int_0^{2^N} \gamma(t) D_t(x) \, dt \, dx \leq \sum_{j=N}^{\infty} 2^{-(j+1)} \int_0^{2^N} t_j \gamma(t) \int_0^{\infty} \chi_{[0,2^{j+1}]}(x) g_j(x) w_t(x) \, dx \, dt.
\]
The inner integral will be considered as the Walsh-Fourier transform, in notation \((g_j \chi_{[0,2^{j+1}]}) (t)\), of \(g_j \chi_{[0,2^{j+1}]}\) at \(t\). By using Hölder’s inequality for the outer integral and then the Hausdorff-Young inequality for the Walsh-Fourier transform we obtain

\[
\int_2^{2^N} \int_0^{2^n} \gamma(t) D_t(x) \, dx \, dt \leq \sum_{j=N}^{\infty} 2^{-(j+1)} \|\chi_{[0,2^n]} \gamma\|_{L^q(\mathbb{R}^+)} \|\widehat{g_j \chi_{[0,2^{j+1}]}\}}\|_{L^p(\mathbb{R}^+)} \leq \]

\[
\leq C_q \left(\int_0^{2^n} |\gamma(t)|^q \, dt \right)^{1/q} \sum_{j=-N}^{\infty} 2^{-(j+1)} \|\chi_{[0,2^{j+1}]} g_j\|_{L^q(\mathbb{R}^+)},
\]

where \(1/p + 1/q = 1\).

By the definition of \(g_j\) we have \(\|\chi_{[0,2^{j+1}]} g_j\|_{L^q(\mathbb{R}^+)} \leq 2^{(j+1)/q}\). Therefore

\[
\sum_{j=-N}^{\infty} 2^{-(j+1)} \|\chi_{[0,2^{j+1}]} g_j\|_{L^q(\mathbb{R}^+)} \leq \sum_{j=N}^{\infty} 2^{-(j+1)(1-1/q)} \leq C_q 2^{-N(1-1/q)}
\]

which is the desired estimate.

Proof of Theorem 2.1. We will show that (2.1) implies that \(\varphi\) satisfies the following condition:

\[
(3.2) \quad \sum_{n=-\infty}^{\infty} 2^{n(p-1)} \left(\int_{2^{-n+1}}^{2^n} \left(\int_{2^{-j-1}}^{2^j} \varphi(t) w_t(x) \, dt \right) \, dx \right)^p \leq C 2^{j(p-1)} \quad (j \in \mathbb{Z}).
\]

It was proved by Kitada [8] that (3.2) is sufficient for \(T_\varphi\) be bounded on \(H^p(\mathbb{R}^+)\), \(0 < p < 1\). Let us split the sum in (3.2) at \(n = j\) and consider the case \(n \geq j\) first

\[
I_2 = \sum_{n=j}^{\infty} 2^{n(p-1)} \left(\int_{2^{-n+1}}^{2^n} \left(\int_{2^{-j-1}}^{2^j} \varphi(t) w_t(x) \, dt \right) \, dx \right)^p.
\]

If \(x < 2^{-n}\) then \(x_k = 0\) for every \(k < n\). Similarly, \(t < 2^j\) means \(t_k = 0\) for every \(k < -j\). Since \(j \leq n\) we have by definition (1.1) that \(w_t(x) = 1\). Therefore,

\[
I_2 = \sum_{n=j}^{\infty} 2^{n(p-1)} \left(\int_{2^{-j-1}}^{2^j} \varphi(t) \, dt \right)^p.
\]
Making use of the fact that φ is bounded, we obtain

$$I_2 \leq \sum_{n=0}^{\infty} 2^{n(p-1)} \left(2^{-(n+1)} 2^j C \right)^p \leq C 2^{j(p-1)},$$

which is corresponds to (3.2).

Let us take the $n < j$ part:

$$I_1 = \sum_{n=-\infty}^{j-1} 2^{n(p-1)} \left(\int_{2^{-(n+1)}}^{2^{-n}} \int_{2^{-j-1}}^{2^j} \varphi(t) w_1(x) dt \right)^p.$$

We start with using integration by parts for the integral with respect to t

$$\int_{2^{-j-1}}^{2^j} \varphi(t) w_1(x) dt = \varphi(t) D_t(x) \bigg|_{2^{-j-1}}^{2^j} - \int_{2^{-j-1}}^{2^j} \varphi'(t) D_t(x) dt.$$

Hence

$$\left| \int_{2^{-j-1}}^{2^j} \varphi(t) w_1(x) dt \right| \leq |\varphi(2^j)| D_{2^j}(x) + |\varphi(2^{j-1})| D_{2^{j-1}}(x) + \left| \int_{2^{-j-1}}^{2^j} \varphi'(t) D_t(x) dt \right|.$$

Then we have

$$I_1 \leq \sum_{n=-\infty}^{j-1} 2^{n(p-1)} \left(\int_{2^{-(n+1)}}^{2^{-n}} |\varphi(2^{j-1})| D_{2^{j-1}}(x) + |\varphi(2^j)| D_{2^j}(x) dx \right)^p +$$

$$+ \sum_{n=-\infty}^{j-1} 2^{n(p-1)} \left(\int_{2^{-(n+1)}}^{2^{-n}} \int_{2^{-j-1}}^{2^j} \varphi'(t) D_t(x) dt \right)^p = I_{11} + I_{12}.$$

If $n < j - 1$ then $[2^{-(n+1)}, 2^{-n}] \subset [2^{-j+1}, 1]$. Recall that $D_{2^j} = 2^j \chi_{[0, 2^{-j+1}]}$, and $D_{2^{j-1}} = 2^{j-1} \chi_{[0, 2^{-j+1}]}$. This means that the sum in I_{11} reduces to a single term

$$I_{11} = 2^{(j-1)(p-1)} (2^{-j} |\varphi(2^{j-1})| 2^{j-1})^p.$$

Again, it follows from the boundedness of φ that $I_{11} \leq C 2^{j(p-1)}$.

Applying Lemma 3.1 to the integral in I_{12} we obtain

$$
\int_{2^{-(n+1)}}^{2^{-n}} \int_{2^{j-1}}^{2^j} \varphi'(t)D_x(x) \, dt \, dx \leq C2^{(n+1)(1-1/r)} \left(\int_{2^{j-1}}^{2^j} |\varphi'(t)|^r \, dt \right)^{1/r}.
$$

Hence we have by (2.1)

$$
I_{22} \leq C \sum_{n=-\infty}^{j-1} 2^n(2^{n+1}(1-1/r)2^{(1/r-1)})^p = \frac{C2^{(1/r-1)}}{2^{j+1}} \sum_{n=-\infty}^{j-1} 2^{n(2p-1-p/r)},
$$

It follows from the assumption $p > \frac{r}{2r-1}$ that $2p-1 - \frac{p}{r} > 0$. Consequently,

$$
I_{12} \leq C2^{(1/r-1)}2^{(2p-1-p/r)} = C2^{(p-1)}.
$$

Combining the estimates for I_1 and I_2 we obtain the claimed estimate.

Proof of Theorem 2.2. Set

$$
\sigma(t) = \begin{cases}
\frac{1}{2}(1 - \cos 2\pi t) & \text{if } 0 \leq t \leq 1, \\
0 & \text{otherwise.}
\end{cases}
$$

Define $\varphi \in L^\infty(\mathbb{R}^+)$ as follows

$$
\varphi(t) = \sum_{k=0}^{\infty} 2^{-k(1-1/r)}\tau_{2^k}\sigma(t) \quad (t \in \mathbb{R}^+),
$$

where $\tau_x\sigma(t) = \sigma(t-x)$, $x \in \mathbb{R}$. Then $\varphi \in L^\infty(\mathbb{R}^+)$, $\text{supp} \varphi = \bigcup_{k=0}^{\infty} [2^k, 2^{k+1}]$, and φ is differentiable. Moreover

$$
\left(\int_{2^k}^{2^{k+1}} |\varphi'(t)|^r \, dt \right)^{1/r} = \left(\int_{2^k}^{2^{k+1}} \tau_{2^k} \varphi'(t) \, dt \right)^{1/r} < 2\pi 2^{-k(1-1/r)}.
$$

Consequently, φ satisfies condition (2.1).
We will define the function $f \in H^p(\mathbb{R}^+)$ by means of the p-atoms

$$a_k = 2^{k(1/p-1)}(D_{2^{k+1}} - D_{2^k}) \quad (k \in \mathbb{N}).$$

Let us choose the coefficients λ_k as

$$\lambda_k = 2^{-k(1/p+1/r-2)} \quad (k \in \mathbb{N}).$$

Then it follows from the condition $p < r/(2r - 1)$ that $1/p + 1/r - 2 > 0$. Thus

$$\sum_{k=0}^{\infty} |\lambda_k|^p < \infty,$$

i.e. $f = \sum_{k=0}^{\infty} \lambda_k a_k \in H^p(\mathbb{R}^+)$. The action of the multiplier φ on f can be calculated as follows

$$T_\varphi f(x) = \sum_{k=0}^{\infty} \lambda_k 2^{k(1/p-1)}2^{-k(1-1/r)} \int_{2^k}^{2^{k+1}} \tau_{2^k} \sigma(t)w_t(x) dt \quad (x \in \mathbb{R}^+).$$

We will show that $\chi_{[0,1]}T_\varphi \not\in L^p[0,1]$. To this order let us calculate

$$\int_{2^k}^{2^{k+1}} \tau_{2^k} \sigma(t)w_t(x) dt, \quad 0 \leq x < 1.$$

Since $w_t(x) = w_t(x) \quad (x \in [0,1], t \in \mathbb{R}^+)$ (see e.g. [12]) we have

$$\int_{2^k}^{2^{k+1}} \tau_{2^k} \sigma(t)w_t(x) dt = w_{2^k}(x) \int_{0}^{1} (1 - \cos 2\pi t) dt = w_{2^k}(x) \quad (x \in [0,1]).$$

Consequently, $\chi_{[0,1]}T_\varphi$ takes the form of a Rademacher series. i.e.

$$T_\varphi(x) = \sum_{k=0}^{\infty} r_k(x) \quad (x \in [0,1]).$$

By the Khintchin inequality, $\left\| \sum_{k=0}^{\infty} c_k r_k \right\|_{L^p([0,1])} \approx \left(\sum_{k=0}^{\infty} c_k^p \right)^{1/2}$. In particular,

$$\int_{0}^{1} |T_\varphi(x)|^p dx = \infty,$$

i.e. $T_\varphi \not\in L^p(\mathbb{R}^+)$.

References

(Received September 9, 2004)
<table>
<thead>
<tr>
<th>J.E. Daly</th>
<th>S. Fridli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Mathematics</td>
<td>Department of Numerical Analysis</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>Eötvös Loránd University</td>
</tr>
<tr>
<td>Colorado Springs</td>
<td>Pázmány Péter s. 1/C</td>
</tr>
<tr>
<td>CO 80933-7150, USA</td>
<td>H-1117 Budapest, Hungary</td>
</tr>
<tr>
<td>jedaly@math.uccs.edu</td>
<td>fridli@numanal.inf.elte.hu</td>
</tr>
</tbody>
</table>