ON MULTIPLICATIVE FUNCTIONS SATISFYING CONGRUENCE PROPERTIES II.

J. Fehér (Pécs, Hungary)

Dedicated to Professor Imre Kátai on the ocassion of his 65th birthday

1. Introduction

The function $f : \mathbb{N} \to \mathbb{Y}$ is called multiplicative $(f \in \mathcal{M})$ if the condition

$$(*) f(nm) = f(n)f(m)$$

is satisfied for all pairs $n, m \in \mathbb{N}$, (n, m) = 1. The f is completely multiplicative $(f \in \mathcal{M}^*)$, if (*) holds for all pairs $n, m \in \mathbb{N}$. The function $f(n) = n^{\alpha}$ ($\alpha \in \mathbb{N}_0$) is multiplicative and has many nice properties. For example:

$$(**) \qquad (n+m)^{\alpha} \equiv m^{\alpha} \pmod{n} \ (\forall n, m \in \mathbb{N}).$$

As it was noticed by M.V. Subbarao (1966), namely we have

Theorem A. (M.V. Subbarao, 1966 [5]) If $f \in \mathcal{M}$ and

$$f(n+m) \equiv f(m) \pmod{n} \ (\forall n, m \in \mathbb{N}),$$

then $f(n) = n^{\alpha} \ (\alpha \in \mathbb{N}_0).$

Let $M, N \subset \mathbb{N}$, and for $f : \mathbb{N} \to \mathbb{Y}$ assume

$$(***) f(n+m) \equiv f(m) \pmod{n} \ (\forall n \in N, \ \forall m \in M).$$

First let us remind a few variants of Theorem A. In them all f satisfy the condition (* * *).

Research partially supported by the Hungarian National Foundation for Scientific Research under grant T031877 and the fund of Applied Number Theory Research Group of the Hungarian Academy of Sciences. **Theorem B.** (A. Iványi, 1972 [2]) If $f \in \mathcal{M}^*$, $N = \mathbb{N}$, $M = \{m\}$ and $f(m) \neq 0$, then $f(n) = n^{\alpha} \ (\alpha \in \mathbb{N}_0)$.

The latter result was improved, namely we have

Theorem C. (B.M. Phong and J. Fehér, 1985 [4]) If $f \in \mathcal{M}$, $N = \mathbb{N}$, $M = \{m\}$ and $f(m) \neq 0$ then $f(n) = n^{\alpha} \ (\alpha \in \mathbb{N})$.

Theorem D. (I. Joó and B.M. Phong, 1992 [3]) If $f \in \mathcal{M}$, $N = \{n \mid n \in \in \mathbb{N}, A \mid n\}$ $M = \{B\}$, (A, B) = 1 and $f(B) \neq 0$, then there are a real valued Dirichlet character $\chi \pmod{A}$ and $\alpha \in \mathbb{N}_0$, such that $f(n) = \chi(n)n^{\alpha} (\forall n \in \in \mathbb{N}, (n, A) = 1)$.

Theorem E. (J. Fehér, 1994, [1]) If $f \in \mathcal{M}$, $N = \{n^2 \mid n \in \mathbb{N}\}$, $M = \{1\}$, then $f(2) = 2^{\beta}$ and $f(q^k) = q^{K\alpha(q)}$ for all primes of the form q = 4k + 1.

Notice that the function f occuring in Theorem E satisfies also the following condition:

$$ab \in H \Rightarrow f(ab) = f(a)f(b),$$

where

$$H := \left\{ 2^{\varepsilon} \prod_{i} q_i^{h_i} \mid \varepsilon = 0, 1; \ q_i \in \mathcal{P}, \ q_i \equiv 1 \pmod{4} \right\}.$$

In this paper we prove the following theorem.

Theorem. Let $f : \mathbb{N} \to \mathbb{Z}$ be a multiplicative function. Assume that for all primes p and $n \in \mathbb{N}$

(1)
$$f(n^2 + p) \equiv f(p) \pmod{n}.$$

Then: if there is a prime p_0 such that $f(p_0) \neq 0$, then

$$|f(q^k)| = q^{\alpha(q^k)}$$

for all q primes and $k \in \mathbb{N}$.

2. Lemmas

The proof of Theorem is based on the four lemmas as follows.

Lemma 1. Let $A, B, C \in \mathbb{N}$, (A, B) = 1. Then the diophantine equation

$$Ax - By = 1$$

has got the solution (x, y) such that (x, c) = 1.

Proof. Let (x_0, y_0) be a solution, $c = \prod_{i=1}^{s} p_i^{\alpha_i} \prod_{j=1}^{r} q_j^{\beta_j}$ be the primepowerdecomposition of c, where $p_i \mid x_0$, and $q_j \not| x_0$. Then the pair

$$x = x_0 + B(p_1 \dots p_s + 1)(q_1 \dots q_r),$$

$$y = y_0 + A(p_1 \dots p_s + 1)(q_1 \dots q_r)$$

is a solution satisfying the condition (C, X) = 1.

Lemma 2. Let p_0, ρ_0 be two (not equal) odd primes such that $\left(\frac{-p_0}{\rho_0}\right) = -1$. Then there are infinitely many odd primes q such that $\left(\frac{-p_0}{q}\right) = \left(\frac{-q}{\rho_0}\right) = 1$.

Proof. Let $q = 4Mp_0 + 1$ $(M \in \mathbb{N})$. Then the condition $\left(\frac{-p_0}{q}\right) = 1$ (where (·) is the Jacobi symbol) is fulfilled for all M. The diophantine equation

$$4Mp_0 + 1 = -1 + \rho_0 L$$

has a solution and its solutions are: $M = M_0 + \rho_0 N$, $L = L_0 + 4p_0 N$. Using we get

$$q = 4p_0\rho_0N + 4p_0M_0 + 1 = 4\rho_0p_0N + \rho_0L_0 - 1 \quad (N \in \mathbb{N}),$$

and this shows that $\left(\frac{-q}{\rho_0}\right) = 1$. The condition $(4\rho_0 p_0, 4p_0 M_0 + 1) = 1$ implies that among q-s there are infinitely many primes.

Lemma 3. Let 2 < q be a prime such that $q \not\mid A$ and $p \neq q$ a prime such that $\left(\frac{-p}{q}\right) = 1$. Then for all $\alpha \in \mathbb{N}$ there exist $x, u \in \mathbb{N}$ such that

$$q^{\alpha}up = x^2A^2 + p, \quad (q, u) = (p, u) = 1.$$

Proof. Let T and v be positive integers such that

(2)
$$q^{\alpha}v = A^2 \cdot T + 1.$$

The relation (2) shows that $\left(\frac{T}{q}\right) = \left(\frac{-1}{q}\right) \Rightarrow \left(\frac{Tp}{q}\right) = \left(\frac{-p}{q}\right) = 1$, hence there is $x_0 \in \mathbb{N}$ such that

(3)
$$x_0^2 \equiv Tp \pmod{q^{\alpha+1}}.$$

The numbers $x = x_0 + kq^{\alpha+1}$ are also solutions of (3), hence we can choose the k so that p|x. So we can assume that in (3) $p|x_0$. By the Lemma 1, we can choose v satisfying (2) and also (v, pq) = 1. The relation (3) shows that, denoting

$$L := \frac{x_0^2 - Tp}{q^\alpha}, \quad u^* := vp + LA^2,$$

we get q|L, q|v and so $q|u^*$. The relation (2) implies

(4)
$$q^{\alpha}vp = TpA^2 + p.$$

From this we see that

$$q^{\alpha}vp = q^{\alpha}(u^* - LA^2) = q^{\alpha}\left(\frac{x_0^2 - Tp}{q^{\alpha}}A^2\right) = q^{\alpha}u^* - x_0^2A^2 + TpA^2,$$

and (4) also implies that $q^{\alpha}u^* = x_0^2A^2 + p$. Here $p \mid x_0$ implies $p \parallel X_0^2A_2 + p$ and this in turn implies $u^* = up$, $p \nmid u$.

One can prove (in a similar way) the following

Lemma 4. Let $2 \not\mid A$ and $\alpha \in \mathbb{N}$. Then there are infinitely many primes p > 2 such that

(5)
$$2^{\alpha}up = x^2A^2 + p, \quad (u, 2p) = 1.$$

3. Proof of the theorem

Assume that f fulfills the conditions of the theorem. First we show that $f(p) \neq 0$ for all primes p.

Let p, q be primes such that $p \neq q$, $p \neq p_0$, $q \neq p_0$, $q^k || f(p_0)$ and assume

$$pu p_0 = x^2 q^{2(k+1)} + p_0, \ (u, pp_0) = 1.$$

Then

$$f(p)f(u)f(p_0) \equiv f(p_0) \pmod{q^{k+1}},$$

which implies

$$f(p)f(u) \equiv 1 \pmod{q},$$

showing that $f(p) \neq 0$.

By the Lemmas 2, 3, 4 we see that

$$(\alpha) p_0 = 2 \Rightarrow f(11) = 0.$$

$$p \neq p_0 \text{ and } p \neq 11 \text{ and } \left(\frac{-11}{p}\right) = 1 \Rightarrow f(p) \neq 0,$$

$$p \neq p_0 \text{ and } p \neq 11 \text{ and } \left(\frac{-11}{p}\right) = -1 \Rightarrow \exists q \text{ prime, for which}$$

$$\left(\frac{-11}{q}\right) = \left(\frac{-q}{p}\right) = 1, \text{ and so } f(11) \neq 0 \Rightarrow f(q) \neq 0 \Rightarrow f(p) \neq 0.$$

$$(\beta) \ 2 < p_0 \text{ and } 2 < p \neq p_0 \text{ and } \left(\frac{-p_0}{p}\right) = 1 \Rightarrow f(p) = 0,$$

$$2 < p_0 \text{ and } 2 < p \neq p_0 \text{ and } \left(\frac{-p_0}{p}\right) = -1 \Rightarrow \exists q > 0 \text{ prime, for which}$$

$$\left(\frac{-p_0}{q}\right) = \left(\frac{-q}{p}\right) = 1, \text{ and so}$$

$$f(p_0) \neq 0 \Rightarrow f(q) \neq 0 \Rightarrow f(p) \neq 0.$$

Finally, let q^{α} be a given power of the prime q, and a prime ρ , such that $\rho \neq q$. Then there are $u, x \in \mathbb{N}$ and a prime $p(\neq q)$, such that

$$q^{\alpha}up = x^2\rho^{2k} + p, \quad (u, pq) = 1.$$

From this we see that

(6)
$$f(q^{\alpha})f(u)f(p) \equiv f(p) \pmod{p^k}.$$

For $f(p) \neq 0 \ \exists s \in \mathbb{N}_0, \ \rho^s \| f(p)$. Assuming that k > s the relation (6) shows that

 $f(q^{\alpha})f(u) \equiv 1 \pmod{\rho},$

consequently $\rho \not| f(q^{\alpha})$.

4. Remarks

- (a) It seems that the function f satisfying the conditions of the Theorem as well as the congruence (1) are power functions. It seems to us that to prove the independence of $\alpha(p^k)$ upon k and p is not easy task.
- (b) If for some prime p_0 , $f(p_0) = 0$, then obviously $f(p) = \{\circ\}$. In this case there is a solution f of (1) such that $f \in \mathcal{M} \setminus \mathcal{M}^*$. An example of such function:

f(1) = 1, f(9) = 2 and f(n) = 0 if $n \neq 1, 9$.

References

- Fehér J., On integer valued multiplicative and additive functions, Annales Univ. Sci. Budapest. Sect. Comp., 14 (1994), 39-45.
- [2] Iványi A., On multiplicative functions with congruence property, Annales Univ. Sci. Budapest. Sect. Math., 15 (1972), 133-137.
- [3] Joó I. and Phong B.M., Arithmetical functions with congruence properties, Annales Univ. Sci. Budapest. Sect. Math., 35 (1992), 151-155.
- [4] Phong B.M. and Fehér J., Note on multiplicative functions satisfying a congruence property, Annales Univ. Sci. Budapest. Sect. Math., 33 (1990), 261-265.
- [5] Subbarao M.V., Arithmetic functions satisfying congruences property, Canad. Math. Bull., 9 (1966), 143-146.

(Received April 20, 2004)

J. Fehér
Department of Mathematics
Janus Pannonius University
Ifúság útja 6.
H-7624 Pécs, Hungary