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PESSIMISTIC AND OPTIMISTIC
INTERVAL SOLUTIONS

OF PERTURBED LINEAR SYSTEMS

M. Kovács and E. Nándori (Budapest, Hungary)

Abstract. In this paper we estimate the error in the solution of a

linear system with imprecise input data. We give the parameters by their

possibilistic distribution and compute a family of possibilistic distributions

of the solution. We will show that among the distributions belonging to this

family there are minimal (optimistic) and maximal (pessimistic) elements

by the inclusion. The results will be applied to investigate the effect of the

microgeometric imperfections in the statically indetermined internal forces

of a rod system acting on the points of virtual intersections.

1. Motivation of the research

A well-known method for modelling a rod system is the matrix force
method. The fundamental equation, which describes the rod structure by this
method is

(1) BT RBx + BT Ra = 0,

where
B – matrix of IRm×n, m ≤ n with rank B = m. It describes the displacements

of the statically determined basic system under unit loads on the points
of the virtual intersection;

R – nonsingular blockdiagonal flexibility matrix of IRm×m;
a – vector of IRm, it describes the displacements of the basic system under

external loads;
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x – vector of IRn for the statically undetermined internal forces (moments)
acting on the points of virtual intersections;

L – internal forces of the undetermined structure, where L = Bx + a;
m – number of rod (beam) sections ×k, where

k =





1 for constant internal forces,
2 for linear forces (bending moments),
3 for piecewise second degree internal force (moment) function,

n – degree of redundancies.
With the given assumptions the matrix of the system (1) is nonsingular,

therefore to find its solution with high accuracy there are lots of methods.
However, the problem of finding the solution of a linear systems, in general,

belongs to the family of the so called ill posed problems. It means that a little
perturbation in the input data of the problem can cause large deviations in
the solution. To know the measure of these deviations is very important in the
practice. For example, in the case of rod systems the flexibility matrix has the
structure

R = diag〈r1M1, . . . , rkMk〉,
where
• ri = `i

6IE for the bending moments under concentrated load, while ri =
= `i

30IE for bending moments under distributed load of constant intensity
per section, where
∼ `i is the i-th section length;
∼ IE is the stiffness for bending;

• Mi, (i = 1, . . . , k) are symmetric positive definite matrices and

k∑

i=1

dimMi = m.

For the values of ri, (i = 1, . . . , k) nominal values are known, the
practical values usually differ from these ones because of the microgeometrical
imperfections. To know the effect of these microgeometrical imperfections is
very important, since it may contribute to damage of the structure.

However, the classical error analysis usually gives a very draft, often
unbelievable for the experts estimation. The main reason of these situations is
that the classical error estimation uses only the worst values from the possible
ones for the parameters. It would be possible to give a probabilistic estimation
taking into consideration the probability distribution of the randomly given
imprecise data. But to work with the multidimensional distributions is too
labor-intensive.
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2. Formalization of the discussed problem

In this paper we will investigate a general linear system

(2) Fx = f ,

where
F – nonsingular matrix of IRn×n with the elements fij , (i = 1, . . . , n, j =

= 1, . . . , n);
f – vector of IRn with the elements f0i, (i = 1, . . . , n, j = 1, . . . , n);
x – solution vector of IRn with the elements xi, (i = 1, . . . , n).

We will assume, that there are given a matrix E of IRn×n with the elements
eij ≥ 0, (i = 1, . . . , n, j = 1, . . . , n) and a vector e0 of IRn with the elements
e0i ≥ 0, (i = 1, . . . , n) such that the relative error in the parameters of the
perturbed system

(3) F̄x = f̄

fulfills the following inequality:

|fij − f̄ij |
|fij | ≤ εeij , (i = 1, . . . , n, j = 0, 1, . . . , n).

The following questions will be discussed:
• How we can determine the exact set of perturbed solutions;
• Define the maximal subset of perturbed solution set, where all coordinates

of the solution preserve their sign in the perturbed solution set;
• How we can determine interval solution;
• How we can obtain a possibilistic distribution of the solution and its

marginal fuzzy values.
The results will be illustrated by an example, obtained from the model of

the rod system problem.

3. Preliminaries from the fuzzy mathematics

We will say that ã(x) is a normal fuzzy value on IRn if for any x ∈ IRn

x ∈ [0, 1] holds and ∃x0 such that ã(x0) = 1. The function µ : IRn → IR
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is usually called the membership function of the fuzzy value. The set of the
normal fuzzy values on IRn will be denoted by F(IRn) and its elements will be
denoted by either Greek letters or Latin letters with tilde.

The fuzzy value µ is said to be convex if its membership function is upper
semi-continuous, and the λ-level sets

(4) [ã]λ =




{x ∈ IRn : ã(x) ≥ λ if λ ∈ (0, 1],

{x ∈ IRn : ã(x) > λ} if λ = 0

are convex for any λ ∈ [0, 1], where overline denotes the closure operator. The
level set with λ = 0 is the support of the fuzzy value.

The normal convex fuzzy value on IR with compact support is called fuzzy
number. The set of fuzzy numbers will be denoted by FN .

ãi(xi) ∈ F(IRn) is the i-th marginal value of ã(x) ∈ F(IRn) if

ãi(xi) = max{ã(y) : y = (y1, . . . , yn), yi = xi}.

π(x) ∈ F(IRn) is the joint possibility distribution of the fuzzy numbers
ai(xi) ∈ FN , (i = 1, . . . , n), if the marginal values of π(x) are ai(xi), (i =
= 1, . . . , n).

It is obvious that a given convex fuzzy value on IRn uniquely defines its
marginal values, but it is not true inversely. A lot of fuzzy values on IRn has
the same marginal values, consequently from a system of fuzzy numbers as
marginal values of its potential joint possibility distribution we can generate
different family of joint possibility distributions. One of these constructions is
given in the following theorem:

Proposition 1. Let us assume, that the following conditions hold:
i) ai(xi) ∈ FN i = 1, . . . , n;
ii) g(t) is a continuous monotone decreasing function on [0, 1] with the

boundary values g(0) = 1, g(1) = 0 and with pseudoinverse

g(−1)(x) =





g−1(x) if x ∈ [0, 1)],

0 if x ≥ 1.

iii) πp(x) ∈ F(IRn) is given by the formula

πp(x) = g(−1)




(
n∑

i=1

gp(ãi(xi))

)1/p


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if 1 ≤ p < ∞ and π∞(x) ∈ F(IRn) is given by the formula

π∞(x) = min
i=1,...,n

{ã1(x1), . . . , ãn(xn)}.

Then πp(x) is a joint possibilistic distribution with the exponent p ∈ [1,∞] and
with the marginal fuzzy values ãi(xi).

Proof. In the case 1 ≤ p < ∞ we have that

sup
y∈IRn−1

g(−1)





∑

i 6=j

gp(ãi(yi)) + gp(ãj(xj))




1/p

 =

= g(−1)





 inf

y∈IRn−1


∑

i 6=j

gp(ã(yi))


 + gp(ãj(xj))




1/p

 .

In the case p = ∞ we obtain that

sup
y∈IRn−1

min(min
i 6=j

ãi(yj), ãj(xj) = max( sup
y∈IRn−1

min
i6=j

ãi(yi), ãj(xj)).

Since ãj(yj) is a normal fuzzy value, then there exists a point ȳi ∈ IR such
that ã(ȳi) = 1, therefore

inf
y∈IRn−1


∑

i 6=j

gp(ãi(yi))


 = 0 and sup

y∈IRn−1
min
i 6=j

ãi(yi) = 1,

therefore both statements of the theorem fulfill.

Remarks.
i) The indices in the notation for the elements of this family of possibilistic

distributions is consequent since with a simple computation we can observe that
lim

p→∞
πp(x) = π∞(x).

ii) The definition of the possibilistic distributions πp(x) can be reformu-
lated saying that it connects the fuzzy numbers ãi(xi), (i = 1, . . . , n) with an
Archimedean t-norm given by the additive generator function gp(t).

iii) From the monotonicity of t-norms follows that

πp(x) ≤ πq(x) ∀ 1 ≤ q ≤ p ≤ ∞.
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The Zadeh’s extension principle defines the mapping of a fuzzy set. If
G : IRn → IR and µ is a possibility distribution on IRn then

G̃(µ)(y) = sup
y=G(x)

µ(x).

It is obvious, if µi(xi), (i = 1, . . . , n) are fuzzy numbers then their different
joint possibility distributions define different mappings.

Let Ga : IRn → IR be a parametrical function on IRn depending on the
parameter a ∈ IRs. Then the fuzzification of this function by the possibilistic
distribution µ ∈ F(IRs) on the parameter is given by G̃µ : IRn → IRn×F(IR),
it can be obtained by the assignation

x 7→ sup
a:y=Ga(x)

µ(a) = Gµ[x](y)

4. Optimistic and pessimistic possibilistic distribution of the
solution of the linear system

For the system (2) let us use the fuzzification technique, described in [3].
Let a class of the fuzzy numbers Fg contain the fuzzy numbers with

membership functions

(5) µ̃(u) =





1, if u = u∗

g−1
( |u− u∗|

h

)
, if |u− u∗| ≤ h,

0, otherwise

for all u∗, h ∈ IR, where the function g is taken from the Theorem 1. Shortly
these fuzzy numbers will be described by their two parameters (u∗, h).

Assume that the parameters of the linear system (2) are given from the
Fg in the form

f̃ij = (fij , dij) ∈ Fg, (i = 1, . . . , n, j = 0, 1, . . . , n),

where fij , (i = 1, . . . , n) are the nominal values of the parameters of (2) and

dij = eij |fij |.
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Let πp
i (f) be the joint possibility distribution of fuzzy values f̃ij , (j = 0, . . . , n)

obtained by the Theorem 1 with 1 ≤ p ≤ ∞. As it was shown in [2], using
the the Zadeh’s extension principle, we obtain for the left hand side of the i-th
equality in the system Fx− f0 = 0 that

˜̀
i(x, y) = g(−1)




∣∣∣∣∣∣
y −

n∑

j=1

fijxj − f0i

∣∣∣∣∣∣
Dq

i (x)




,

where

(6) Dq
i (x) =





n∑
j=1

(dq
ij |xj |q + dq

0i)
1/q if 1 ≤ q < ∞, q = p/(p− 1),

max( max
j=1,...,n

dij |xj |, di0) if q = ∞.

Using the fuzzification of the equality relation introduced in [2] we obtaine
that

σp
i (x) = g(−1)




∣∣∣∣∣∣

n∑

j=1

fijxj − f0i

∣∣∣∣∣∣
Dq

i (x)




is the possibilistic value of the satisfaction of the i-th equation at the point

x, and σpr(x) =
n∧

i=1

σr
i (x), where

∧
is an intersection operator given by an

Archimedean t-norm with the generator function gp(t) if 1 ≤ r < ∞ and∧
= min if r = ∞.

If x∗ is the solution of the exact system (2), then σi(x∗) = 1 for every
i ∈ {1, . . . ,m}.

The perturbed solution set on the grade λ ≥ 0 is the solution of the
inequality system

(7). Np(λ) =

∣∣∣∣∣∣

n∑

j=1

fijxj − f0i

∣∣∣∣∣∣
≤ g(λ)Dq

i (x), (i = 1, . . . , n)

It is obvious that [σpr]λ ⊃ [σpr]µ and Np(λ) ⊃ Np(µ) if λ < µ.
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The following statements show the dependence on the different parameters
of the level sets and the perturbed solution sets.

Proposition 2. If 1 ≤ p ≤ ∞ and q = p
p−1 , then

[σp1]λ ⊂ [σpq]λ ⊂ [σp∞]λ = Np(λ) ∀λ ∈ [0, 1].

Proof. The inclusions follow from the monotonicity in p of the t-norms.
The last equality follows from the definitions of the given sets.

Proposition 3. N1(λ) ⊂ Np(λ) ⊂ Nq(λ) ⊂ N∞(λ) for all λ ∈ [0, 1],
where 1 ≤ p ≤ 2 and q = poverp− 1.

Proof. Since Dq
i (x) is the weighted q-norm of the vector z = (x, 1), from

the ordering of different norms in the n-dimensional Euclidean space follows
the statement.

The error-estimation given by the exponent p = 1 or p = ∞ will be called
optimistic and pessimistic error-estimation, respectively and in the case 1 <
< p < ∞ we will speak about p-intermediate error estimation.

The Figure 2 shows the perturbed solution sets for the system

(8)
4x + 1y = 2000

x + 10y = 4000

in the cases p = 1, 2,∞.

5. Optimistic and pessimistic interval solutions

To find the possible perturbation interval for every coordinate of the
solution let us consider the optimization problems

(9) min xi and max xi, (i = 1, . . . , m)

subject to

(10). x ∈ Np(0).

These problems define the lower and upper bounds of the perturbed solutions
of (3), that is these values define an n-dimensional interval which comprises all
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the solutions of the perturbed system. Figure 1 shows this interval solution for
the system (8), too.

The problems (9)-(10) are well defined if Np(0) is bounded.
Proposition 4. Np(λ) is bounded for all 1 ≤ p ≤ ∞ if ‖ D ‖q‖ F−1 ‖q<

< 1, where D is a matrix with the elements dij and ‖ A ‖q=
n∑

i=1=1

aq
ij

1/q

.

Proof. It is enough to prove, that Np(0) is bounded.
Let us assume that there exist x ∈ Np(0) and s ∈ IRn such that x + αs ∈

∈ Np(0) for all α > 0. It means that

∣∣∣∣∣∣

n∑

j=1=1

fij(xj + αsj)

∣∣∣∣∣∣
≤ Dq

i (x + αs),

where Dq
i (x) is defined in (6). Dividing by α the last inequalities and taking

the limit α →∞ we obtain that

(11)

∣∣∣∣∣
n∑

i=1=1

fijsj

∣∣∣∣∣ ≤‖ Dis ‖q≤‖ D ‖q‖ s ‖q,

where Di is a diagonal matrix, the j-th diagonal element of which is dij . From
(11) follows that

(12) ‖ Fs ‖q≤‖ D ‖q‖ s ‖q .

Let z = Fs. Then (12) turns into the inequality

1 ≤‖ D ‖ ‖ F−1z ‖q

‖ z ‖q
≤‖ D ‖q‖ F−1 ‖q,

which contradicts to the assumption of the theorem.

To obtain the numerical solution of the problem (9)-(10) is not trivial. It
can be explained by the fact that the set N (0) is, in general, not convex. The
convexity can be guaranteed only if the coordinates of the solutions do not
change sign under the possible perturbation. In this case N (0) is a polieder
contained in that ortant in which the nominal solution is present. This permits
the symbols for absolute value to be removed from the definition of Np(0).

So, we have to solve the problem

(13) min/max xi (i = 1, . . . , m)
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subject to

(14)

∣∣∣∣∣∣

n∑

j=1

fijxj − f0i

∣∣∣∣∣∣
≤ Dq

i (x), (i = 1, . . . , n).

(15) xjsgx∗j ≥ 0, (j = 1, . . . , n),

where x∗ is the solution of (2).
If any of the problems(13)-(15) has a solution vector in which at least one

coordinate is equal to zero, than this coordinate can change sign. Let I denote
the set of indeces of these coordinates. Then changing the constraining ortant
(15) by one of the adjacent ortant on the side of the i-th axis, where i ∈ I and
resolve the problem (13(-(15) we can find the solutions of (11)-(12) after no
more than 2n iterations.

6. Application for a rod systems

Let the examined rod system given on the Figure 1, which is described by
the parameters

BT =




0 0
1 0
1 0
0 1
0 1
0 0




, R =




2 1
1 2

2 1
1 2

4 2
2 4




, a =




0
0
0

2000
0
0




.

If the nominal values of the parameters are

r1 = 1, r2 = 1, r3 = 2,

then the exact system is given by (8), and its nominal solution will be

x∗1 = −347.826, x∗2 = −608.697,

furthermore, for the stress vector belonging to the nominal forces we obtain

LT = [0,−347.8︸ ︷︷ ︸
1.

,−347.8, 1391.3︸ ︷︷ ︸
2.

,−608.7, 0︸ ︷︷ ︸
3.

]
.

number of sections
.





250 M. Kovács and E. Nándori

If the triangular fuzzy numbers

r̃i = (ri, εeiri) ∈ Fg,

where ε = 0.1, e1 = e2 = 1, e3 = 1.5, are used to model the imperfect
flexibility matrix elements, then the fuzzy coefficients are taken also from Fg.
The perturbed constraints set for p = 1, 2,∞ and the possibilistic intervals of
the solution vector for p = 1,∞ are seen on the Figure 2 with ε = 0.1.

Finally, the possibilistic intervals of the final load can be given by the
inclusion

Bx + a ∈




[0, 0]
[−498.94,−206.49]
[−498.94,−206.49]
[118.54, 1551.32]

[−810.46,−448.68]
[0, 0]




or




[0, 0]
[−417.42,−278.37]
[−417.42,−278.37]
[1313.49, 1469.71]
[−686.51,−530.29]

[0, 0]




pessimistic optimistic
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