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A COMPARISON OF A
CLASSICAL RETRIAL M/G/1 QUEUEING SYSTEM
AND A
LAKATOS-TYPE v/G/1 CYCLIC-WAITING TIME
QUEUEING SYSTEM

K.V. Mykhalevych (Kiev/London, Ukraine)

Abstract. In severai papers of Lakatos (see e.g. [3, 4]) a new queueing
discipline was introduced and investigated, as follows: If the channel is
busy or at least one customer is on the orbit then an arriving customer is
admitted to the service channel with a delay of the magnitude k7", where
T is a constant whereas k is minimal under the condition that the FIFO
(F'CFS) queueing discipline is still kept. Unlike this, the usual retrial queue
is such that ”first returned from the orbit - first served” discipline holds.

‘The paper solves the following problem: which of the two disciplines
would be preferable, should one assume that the cycle length T is small?
The comparisor: is made on the basis of a cost function 0 measuring the
cost associated with the delay of a customer during time x. The paper
proves if o(z) is a strictly increasing convex function, then the Lakatos
type discipline leads to a smaller mean cost per customer than the usual
retrial one, the cycle length T being small enough.

Queueing systems in which demands arriving into the system, when all
the service channels are busy and there are no free waiting places, can come
back for the service after a period of time, are named retrial queueing systems.
Demands which come back for later service are said to be in the orbit. For
the last two decades the retrial queueing systems theory has been significantly
developed, see [1, 2].

The general retrial queueing system is described, for instance, in [1]. As
a rule, the retrial queueing system model provides for the following service
discipline: when a channel becomes free, the first demand to find the free
channel is taken into service, irrespective of it arrives from the orbit or from
the primary input flow.
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A special type of retrial systems was considered by the Hungarian math-
ematician Laszlo Lakatos. This is the so-called cyclic-waiting time queueing
system. For the first time, such a model of a single-channel queueing system
with constant orbit time, without losses, without waiting places and with an
unlimited orbit capacity was considered by Lakatos [3]. This model arose
as part of an aircraft landing process, and in connection with testing of a
simulation model. The Lakatos model is characterized by the demands being
serviced in tum, i.e. the system has FCFS (first come, first served) service
discipline. For the cyclic-waiting time system this means that when all the
service channels are busy, the demand is rejected and goes into the orbit. The
demands arriving after it cannot be serviced before it. Thus, the service is
carried out in tum, in the order of the actual arrival times of the demands.

Some modifications, generalizations and limitations of Lakatos-type retrial
queueing systerns were investigated in Ukraine, for instance, sce [5, 6].

Note that the sphere of applications of retrial queueing systems is wide
enough: computer networks (local and global), telephone systems, computer
systems, aircraft landing systems, customer service systems and so on.

Three queucing systems with Poissonian input flow are being considered
in this work:

1) Qr: an M/G/1 queueing system with service time distribution function
Br(z)=B(z-T),T>0;

2) Rr: the mentioned above M/G/1 retrial queue with constant orbit time
which is equal to T, and service time distribution function B(z);

3) Lr: the mentioned above M/G/1 Lakatos-typc queueing system with
constant orbit time which is equal to ', and scrvice time distribution
function B(z).

Let A be the parameter of input flow. Denote ¢, - the arrival time of the
n-th demand, n > 0; X, =t, — t,-; = n-th inter-arrival time, n > 1; S, - the
service time of the n-th demand. Then

B(z) = P{S, < r}, n>0.

20

0
Denote by 7 = [ zdB(z) - the mean service time; 3(s) = [ e~*?dB(z) - the
0 0
Laplace-Stieltjes transform of service time distribution function.

Let o(z) be a financial loss function, i.e. this is the loss which is associated
with a demand during the time period z > 0. Suppose o(0) = 0, o(z) is an
increasing, strictly convex function for z > 0, i.e.

20(z) < o(z — h) + o(z + h)
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for h> 0,2 > h.

Let W, denote the waiting time of the n-th demand (from the moment
of arrival until the start of its service). Note that the busy period for retrial
queues in this paper is the period of time when at least one demand is being
scrviced ot in the orbit. Let N denote the number of demands serviced within
the busy period.

Denote

oy = E{on},

.1
= lim —F{oc(Wo)+ ...+ c(Wnh_1)}.
n—oo n
Note that all the quantities being introduced are marked with the system
symbol when it is necessary. for instance n[Qr] refers to the Q1 queueing
system.

From the well-known theory [9] for all the systems which are being
considered

(1) 7= =, N < .

)
2| 3!

The aim of this paper is to prove the following theorem.

Theorem 1. For a > 0 (et

(2) o(z) < e, z>0
and
(3) MA(=a) = 1) < a.

Then there extsts a Ty > 0, such thal
(4) G[Lt] < T[Rr] < 00

for0 < T < Tp.
Proof. Consider the structure of the first busy period for the Q1 system

[0, Z[Qr]) and for the Ly system [0, Z[Lr]] (see Fig. 1), having assumed that
for both cases t; and Sy are the same.



232 K.V. Mykhalevych

0 Sa T M T S5 T Z[01]
v e r 1F IF o
b S0 (m s jng 08 7L
Figure 1.
Thus

ZIQr)=So+T+S1+T+ ...+ Snigrj-1 + T,
ZILr)=So+To+S1+ T+ ...+ SNiLr]-1,
where T; - the time until the return of the 7 + 1-st demand from the orbit after

service completion of i-th demand (Z > 0). Thus

k
Wi[L7] = Z(Sz +Ti)—te, 0<k<N{L7]-1,
=0

-

1=0

Since, it is evident that 7y < T and N[Lz] < N[Qr], then from these equalities
we have Wi[L7] < Wi[Q7], therefore the monotonity of o(z) implies

o(Wk[L1]) < o(Wi[Q1]).
Summation by k and taking the average leads to the following inequality
(5) on[Llr] <TN([QT]
The following inequality can be obtained in a similar way
(6) NlLzr] > N[Qo).

Thus

1L an[QT] _ Q] T~ ([Qr! _ TV[QT]E
@ 1S Rl ~ Wioo Man - Nige @
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Having applied a well-known formula for the M/G/1 queueing system we get

— 1 — 1
N = N = .
) @ = o M= oy
Formulas (7) and (8) imply
Lemma 1. Forp = At < |
(9) limsup #[L7] < limsup&[Q7].
T—0 T—0

We will use the following well-known lemma from the theory of Laplace-Stieltjes
transforms.

Lemma 2. Let (Fr(z), T > 0) be a family of distributions on R, ;

oC

Gr(s) = /e“”dFT(z), T>0,

0
and let o(x) be a monotonic function satisfying the condition
(10) lo(z)| < ce™™, = >0.

If for any A > 0

(11) Gr(-a+ i) —» Go(—a+1t), T —0,

uniformly in |t} < A, then

(12) /a(x)qu-(.r) — /a(r)dFo(m), T —0.
0 0

Denote by Fr(z) the distribution function of stationary virtual waiting time.
Then

o0

(13) F[Q-T] = /U(I)dFT(:t)

0

if the RHS of (13) is limited for a given " > 0.
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The formula (10) implies
(14) 7[Qr] < c/e‘”dFT(.r) = cGr(—a).
0

From the Pollaczek-Khinchin formula

(15) Gr(s) = ———t,
11— Z(1 = 37(s))
S
where
(16) Br(s) = B(s)e™*T.

Condition (3) implies that the denominator in (15) is scparated from zero, and
moreover (11) holds. Lemma 2 implies

(17) 7Qr] — 7[Qo). 1 —0,

then from (3) and (9)

(18) limsup@[Lr] < 7(Q0].
T—0

Consider the first busy period in the Ry queueing system. It consists of some
number N = N[Ryp] of service times Sy....,Sy—; and of intervals between
them, each of them no longer than 7°. Denote by Dy, D;, Dy the numbers
of demands arrived during the service times Sy. S;, Sz and define an event
['4,d,dsn to be one in which

(l) Di:di, i:0,1,2;

(ii) N =n;

(111) no more demands arrived during the service intervals.
Thus

(19) Z PRT {Fdldadsn} S 11

do,d1 ,d;,n

here and further the symbol Ry means that this refers to the systemm Rp. Thus

(20) Gn[Rr]> Y Ery{on: Taaaem)-
do,d,,d2,n
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Reflect the first busy period in the Ry system to the first busy period in the
Q5 system, which is the M/G/1 queueing system governed by A, B(z) and the
same (not necessarily FCFS) service order as in the initial system. For the
reflection we will shift left the intervals Sy and the moments ¢; of arriving by
cxcluding the intermediate intervals, see Fig.2.
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Faigure 2.
Then
(21) Ery {on + T apapn} > ™M Eq,

since, firstly, the demand waiting times, togcther with the o(...) values, can
decrease when shifting Sk; and. sccondly, the exponential multiplier is the
probability of no new demands arriving in the intervals between S in the Ry
system.

Consider the value on[Q3] under the condition that an event T4 d,d;n
has occured. Let the FCFS service order be broken at least once. Then the
demands which arrived at the moments {; = r < {; = y were taken for the
service at the moments u > v, respectively. The waiting loss for these demands
will be I = o(u — z) + o(v — y). For another service order, the loss will be

=o(v—2z)+o(u—y). Thus

I'—1I= /[0'([ —z)—0o'(t —y)ldt > 0.

v

Therefore, the minimum loss will be for the FCFS service discipline, i.e. (21)
implies

(22) Ery {on; Vaydydan} > Fl’_("—])'\TEQo {on; Td,dydsn} -

Now consider an event I'9g03, see Fig.3.

This event implies

(‘23) ON[Q*] = (6(So—t1)+0o(So+5; —tz))]o—{*—(()’(So—12)+0(50+51——tl))ll,
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where I is the indicator of the event (demand 1 was taken for service before
demand 2), I = 1 — .

So S 1 SZ

[ g

to 4 153

Figure 3.
Thus (22) and (23) imply
(24) on[Rr] > e x
x E{(0(So —t2) + 0(So + S — t1) — 0(So — t1) — 0(So + S1 — t2))]; Tagos} +

+ Z C_(n_l)'\TEQu {on:Tddsdsn} -

dp,dq,da,n
Note that
(25) Z ijo {UN; I‘dld'zd:ﬂ’n} = E-'\’[QO]’
do,dl,d2,1l

Therefore, the summation term in the RHS of (24) converges to 7n5[Qo] when
T — 0. Now we will estimate the first term in the RHS of (24).

For fixed SO) Sl;S’z
(26) P{T003 | So,S1, 82} = e~ A5o+51452) (X 0)2 /2.
The event T'yq03 (i.e. there are two arriving points in the interval Sy, there are

no arriving points in Sy and Sy) implies that ¢; and {5 are distributed uniformly
in the interval (0, Sp) taking into account that #; < ty.

As usual, denote by {a} the fractional part of a. We can write that I, is

an indicator of the event
50 - tl S() — 1y
(<)

It is easy to show that

(27) E{L | So} — % T =0
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uniformly in any interval 0 < é < Sy < 0o. Formulas (26), (27) imply
E{O’(So — 12) +0(So+51—-t1) — U(So — tl) —o(So+ 51 — tg)} >

o0 (o] 2

28 2 p

9 > %ﬂ”/ﬁe-“m(z) (/e“”dB(a:)) +o(1),
0

0
when 7" — 0. Together with (24) and (27) this implies
(29) liqr!li}}fEN[RT] >0nN [Qo]

It is cvident that N[Ry] < N[Qr]; then (29) implies

_ an[Rr] 75 [Qo] N[Qo] N[Qo]
gl = e T > i Niael 2 "W GnT
or
(30) liminf#(Rr] > E[QO]L—TAEL;'—I).

Then (18) and (30) imply (4).
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