THE MAXIMAL ORDER OF A CLASS OF MULTIPLICATIVE ARITHMETICAL FUNCTIONS

L. Tóth (Pécs, Hungary)
E. Wirsing (Ulm, Germany)

Dedicated to Professor Karl-Heinz Indlekofer
on his sixtieth birthday

Abstract. We prove simple theorems concerning the maximal order of a large class of multiplicative functions. As an application, we determine the maximal orders of certain functions of the type $\sigma_A(n) = \sum_{d \in A(n)} d$, where $A(n)$ is a subset of the set of all positive divisors of n, including the divisor-sum function $\sigma(n)$ and its unitary and exponential analogues. We also give the minimal order of a new class of Euler-type functions, including the Euler-function $\phi(n)$ and its unitary analogue.

1. Introduction

Let $\sigma(n)$ and $\phi(n)$ denote, as usual, the sum of all positive divisors of n and the Euler function, respectively. It is well-known, that

\[
\limsup_{n \to \infty} \frac{\sigma(n)}{n \log \log n} = e^\gamma,
\]

\[
\liminf_{n \to \infty} \frac{\phi(n) \log \log n}{n} = e^{-\gamma},
\]

The first author supported partially by the Hungarian National Foundation for Scientific Research under grant OTKA T031877.
where γ is Euler’s constant. These results go back to the work of T.H. Gronwall [5] and E. Landau [7] and have been established for a number of modified σ- and ϕ-functions.

One such modification relates to unitary divisors d of n, notation $d \| n$, meaning that $d | n$ and $(d, n/d) = 1$. The corresponding σ- and ϕ-functions are defined by $\sigma^*(n) = \sum d$ and $\phi^*(n) = \# \{1 \leq k \leq n; (k, n)_* = 1\}$, where $(k, n)_*$ denotes the largest divisor of k which is a unitary divisor of n. These functions are multiplicative and for prime powers p^ν given by $\sigma^*(p^\nu) = p^{\nu+1}$, $\phi^*(p^\nu) = p^\nu - 1$, see [3, 8]. They are treated, along with other multiplicative functions, in [2] with the result that

$$
\limsup_{n \to \infty} \frac{\sigma^*(n)}{n \log \log n} = \frac{6}{\pi^2} e^\gamma,
$$

while ϕ^* gives again (2). (Actually (3) is written incorrectly in [2] with the factor $6/\pi^2$ missing.)

In [4] it is shown that (3) holds also for $\sigma^{(e)}(n)$, the sum of exponential divisors of n. (A number $d = \prod p^{\delta_p}$ is called an exponential divisor of $n = \prod p^{\nu_p}$ if $\delta_p | \nu_p$ for all p.)

These and a number of similar results from literature refer to rather special functions. Textbooks dealing with the extremal order of arithmetic functions also treat only particular cases, see [6, 1, 11]. It should be mentioned that a useful result concerning the maximal order of a class of prime-independent functions, including the number of all divisors, unitary divisors and exponential divisors, is proved in [10].

In the present paper we develop easily applicable theorems for determining

$$
L = L(f) := \limsup_{n \to \infty} \frac{f(n)}{\log \log n},
$$

where f are nonnegative real-valued multiplicative functions. Essential parameters are

$$
\rho(p) = \rho(f, p) := \sup_{\nu \geq 0} f(p^\nu)
$$

for the primes p, and the product

$$
R = R(f) := \prod_p \left(1 - \frac{1}{p}\right) \rho(p).
$$

These theorems can, in particular, be used to obtain the maximal or minimal order, respectively, of generalized σ- and ϕ-functions which arise in connection with Narkiewicz-convolutions of arithmetic functions.
2. General results

We formulate the conditions for lower and upper estimates for L separately. Note that $\rho(p) \geq f(p^0) = 1$ for all p.

Theorem 1. Suppose that $\rho(p) < \infty$ for all primes p and that the product R converges unconditionally (i.e. irrespectively of order), improper limits being allowed, then

$$L \leq e^\gamma R.$$

A different assumption uses

Theorem 2. Suppose that $\rho(p) < \infty$ for all p and that the product R converges, improper limits being allowed, and that

$$\rho(p) \leq 1 + o\left(\frac{\log p}{p}\right),$$

then (4) holds.

Remark. Neither does condition (5) plus convergence of R imply unconditional convergence of R nor vice versa.

To establish $e^\gamma R$ also as the lower limit more information is required: The suprema $\rho(p)$ must be sufficiently well approximated at not too large powers of p.

Theorem 3. Suppose that $\rho(p) < \infty$ for all primes p, that for each prime p there is an exponent $e_p = p^{a(p)} \in \mathbb{N}$ such that

$$\prod_p f(p^{e_p}) \rho(p)^{-1} > 0,$$

and that the product R converges, improper limits being allowed. Then

$$L \geq e^\gamma R.$$

Corollary 1. If for all p we have $\rho(p) \leq (1 - 1/p)^{-1}$ and there are e_p such that $f(p^{e_p}) \geq 1 + 1/p$, then

$$L = e^\gamma R.$$

In other words: The maximal order of $f(n)$ is $e^\gamma R \log \log n$.
Formally R becomes infinite if there is a nonempty set S of primes for which $\rho(p) = \infty$. So one might expect that the assumptions of Theorem 3 taken for all p with finite $\rho(p)$ would imply $L = \infty$. Surprisingly enough this is true only for rather thin sets S. But note that for $p \in S$ there is no substitute for the $f(p^r)$ approximating $\rho(p)$.

We begin by stating what the above theorems imply if one ignores the numbers with prime factors from a given set S of primes. For any such set define

\[N(S) := \{ n : n \in \mathbb{N}, p|n \Rightarrow p \in S \}, \quad C(S) := \{ n : n \in \mathbb{N}, p|n \Rightarrow p \not\in S \}. \]

Corollary 2. Modify the assumptions of Theorems 1, 2 and 3 by replacing R with $R_S = R_S(f) := \prod_{p \not\in S} \left(1 - \frac{1}{p} \right) \rho(p)$, L with $L_S = L_S(f) := \limsup_{n \to \infty, n \in C(S)} \frac{f(n)}{\log \log n}$, condition (5) with

\[(7) \quad \rho(p) \leq 1 + o\left(\frac{\log p}{p} \right) \quad \text{for} \quad p \not\in S, \]

and (6) with

\[(8) \quad \prod_{p \not\in S} f(p^e) \rho(p)^{-1} > 0. \]

Assume further that

\[\sum_{p \in S} \frac{1}{p} < \infty. \]

Then

\[L_S \leq e^\gamma \prod_{p \in S} \left(1 - \frac{1}{p} \right) \cdot R_S, \quad L_S \geq e^\gamma \prod_{p \in S} \left(1 - \frac{1}{p} \right) \cdot R_S, \]

respectively. This applies even if $\rho(p) = \infty$ for some or all of the $p \in S$.

Theorem 4. Let S be a set of primes such that

\[(9) \quad \sum_{p \in S} \frac{1}{p} < \infty. \]
If \(\rho(p) = \infty \) exactly for the \(p \in S \), if (8) holds and \(R_S > 0 \), then \(L = \infty \). Condition (9) must not be waived.

In fact there are counter-examples for any set \(S \) for which \(\sum 1/p \) diverges.

3. The proofs

Proof of Theorem 1. An arbitrary \(n = \prod p^{\nu_p} \) we write as \(n = n_1n_2 \) with \(n_1 := \prod_{p \leq \log n} p^{\nu_p} \). Mertens’s formula \(\prod_{p \leq x} (1 - 1/p)^{-1} \sim e^\gamma \log x \) and the definition of \(\rho(p) \) imply

\[
f(n_1) = \prod_{p \leq \log n} f(p^{\nu_p}) \leq \prod_{p \leq \log n} \rho(p) = \prod_{p \leq \log n} \left(1 - \frac{1}{p}\right)^{-1} \cdot \prod_{p \leq \log n} \left(1 - \frac{1}{p}\right) \rho(p),
\]

(10)

\[
f(n_1) \leq (1 + o(1)) e^{\gamma R \log \log n} \text{ as } n \to \infty.
\]

Let \(a \) denote the number of prime divisors in \(n_2 \). Then \(a \leq \log n / \log \log n \). There is nothing to prove if \(R = \infty \), so let \(R < \infty \). Using the unconditional convergence

\[
f(n_2) \leq \prod_{p \mid n, \ p > \log n} \left(1 - \frac{1}{p}\right) \rho(p) \cdot \prod_{p \mid n, \ p > \log n} \left(1 - \frac{1}{p}\right)^{-1} \leq \]

(11)

\[
\leq (1 + o(1)) \cdot \left(1 - \frac{1}{\log n}\right)^{-a} = (1 + o(1)) e^{O(1/\log \log n)} \to 1.
\]

Combining (10) and (11) finishes the proof.

Proof of Theorem 2. There is no change in the estimation of \(f(n_1) \). For \(n_2 \) we have

\[
f(n_2) \leq \left(1 + o \left(\frac{\log \log n}{\log n}\right)\right)^{\frac{\log n}{\log \log n}} = 1 + o(1).
\]
Proof of Theorem 3. We treat the case of proper convergence only. There is nothing to prove if \(R = 0 \) and the changes for \(R = \infty \) are obvious. For given \(\varepsilon \) take \(P \) so large that

\[
\prod_{p > P} f(p^\alpha) \rho(p)^{-1} \geq 1 - \varepsilon
\]

and choose exponents \(k_p \) for the \(p \leq P \) such that

\[
\prod_{p \leq P} f(p^{k_p}) \geq (1 - \varepsilon) \prod_{p \leq P} \rho(p).
\]

Keeping \(P \) and the \(k_p \) fixed let \(x \) tend to infinity and consider

\[
n(x) := \prod_{p \leq P} \rho^{k_p} \prod_{P < p \leq x} p^{\alpha_p}.
\]

Now on the one hand, using (12) and (13), we see

\[
f(n(x)) \prod_{p \leq x} \left(1 - \frac{1}{p} \right) \geq (1 - \varepsilon) \prod_{p \leq x} \left(1 - \frac{1}{p} \right) \rho(p) \cdot \prod_{P < p \leq x} f(p^\alpha) \rho(p)^{-1} \geq
\]

\[
\geq (1 - \varepsilon)^2 (1 + o(1)) R
\]

and with Mertens’s formula again

\[
f(n(x)) \geq (1 - \varepsilon)^2 (1 + o(1)) Re^\gamma \log x.
\]

On the other hand, since \(e_p = p^{\rho(1)} \), we have

\[
\log n(x) \leq \sum_{p \leq P} k_p \log p + \sum_{P < p \leq x} e_p \log p \leq (1 + o(1)) \sum_{p \leq x} \log p = x^{1 + o(1)},
\]

and therefore

\[
\log \log n(x) \leq (1 + o(1)) \log x.
\]

Together with (14) this yields the lower bound

\[
\limsup_{x \to \infty} \frac{f(n(x))}{\log \log n(x)} \geq (1 - \varepsilon)^2 Re^\gamma
\]

with arbitrary \(\varepsilon > 0 \).

Proof of Corollary 1. Apply Theorems 1 (or 2) and 3.
Proof of Corollary 2. To see this one applies the theorems to the multiplicative function f^* defined by $f^*(n) = f(n)$ for $n \in C(S)$ and $f(n) = 1$ for $n \in N(S)$. One finds

$$L(f^*) = L_S(f), \quad R(f^*) = R_S(f) \prod_{p \in S} \left(1 - \frac{1}{p}\right),$$

and (8) implies (6) for f^* because $\prod_{p \in S} (1 - 1/p)$ converges absolutely.

Note also that for any sequence of numbers $n = n_1 n_2$ tending to ∞, where $n_1 \in N(S)$, $n_2 \in C(S)$, we have $f^*(n)/\log \log n = f(n_2)/\log \log(n_1 n_2)$, hence $\limsup f^*(n)/\log \log n = 0$ if n_2 stays bounded, and

$$\leq \limsup_{n_2} f(n_2)/\log \log n_2$$

otherwise, with equality if n_1 is bounded. Thus $L(f^*) = L_S$.

Proof of Theorem 4. I. Assume (9). With any $n_1 \in N(S)$ we have

$$L \geq \limsup_{n_2 \in C(S)} \frac{f(n_1) f(n_2)}{\log \log(n_1 n_2)} = f(n_1) L_S.$$

From Corollary 2, as it refers to Theorem 3, we have $L_S > 0$ and $f(n_1)$ can be chosen arbitrarily large.

II. Assume that (9) does not hold. We shall construct a counter-example. The assumption implies that

$$g(x) := \prod_{p \in S, \ p \leq x} \left(1 + \frac{1}{p}\right)$$

tends to ∞ as $x \to \infty$. Choose an increasing sequence of numbers $q_j = p_j^{\nu_j}$ with $p_j \in S$ and ν_j so large that $g(\log q_j) \geq j^j$ for all j, and such that every prime $p \in S$ occurs infinitely often in the sequence of the p_j. Put $f(q_j) = j$ for all $j \in \mathbb{N}$ and $f(p^{\nu}) = 1 + 1/p$ for all p^{ν} that are not among the q_j. Then, obviously, $\rho(p) = \infty$ for $p \in S$ and $\rho(p) = 1 + 1/p$ for $p \notin S$. The product

$$R_S = \prod_{p \in S} \left(1 - \frac{1}{p}\right) \left(1 + \frac{1}{p}\right)$$

converges absolutely and so does (choosing $\epsilon_p = 1$) $\prod_{p \in S} f(p^{\nu})/\rho(p) = 1$. Any $n \in \mathbb{N}$ can be written as $n = n_1 n_2$, where n_1 collects from the canonical
representation of \(n \) those prime powers that occur among the \(q_j \), while the rest compose \(n_2 \). For given \(n \) let
\[k := \max\{j; q_j \mid n_1\}. \]
Then \(f(n_1) \leq k! = o(k^k) = o(g(\log q_k)) = o(g(\log n)) \) by construction. Now for any \(n \in \mathbb{N} \)
\[f(n) = f(n_1)f(n_2) = \prod_{p|n, \ p \notin S} \left(1 + \frac{1}{p}\right) \cdot o(g(\log n)) = \]
\[= o \left(\prod_{p \leq \log n} \left(1 + \frac{1}{p}\right) \right) \cdot \prod_{p|n, \ p \geq \log n} \left(1 + \frac{1}{p}\right) \leq \]
\[\leq o(\log \log n) \cdot \left(1 + \frac{1}{\log n}\right) = o(\log \log n), \]
hence \(L = 0 \).

4. Applications

A general frame for generalizations of the \(\sigma \)- and \(\phi \)-functions mentioned in the introduction can be found in Narkiewicz [9]. Assume that for each \(n \) a set \(A(n) \) of divisors of \(n \) is given and consider the \(A \)-convolution defined by

\[(f \ast_A g)(n) := \sum_{d \in A(n)} f(d)g \left(\frac{n}{d} \right). \]

Properties of convolution (15) and of arithmetical functions related to it have been studied extensively in the literature, see [9, 8]. The system \(A \) is called multiplicative if \(A(n_1n_2) = A(n_1)A(n_2) \) for coprime \(n_1, n_2 \), with elementwise multiplication of the sets, and not all \(A(n) \) empty. Such a divisor system can be described by the sets \(AE_p(\nu) \) of admissible exponents,

\[AE_p(\nu) := \{\delta; \ p^\delta \in A(p^\nu)\}. \]

The \(A \)-convolution of any two multiplicative functions \(f \) and \(g \) is multiplicative if and only if \(A \) is multiplicative. In particular multiplicativity of \(A \) implies multiplicativity of the modified divisor function

\[\sigma_A(n) := \sum_{d \in A(n)} d. \]
As natural means to define an Euler-function attached to A we consider the relation

$$\sum_{d \in A(n)} \phi_A(d) = n, \quad n \geq 1.$$

This need not be solvable; there is, however, the following

Theorem 5. If the divisor system A is multiplicative then (16) has a solution if and only if $n \in A(n)$ for all $n \in \mathbb{N}$. In this case the solution ϕ_A is unique and is a multiplicative function with $1 \leq \phi_A(n) \leq n$ for all $n \in \mathbb{N}$.

Proof. Suppose a solution exists. Then by induction on ν the recursion

$$\sum_{\delta \in AE_p(\nu)} \phi_A(p^\nu) = p^\nu$$

implies that $1 \leq \phi_A(p^\nu) \leq p^\nu$ and (therefore) $\nu \in AE_p(\nu)$ for all $\nu : p^\nu \in A(p^\nu)$. It follows from the multiplicativity of A that $n \in A(n)$ for all n. If, on the other hand, $n \in A(n)$ for all n, then (17) can be solved recursively and the multiplicative function defined from the $\phi_A(p^\nu)$ solves (16). This is in fact the only solution since $\phi_A(n) = n - \sum_{d \in A(n) \setminus \{n\}} \phi_A(d)$.

With suitable additional conditions on A we give the maximal and minimal orders of σ_A and ϕ_A, respectively. Extremal orders of such functions have not been investigated in the literature.

Obviously $\sigma_A(n) \leq \sigma(n)$ and if for any ν we have $p^\nu, p^\nu-1 \in A(p^\nu)$ then $\sigma_A(p^\nu) \geq p^\nu + p^\nu-1$. So Corollary 1 applies to $f(n) = \sigma_A(n)/n$ and gives

Theorem 6. Let the system A of divisors be multiplicative and suppose that for each prime p there is an exponent e_p such that

$$p^{e_p}, \; p^{e_p-1} \in A(p^{e_p})$$

and $e_p = p^{o(1)}$. Then

$$\limsup_{n \to \infty} \frac{\sigma_A(n)}{n \log \log n} = e^\gamma \prod_p \left(1 - \frac{1}{p}\right) \sup_{\nu \geq 0} \frac{\sigma_A(p^\nu)}{p^\nu},$$

where the product converges.

Remarks. The quotients $\sigma(p^\nu)/p^\nu$ are of the form $\sum \varepsilon_i p^{-1}$, $\varepsilon_i \in \{0,1\}$, and the set of such numbers is compact. Therefore each $\sup_{\nu} (\sigma_A(p^\nu) p^{-\nu})$ is
itself of this form and we have for each prime p a finite or infinite sequence of exponents a_i such that $2 \leq a_1 < a_2 < \ldots$ and

$$
\left(1 - \frac{1}{p}\right) \sup_\nu \sigma_A(p^\nu)/p^\nu = 1 - \frac{1}{p^{a_1}} + \frac{1}{p^{a_2}} - \frac{1}{p^{a_3}} + \ldots.
$$

The formulae (1) and (3) are obvious consequences of Theorem 6. In the standard case e_p is arbitrary, we have $(1 - 1/p)\rho(p) = 1$ for all p, hence $R = 1$. With unitary and exponential divisors the only admissible choices are $e_p = 1$ and $e_p = 2$, respectively, and $(1-1/p)\rho(p) = 1-1/p^2$, hence $R = \zeta(2)^{-1} = 6/\pi^2$ in both cases.

We turn to ϕ_A, assuming again that A is multiplicative and, in view of Theorem 5, that always $\nu \in AE_p(e)$ for some $e = e_p \geq 1$. In order to determine the minimal order of ϕ_A consider the function $f(n) := \phi_A(n)/n$. For all p and $\nu \geq 1$ we have

$$
\phi_A(p^\nu) \geq p^\nu - \phi_A(p^{\nu-1}) - \ldots - \phi_A(1) \geq p^\nu - p^{\nu-1} - \ldots - 1,
$$

which gives

$$
f(p^\nu) < p^{\nu-1} \rho(p) \leq p^{\nu-1}.
$$

Note that $\rho(2)$ may equal ∞. If moreover $e - 1 \in AE_p(e)$ for some $e = e_p \geq 1$ then, on the other hand, $\phi_A(p^\nu) \leq p^\nu - \phi_A(p^{\nu-1}) \leq p^\nu - p^{\nu-1} + p^{\nu-2} + \ldots + 1$ if $e \geq 2$, and $\phi_A(n) \leq p - 1$ if $e = 1$. Therefore

$$
f(p^\nu) \geq \frac{p(p-1)}{p^2 - 2p + 2},
$$

$$
f(p^\nu)\rho(p)^{-1} \geq \frac{p(p-2)}{p^2 - 2p + 2} = 1 - \frac{2}{p^2 - 2p + 2},
$$

which is positive and yields a convergent product for $p \geq 3$.

Note that for powers of 2 there is no non-trivial lower estimate for $\phi_A(n)/n$ without further conditions on A. This is shown by the following example. Let

$$
\mathcal{N} = \{n_1, n_2, \ldots \} \subset \mathbb{N}, \ n_1 < n_2 < \ldots,
$$

and put $AE_2(n) := \{0, 1, \ldots, n\}$ for $n \in \mathcal{N}$ and $AE_2(n) := \{n\}$ for $n \not\in \mathcal{N}$. Then the recursion gives $\phi_A(2^n) = 2^n$ for $n \not\in \mathcal{N}$ but $\phi_A(2^{n_0}) = 2^{n_0-1}$ for the $n \in \mathcal{N}$, where $n_0 = 0$. Hence it is possible to have $\rho(2) = \sup_\nu \phi_A(2^n)/2^n = \sup_\nu (n_j - n_{j-1}) = \infty$.

Thus applying Corollary 1 or Theorem 4 with $S = \{2\}$ we obtain...
Theorem 7. Let A be multiplicative and $n \in A(n)$ for all n. Assume that for each prime $p > 2$ there is an exponent e_p such that $p^{e_p-1} \in A(p^{e_p})$ and $e_p = p^{o(1)}$. Then

$$\liminf_{n \to \infty} \frac{\phi_A(n) \log \log n}{n} = e^{-\gamma} \prod_p \left(1 - \frac{1}{p}\right)^{-1} \inf_{\nu} \frac{\phi_A(p^\nu)}{p^\nu}.$$

The product converges for $p > 2$; the first factor may vanish.

For the standard Euler function $\phi(n)$ and for its unitary analogue $\phi^*(n)$ we regain (2).

For the system of exponential divisors one has $\phi_A(1) = 1$ because of multiplicativity. The recursion $\sum_{\kappa|\nu} \phi_A(p^\kappa) = p^\nu$ is solved by $\phi_A(p^\nu) = \sum_{\kappa|\nu} \mu(\nu/\kappa)p^\kappa$. Again the minimum of $\phi_A(p^\nu)/p^\nu$ is $1 - 1/p$, it is taken for $\nu = e_p = 2$ and once more (2) follows.

References

L. Tóth
Inst.of Mathematics and Informatics
University of Pécs
Ifjúság u. 6.
H-7624 Pécs, Hungary
ltoth@ttk.pte.hu

E. Wirsing
Universität Ulm
Helmholtzstraße 22
D-89069 Ulm, Germany
wirsing@mathematik.uni-ulm.de