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1. Introduction

If n is a natural number, then a composition of n is a representation

n = n1 + n2 + . . . + nk,

where the ni are natural numbers, and representations that differ only in
the order of summands are considered distinct. In this note we investigate
compositions of n such that all summands are (i) powers of 2; (ii) Fibonacci
numbers.

2. Binary compositions

Let b(n) denote the number of binary compositions of n, with b(0) = 1.

Theorem 1. The b(n) satisfy the recurrence relation

(1) b(n) =
blog2 nc∑

i=0

b(n− 2i).
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Proof. Let bk(x) denote the ordinary generating function for compositions
of n into exactly k powers of 2. Then for all k ≥ 1,

(2) bk(x) =

( ∞∑

i=0

x2i

)k

.

Thus, if B(x) is the generating function for all compositions of n into powers
of 2, where |x| < 1, then

(3) B(x) = 1 +
∞∑

k=1

bk(x) =

(
1−

∞∑

i=0

x2i

)−1

.

Now (3) implies

(4)

(
1−

∞∑

i=0

x2i

) (
1 +

∞∑

k=1

b(k)xk

)
= 1.

If we match coefficients of like powers of x in (4), the conclusion follows.

Remarks. To a given binary partition

n = a020 + a121 + . . . + ak2k

the number of corresponding binary compositions is
(

(a0 + a1 + . . . + ak)!
a0!a1! . . . ak!

)
.

Some results regarding binary partitions appear in [4] and [5].

Table 1 below lists b(n) for 1 ≤ n ≤ 50.

The following recursive algorithm may be used to generate the set of all
binary compositions of n, which we denote by bincomp(n):

Set bincomp(0) = ∅ (the empty set). Then for n ≥ 1 bincomp(n) is the
union taken over all i such that 0 ≤ i ≤ blog2 nc of the binary compositions of
n− 2i, with 2i added on the right.

Using the algorithm, we obtain:

bincomp(1) = {1},
bincomp(2) = {1 + 1, 2},
bincomp(3) = {1 + 1 + 1, 2 + 1, 1 + 2},
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n b(n) n b(n)
1 1 26 1558798
2 2 27 2753447
3 3 28 4863696
4 6 29 8591212
5 10 30 15175514
6 18 31 26805983
7 31 32 47350056
8 56 33 83639030
9 98 34 147739848

10 174 35 260967362
11 306 36 460972286
12 542 37 814260544
13 956 38 1438308328
14 1690 39 2540625074
15 2983 40 4487755390
16 5272 41 7927162604
17 9310 42 14002525142
18 16448 43 24734033936
19 29050 44 43690150992
20 51318 45 77174200244
21 90644 46 136320361910
22 160118 47 240796030130
23 282826 48 425341653750
24 499590 49 751322695068
25 882468 50 1327134992166

Table 1. b(n)

bincomp(4) = {1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2, 4}.
bincomp(5) = {1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 2 + 1 + 1, 1 + 1 + 2 + 1,

2 + 2 + 1, 4 + 1, 1 + 1 + 1 + 2, 2 + 1 + 2, 1 + 2 + 2, 1 + 4}.

The following theorem specifies the parity of the b(k):

Theorem 2. b(m) is odd if and only if m = 2r − 1 for some r ≥ 1.
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Proof. By inspection, the theorem holds when m = 0, 1. We will assume
that the statement is true for all m < 2n, and use induction on n. By Theorem
1 and induction hypothesis, we have

b(2n) =
n∑

i=0

b(2n−2i) = b(2n−1)+b(0)+
n−1∑

i=1

b(2n−2i) ≡ 1+1+0 ≡ 0 (mod 2).

Also

b(2n + 1) =
n∑

i=0

b(2n + 1− 2i) ≡ b(2n − 1) + b(1) ≡ 1 + 1 ≡ 0 (mod 2);

b(2n + 2) =
n∑

i=0

b(2n + 2− 2i) ≡ 0 (mod 2);

b(2n + 3) =
n∑

i=0

b(2n + 3− 2i) ≡ b(2n − 1) + b(3) ≡ 1 + 1 ≡ 0 (mod 2).

Continuing in like manner, we see that if k 6= 2j − 1 for some j such that
0 ≤ j ≤ n, then

b(2n + k) =
n∑

i=0

b(2n + k − 2i) ≡ 0 (mod 2).

If k = 2j − 1 for some j such that 0 ≤ j ≤ n− 1, then

b(2n + k) =
n∑

i=0

b(2n + k − 2i) ≡ b(2n − 1) + b(2j − 1) ≡ 1 + 1 ≡ 0 (mod 2).

Finally, if k = 2n − 1, so that 2n + k = 2n+1 − 1, then we have

b
(
2n+1 − 1

)
=

n∑

i=0

b
(
2n+1 − 1− 2i

) ≡
n−1∑

i=0

b
(
2n+1 − 1− 2i

)
+ b(2n − 1) ≡

≡ 0 + 1 ≡ 1 (mod 2).

The following theorem provides good estimates for b(n) when n is large:

Theorem 3. Let ρ be the unique positive root of the equation

(5) a(x) =
∞∑

k=0

x2k

= 1,
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namely ρ ≈ 0.56612379268455991824. Then, as x →∞, we have

(6) b(n) ∼ 1
ρn+1a′(ρ)

,

where a′(ρ) ≈ 3.0102538220931950079. In addition, if b(n) denotes the mean
number of summands in a random binary composition of n, then as n → ∞,
we have

b(n) ∼ 1
ρa′(ρ)

n ≈ 0.586796n.

Proof. The function

(7) a(x) =
∞∑

k=0

x2k

satisfies the conditions: a(0) = 0, a′(0) 6= 0, and there exists a number ρ, such
that 0 < ρ < 1, a(ρ) = 1, and a(x) is analytic at x = ρ. Thus the function
B(x) = 1/(1− a(x)) has a simple pole at x = ρ, and from the local expansion
of b(x) at this dominant pole

b(x) ∼
(

1
ρa′(ρ)

) (
1

1− x
ρ

)
,

it follows that
b(n) = [xn]B(x) ∼ 1

ρa′(ρ)
ρ−n

as n →∞.
Next, the bivariate generating function with u marking then number of

summands is
B(x, u) =

1
1− ua(x)

.

The expectation is

b(n) =
1

b(n)
[xn]

∂

∂u

(
1

1− ua(x)

) ∣∣∣∣
u=1

=
1

b(n)
[xn]

a(x)
(1− a(x))2

.

The function

h(x) =
a(x)

(1− a(x))2
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has a double pole at x = ρ. Expanding h(x) near x = ρ,

h(x) ∼
(

1
a′(ρ)2

)(
1

(x− ρ)2

)
,

from which

[xn]h(x) ∼
(

n

ρ2(a′(ρ)2

)
ρ−n

as n →∞, and hence

b(n) ∼
(

1
ρa′(ρ)

)
n

as n →∞.

We consider next the average number of summands equal to 1 in binary
compositions of n. Our results shows that 1’s make up more than half of the
summands on the average, when n is large.

Theorem 4. With the same notation as in Theorem 3, the proportion
of summands equal to 1 in a random binary composition of n tends to ρ =
= 0.566123 . . . as n →∞.

Proof. Let bk(x, u) denote the bivariate generating function for composi-
tions of n into exactly k powers of 2, with the variable u marking the number
of 1’s. Then for k ≥ 1, we have

bk(x, u) =

( ∞∑

i=0

x2i

+ (u− 1)x

)k

.

Thus if b(x, u) is the bivariate generating function for all compositions of n into
powers of 2, with u marking the number of 1’s, we have

b(x, u) =
1

1− (u− 1)x−
∞∑

i=0

x2i

=
1

1− ux−
∞∑

i=1

x2i

.

The mean value of the number of 1’s is

µ(n) =
1

b(n)
[xn]

x

(1− a(x))2
=

1
b(n)

[xn−1]B2(x).

As in the proof of Theorem 3, near x = ρ we have

B2(x) ∼
(

1
a′(ρ)2

) (
1

(x− ρ)2

)
,
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from which it follows that as n →∞
[
xn−1

]
B2(x) ∼

(
n

ρ2(a′(ρ)2)

)
ρ−n+1.

Hence
µ(n) ∼ 1

a′(ρ)
n

as n →∞. The result now follows from the b(n) estimate of Theorem 3.

Now let b∗(n) denote the number of binary compositions of n with distinct
summands. The following theorem enables us to compute b∗(n).

Theorem 5. Let the binary representation of n have m 1′s. Then b∗(n) =
= m!, and every such composition of n has exactly m summands.

Proof. This follows immediately from the hypothesis and the fact that the
binary representation of any natural number is unique. The m 1′s represent the
distinct powers of 2, and m! is the number of permutations of these quantities
that yield the corresponding binary compositions with distinct parts.

Let B∗(x) =
∑
n≥0

b∗(n)xn be the generating function for binary composi-

tions with distinct parts.

Theorem 6.

B∗(x) =

∞∫

0

e−t
∞∏

j=0

(
1 + tx2j

)
dt.

Proof. To the unique binary representation of n, which has m = m(n) 1′s,
there correspond m! compositions. Now

∞∏

j=0

(
1 + tx2j

)
= 1 +

∑

n≥1

xntm.

Multiplying both sides by e−t and integrating from 0 to infinity gives the
required factor of m!.

3. Fibonacci compositions

Let Fn denote the n-th Fibonacci number, and let g(n) denote the number
of Fibonacci compositions of n, with g(0) = 1.
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We begin by letting gk(x) denote the generating function for compositions
into exactly k Fibonacci numbers. Then for k ≥ 1, we have

(8) gk(x) =

( ∞∑

i=2

xFi

)k

.

(The lower limit of summation is i = 2 because F1 = F2 = 1, and the summand
1 must not be used twice.) If we let G(x) denote the generating function for
all compositions of n with Fibonacci number summands, then we have

(9) G(x) = 1 +
∞∑

k=1

gk(x) =

(
1−

∞∑

i=2

xFi

)−1

.

If also

G(x) =
∞∑

n=0

g(n)xn

with g(0) = 1, then (10) implies

(
1−

( ∞∑

i=2

xFi

) ( ∞∑
n=0

g(n)xn

))
= 1.

Equating coefficients of like powers of x for n ≥ 1, we obtain

(10) g(n) =
kn∑

i=2

g(n− Fi),

where kn = max{i : Fi ≤ n}. Since

Fn ≤ φn

√
5
,

where φ =
1 +

√
5

2
, we can take kn = blogφ(n

√
5c. Using (11), we generate

Table 2 below, which lists g(n) for 1 ≤ n ≤ 50.
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n g(n) n g(n)
1 1 26 9315811
2 2 27 17656534
3 4 28 33464955
4 7 29 63427148
5 14 30 120215370
6 26 31 227847814
7 49 32 431846824
8 94 33 818492263
9 177 34 1551313038

10 336 35 2940250271
11 637 36 5572744810
12 1206 37 10562190960
13 2288 38 20018838331
14 4335 39 37942306721
15 8216 40 71913195697
16 15574 41 136299243785
17 29515 42 258332058332
18 55943 43 489624523869
19 106030 44 928000093918
20 200959 45 1758866503528
21 380889 46 3333632612035
22 721906 47 6318334205671
23 1368251 48 11975328951940
24 2593291 49 22697201325330
25 4915135 50 43018688678483

Table 2. g(n)

The following theorem may be used to estimate g(n) when n is large.

Theorem 7. Let e(x) =
∞∑

i=2

xFi . As n →∞, we have

g(n) ∼ 1
e′(α)

α−n−1,

where α is the unique positive root of

e(x) = 1,
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namely α ≈ 0.52761258008208832339, so that e′(α) ≈ 3.3749752101093828772.
In addition, if g(n) denotes the mean number of summands in a random
Fibonacci composition of n, then as n →∞, we have

g(n) ∼ 1
ρe′(ρ)

n = 0.561583n.

Proof. The proof of Theorem 7 is similar to the proof of Theorem 3, and
is therefore omitted.

Corresponding to Theorem 4, we have

Theorem 8. The proportion of summands equal to 1 in a random
Fibonacci omposition of n tends to α = 0.527613 . . ., as n →∞.

Proof. We omit the proof, which is similar to that of Theorem 4.

Remarks. Let A ⊂ N , where N denotes the set of all natural numbers.
Let cA(n) denote the number of compositions of n, all whose summands belong
to A. In [3] V.E. Hoggatt and D. Lind obtained formulas for cA(n) that involve
Fibonacci numbers for certain special choices of A. For example, if A = {1, 2},
then cA(n) = Fn+1; also, if A = N − 2N (the set of all odd natural numbers),
then cA(n) = Fn.

Theorem 9. The function g(n) changes parity infinitely often as n →∞.

Proof. First, suppose there exists a positive integer, m, such that g(n) ≡
≡ 0 (mod 2) ∀n ≥ m. Then (10) implies

g(n) ≡
∑

i≥2

{g(n + Fi) : n− Fi < m} (mod 2),

that is,
g(n) ≡

∑

i≥2

{g(n− Fi) : n−m < Fi ≤ n} (mod 2).

Therefore, if Fj ≥ m, then we have

g(Fj) ≡
∑

i≥2

{g(Fj − Fi) : Fj −m < Fi ≤ Fj} (mod 2).

Choose the least index, j, such that Fj−2 ≥ m, that is, Fj−Fj−1 ≥ m, or Fj−
−m ≥ Fj−1. This implies

g(Fj) ≡ g(Fj − Fj) ≡ g(0) ≡ 1 (mod 2),

an impossibility.
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Next, suppose there exists m such that g(n) ≡ 1 (mod 2) ∀n ≥ m. Using
(10), we have

g(n) =
∑

i≥2

{g(n− Fi) : n− Fi < m}+
∑

i≥2

{g(n− Fi) : n− Fi ≥ m} .

Let j be the least index such that F2j−1 ≥ m, that is, F2j+1 − F2j ≥ m. Then

g (F2j+1) ≡ g(0) +
2j∑

i=2

{g (F2j+1 − Fi)} ≡ 1 + 1 ≡ 0 (mod 2),

an impossibility.

4. Compositions of n with distinct Fibonacci summands

We will need the identity

(11)
k∑

j=1

Fj = Fk+1 − 1.

Let c(n) denote the number of such compositions. By direct evaluation,
we have

c(1) = c(2) = 1, c(3) = 3, c(4) = 2, c(5) = 3,

c(6) = 8, c(7) = 2, c(8) = 9, c(9) = c(10) = 8.

The following theorem concerns the parity of c(n).

Theorem 10.

c(n) ≡




1 (mod 2), if n is a Fibonacci number,

0 (mod 2), otherwise.

Proof. A partition of n into k distinct parts gives rise to k! corresponding
compositions of n into distinct parts. If k ≥ 2, then k! is even. Since c(n) is
a sum of factorials, c(n) will be even unless 1! occurs oddly many times in the
sum. But this can happen only if n has a representation as a single Fibonacci
number, i.e. if n = Fr for some r ≥ 2.
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Theorem 11. c(Fn) ≡ 0 (mod 3) ∀n ≥ 3.

Proof. Again, any partition of n into k distinct parts gives rise to k!
corresponding compositions of n into distinct parts. If k ≥ 3, then 3|k!. There
is only one partition of Fn into one part (and hence a single corresponding
composition). There is only one partition of Fn into two parts, namely: Fn =
= Fn−1 + Fn−2 (and hence two corresponding compositions). Therefore c(Fn),
the sum of these numbers, is divisible by 3.

We can improve on Theorem 11 to obtain

Theorem 12. If m ≥ 2, then

c(Fm) =
bm/2c∑

k=1

k!.

Proof. Let r(n) denote the number of partitions of n into distinct
Fibonacci parts. In Theorem 1 of [6] the second author proved that if m ≥ 2,

then r(Fm) =
⌊m

2

⌋
. But we can say more, namely, if m ≥ 2 and 1 ≤ k ≤

⌊m

2

⌋
,

then there is exactly one partition of Fm into distinct Fibonacci parts, namely

Fm = Fm−1 + Fm−3 + . . . + Fm+3−2k + Fm+2−2k

if m ≥ 3, and F2 = 1 if m = 2. The above displayed equation shows that at
least one such partition of Fm exists; Theorem 1 of [6] implies that at most one
such partition of Fm exists. Finally, since each such partition of Fm of length
k gives rises to k! corresponding compositions, the conclusion now follows.

Theorem 13. If m ≥ 3, then c(Fm − 1) =
⌊

m− 1
2

⌋
!.

Proof. Fm − 1 has a unique representation as a sum of
⌊

m− 1
2

⌋
distinct

Fibonacci numbers, namely

Fm − 1 = Fm−1 + Fm−3 + . . . =
bm−3

2 c∑

j=0

Fm−1−2j

from which the conclusion follows. (See [6], Theorem 8.)

Theorem 14. If n ≥ 3, then

c(1 + F2n) = c(2 + F2n) =
n∑

k=2

k! = c(F2n)− 1.
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Proof. The last equality follows from Theorem 11. It follows from the
proof of Theorem 11 that F2n has exactly n representations as sums of distinct
Fibonacci summands, namely

F2n = F2n, F2n =
k∑

j=1

F2n+1−2j + F2n−2k,

where 1 ≤ k ≤ n − 1. If 1 ≤ k ≤ n − 2, then the least term in each such
representation of F2n exceeds 3, so 1 + F2n and 2 + F2n have corresponding
representations

1 + F2n =
k∑

j=1

F2n+1−2j + F2n−2k + F2,

2 + F2n =
k∑

j=1

F2n+1−2j + F2n−2k + F3.

We also have 1 + F2n = F2n + F2, 2 + F2n = F2n + F3. Now (12) implies
that the largest term in any such representation of j + F2n, where j ∈ {1, 2}
must be at least F2n−1. Therefore, all such representations of j + F2n, where
j ∈ {1, 2} have been accounted for. There are n− 1 such representations, one
each for each integer from 2 to n. The conclusion now follows.

Finally, let C(x) =
∑
n≥0

c(n)xn be the generating function for Fibonacci

compositions with distinct parts.

Theorem 15.

C(x) =

∞∫

0

e−t
∞∏

j=2

(
1 + txFj

)
dt.

Proof. Let d(n,m) count the number of Fibonacci partitions with m
parts, all distinct. We have

c(n) =
∑

m≥1

m!d(n,m).

Now
∞∏

j=2

(
1 + xFj

)
= 1 +

∑

n≥1

xn
∑

m≥1

d(n,m)tm.
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Multiplying both sides by e−t and integrating from t = 0 to t = ∞ gives

∞∫

0

e−t
i∏

j=2

nfty
(
1 + txFj

)
dt = 1 +

∑

n≥1

xn
∑

m≥1

m!d(n,m)

as required.

Remarks. Binary and Fibonacci compositions are special cases of com-
binatorial structures that are related by a sequence construction. Results
analogous to Theorem 3 and 7 appear in [1] and [2], under this more general
context. In addition, by applying general theorems concerning sequence
constructions in [2, Chapter 9] to binary or Fibonacci compositions, it also
follows that the number of summands obeys a Gaussian limiting distribution
in each case.
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