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1. Introduction

If n is a natural number, then a composition of n is a representation
n=mny+ng+...+ng,

where the n; are natural numbers, and representations that differ only in
the order of summands are considered distinct. In this note we investigate
compositions of n such that all summands are (i) powers of 2; (ii) Fibonacci
numbers.

2. Binary compositions

Let b(n) denote the number of binary compositions of n, with b(0) = 1.

Theorem 1. The b(n) satisfy the recurrence relation

llog 7]

(1) bn) = Y b(n—2).

i=0
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Proof. Let b, (z) denote the ordinary generating function for compositions
of n into exactly k powers of 2. Then for all k£ > 1,

(2) b () = (Z:ﬂ) .
1=0

Thus, if B(z) is the generating function for all compositions of n into powers
of 2, where |z| < 1, then

[e%s} [e%s} ) -1
(3) B(z) =1+ by(x) = <1Zx2’> .
k=1 i=0

Now (3) implies

(4) (1 - i:ﬁ) (1 + i b(k‘)xk> =1.
=0

k=1

If we match coefficients of like powers of = in (4), the conclusion follows.

Remarks. To a given binary partition
n:a020+a121 +...+ak2k
the number of corresponding binary compositions is

(ao—&—al—l—...—i—ak)!
aolall...ak! ’
Some results regarding binary partitions appear in [4] and [5].
Table 1 below lists b(n) for 1 <n < 50.

The following recursive algorithm may be used to generate the set of all
binary compositions of n, which we denote by bincomp(n):

Set bincomp(0) = @ (the empty set). Then for n > 1 bincomp(n) is the
union taken over all ¢ such that 0 < i < |log, n| of the binary compositions of
n — 2¢, with 2% added on the right.

Using the algorithm, we obtain:

bincomp(1) = {1},
bincomp(2) = {1+ 1, 2},
bincomp(3) ={1+1+1, 2+1, 1+2},
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n bn) | n b(n)

1 1| 26 1558798
2 2| 27 2753447
3 3| 28 4863696
4 6| 29 8591212
) 10| 30 15175514
6 18] 31 26805983
7 31| 32 47350056
8 56 | 33 83639030
9 98| 34 147739848
10 174 | 35 260967362
11 306 | 36 460972286
12 542 | 37 814260544
13 956 | 38 1438308328
14 1690 | 39 2540625074
15 2983 | 40 4487755390
16 5272 41 7927162604
17 9310 | 42 14002525142
18| 16448 43 24734033936
19| 29050 | 44 43690150992
20| 51318 45 77174200244
21| 90644 | 46 136320361910
22| 160118 | 47 240796030130
23 | 282826 | 48 425341653750
24| 499590 | 49 751322695068
25| 882468 | 50 | 1327134992166

Table 1. b(n)

bincomp(4) ={1+1+1+1, 24+141, 14+241, 1+142, 242, 4}.

bincomp(5) = {1+1+1+1+1, 2414141, 1+2+1+1, 1+1+2+1,
24241, 441, 14+41+1+2, 24142,14+2+2, 1+4}.

The following theorem specifies the parity of the b(k):
Theorem 2. b(m) is odd if and only if m =2" — 1 for some r > 1.
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Proof. By inspection, the theorem holds when m = 0,1. We will assume
that the statement is true for all m < 2™, and use induction on n. By Theorem
1 and induction hypothesis, we have

n

b(2") = b(2"—2") = b(2"~1)+b(0 +Z b(2 =1+140=0 (mod 2).
i=0

Also

b(2" 4+1) = Zb2"+1 b(2" —1)+b(1)=14+1=0 (mod 2);

n

b(2"+2) =) b(2"+2-2")=0 (mod 2);

=0

b(2" +3) = Zb2”+3 b2" —1)+b(3)=1+1=0 (mod 2).

Continuing in like manner, we see that if & # 29 — 1 for some j such that
0 < j <n, then

b(2" + k) = zn:b(zn +k—-2)=0 (mod 2).
=0

If k = 27 — 1 for some j such that 0 < j < n — 1, then

n

2" +k) =) b2 +k—2)=b2"-1)+b2 —1)=14+1=0 (mod 2).
=0

Finally, if k = 2" — 1, so that 2" + k = 2" — 1, then we have

b (2" — Zb 2l —1-2) = "p(2mT —1—2') 42" — 1)

The following theorem provides good estimates for b(n) when n is large:

Theorem 3. Let p be the unique positive root of the equation

(5) a(x) = szk =

k=0
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namely p = 0.56612379268455991824. Then, as x — oo, we have

1
(6) b(n) ~ /)”Ta’(p)’
where a'(p) ~ 3.0102538220931950079. In addition, if b(n) denotes the mean
number of summands in a random binary composition of n, then as n — oo,
we have

1
b(n) ~ ——n ~ 0.586796n.
) pa' (p)

Proof. The function

(7) a(z) =Y a?

k=0

satisfies the conditions: a(0) =0, a’(0) # 0, and there exists a number p, such
that 0 < p < 1, a(p) = 1, and a(z) is analytic at = p. Thus the function
B(z) =1/(1 — a(x)) has a simple pole at z = p, and from the local expansion
of b(x) at this dominant pole

it follows that

as 1 — OQ.

Next, the bivariate generating function with u marking then number of
summands is

B(z,u) = ﬁla(x)'
The expectation is
= v 10 1 1 a(x)
50 = 57135 (=) |, = s Ve
The function )
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has a double pole at © = p. Expanding h(z) near z = p,

v~ () (@ a2)

o) ~

)~ (pa’l (p)> !

We consider next the average number of summands equal to 1 in binary
compositions of n. Our results shows that 1’s make up more than half of the
summands on the average, when n is large.

from which

as n — 0o, and hence

as 1 — OQ.

Theorem 4. With the same notation as in Theorem 8, the proportion
of summands equal to 1 in a random binary composition of n tends to p =
=0.566123... as n — oo.

Proof. Let by (z,u) denote the bivariate generating function for composi-
tions of n into exactly k powers of 2, with the variable u marking the number
of 1’s. Then for k > 1, we have

b (x,u) = (Z 2% 4 (u— 1)x> .
i=0

Thus if b(x, u) is the bivariate generating function for all compositions of n into
powers of 2, with u marking the number of 1’s, we have

b, ) 1 1
T,u) = = = =
1—(u—1z—->Y 22 1-—ur-> 2%
i=0 i=1

The mean value of the number of 1’s is

1 T 1 1112

As in the proof of Theorem 3, near x = p we have

B*(x) ~ <a/(1p)2) ((a:lp)Q) ’

n)
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from which it follows that as n — oo
2711 B2(2) ~ ( n ) p—n-s-l_
IO o)

p(n) ~

Hence

—n
a'(p)
as n — oo. The result now follows from the b(n) estimate of Theorem 3.

Now let b*(n) denote the number of binary compositions of n with distinct
summands. The following theorem enables us to compute b*(n).

Theorem 5. Let the binary representation of n have m 1's. Then b*(n) =
=m!, and every such composition of n has exactly m summands.

Proof. This follows immediately from the hypothesis and the fact that the
binary representation of any natural number is unique. The m 1’s represent the
distinct powers of 2, and m! is the number of permutations of these quantities
that yield the corresponding binary compositions with distinct parts.

Let B*(z) = >_ b*(n)a™ be the generating function for binary composi-

n>0
tions with distinct parts.

Theorem 6.

B =

0\8

o
e~ H 1—|—t1:23

Proof. To the unique binary representation of n, which has m = m(n) 1's,
there correspond m! compositions. Now

10_0[ 1+tx23 —1—|—Zx"tm

n>1

Multiplying both sides by e~

required factor of m!.

and integrating from 0 to infinity gives the

3. Fibonacci compositions

Let F,, denote the n-th Fibonacci number, and let g(n) denote the number
of Fibonacci compositions of n, with g(0) = 1.
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We begin by letting g (z) denote the generating function for compositions
into exactly k Fibonacci numbers. Then for £ > 1, we have

®) o0(@) = (3&) |

(The lower limit of summation is ¢ = 2 because F; = F» = 1, and the summand
1 must not be used twice.) If we let G(z) denote the generating function for
all compositions of n with Fibonacci number summands, then we have

(9) G(x):l+ng(x)= (1—ZxFi> .
k=1 i=2
If also .
G(z)=>_ g(n)a"
n=0

with g(0) = 1, then (10) implies

() Er))

Equating coefficients of like powers of x for n > 1, we obtain

(10) g(n) =Y g(n—F),
i=2
where k, = max{i : F; < n}. Since
¢7l
Fn S =
V5

1
where ¢ = +2\/3

Table 2 below, which lists g(n) for 1 <n < 50.

, we can take k, = Uog(p(n\/gj. Using (11), we generate



On binary and Fibonacci compositions

201

n| g | n g(n)

1 1] 26 9315811
2 2] 27 17656534
3 4] 28 33464955
4 7129 63427148
5 14| 30 120215370
6 26| 31 227847814
7 19 32 431846824
8 94 33 818492263
9 177 34 1551313038
10 336 | 35 2940250271
11 637 36 5572744810
12 1206 | 37 10562190960
13 2288 38 20018838331
14 4335 39 37942306721
15 8216 | 40 71913195697
16| 15574 41| 136299243785
17| 29515 | 42| 258332058332
18| 55943 | 43| 489624523869
19| 106030 | 44| 928000093918
20| 200959 | 45| 1758866503528
21| 380889 | 46| 3333632612035
22| 721906 | 47| 6318334205671
23| 1368251 | 48| 11975328951940
24 2593291 | 49| 22697201325330
25| 4915135 | 50| 43018688678483

Table 2. g(n)

The following theorem may be used to estimate g(n) when n is large.

Theorem 7. Let e(z) = > 2. Asn — oo, we have
i=2

where « s the unique positive root of

e(z) =1,



202 A. Knopfmacher and N. Robbins

namely a =~ 0.52761258008208832339, so that ¢’ () &~ 3.3749752101093828772.
In addition, if g(n) denotes the mean number of summands in a random
Fibonacci composition of n, then as n — oo, we have

_ 1
(n) ~ ———n = 0.561583n.
pe'(p)

Proof. The proof of Theorem 7 is similar to the proof of Theorem 3, and
is therefore omitted.

Corresponding to Theorem 4, we have

Theorem 8. The proportion of summands equal to 1 in a random
Fibonacci omposition of n tends to a = 0.527613 ..., as n — 0.

Proof. We omit the proof, which is similar to that of Theorem 4.

Remarks. Let A C N, where N denotes the set of all natural numbers.
Let c4(n) denote the number of compositions of n, all whose summands belong
to A. In [3] V.E. Hoggatt and D. Lind obtained formulas for c4(n) that involve
Fibonacci numbers for certain special choices of A. For example, if A = {1,2},
then ca(n) = Fph41; also, if A = N — 2N (the set of all odd natural numbers),
then ca(n) = F,.

Theorem 9. The function g(n) changes parity infinitely often as n — co.

Proof. First, suppose there exists a positive integer, m, such that g(n) =
=0 (mod 2) Vn > m. Then (10) implies

g(n) = Z {g(n+ F;):n—F;<m} (mod 2),

that is,
g(n) = Z{g(n —F):n—m<F,<n} (mod 2).

i>2

Therefore, if F; > m, then we have

9(Fj) = Z{Q(Fj — ) Fj—m < F; <F;}  (mod 2).

i>2

Choose the least index, j, such that F;_o > m, that is, F; —F;_1 > m, or F; —
—m > F;_;. This implies

g(Fy) =g(F; — F;) =g(0)=1 (mod 2),

an impossibility.
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Next, suppose there exists m such that g(n) =1 (mod 2) Vn > m. Using
(10), we have

9(”):Z{Q(H—Fi)in—Fz‘<m}+Z{g(n—Fi):n—Fi2m}.

i>2 i>2

Let j be the least index such that Fy;_1 > m, that is, Fy; 41 — Fo; > m. Then

9 (F2j+1) = g(0) + Z {g(Fyjp1 — F;)} =14+1=0 (mod 2),

=2

an impossibility.
4. Compositions of n with distinct Fibonacci summands

We will need the identity
k
(11) > Fj=Fp -1
j=1

Let ¢(n) denote the number of such compositions. By direct evaluation,
we have

c(1)=¢(2) =1, ¢(3) =3, c(4) =2, ¢(5) =3,
c(6) =8, ¢(7) =2, ¢(8) =9, ¢(9) =c(10) = 8.

The following theorem concerns the parity of ¢(n).

Theorem 10.

1 (mod 2), if n is a Fibonacci number,
c(n) =
0 (mod 2), otherwise.

Proof. A partition of n into k distinct parts gives rise to k! corresponding
compositions of n into distinct parts. If k > 2, then k! is even. Since c¢(n) is
a sum of factorials, ¢(n) will be even unless 1! occurs oddly many times in the
sum. But this can happen only if n has a representation as a single Fibonacci
number, i.e. if n = F,. for some r > 2.
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Theorem 11. ¢(F,) =0 (mod 3) VYn > 3.

Proof. Again, any partition of n into k distinct parts gives rise to k!
corresponding compositions of n into distinct parts. If k > 3, then 3|k!. There
is only one partition of F, into one part (and hence a single corresponding
composition). There is only one partition of Fj, into two parts, namely: F,, =
= F,_1+ F,,_2 (and hence two corresponding compositions). Therefore ¢(F},),
the sum of these numbers, is divisible by 3.

We can improve on Theorem 11 to obtain

Theorem 12. If m > 2, then

lm /2]
o(Fm) =Y K.
k=1

Proof. Let r(n) denote the number of partitions of n into distinct

Fibonacci parts. In Theorem 1 of [6] the second author proved that if m > 2,

then r(F,,) = {%J But we can say more, namely, if m > 2 and 1 < k < L%J,

then there is exactly one partition of F;,, into distinct Fibonacci parts, namely
Fon=Fn1+Fns+...+Fuysop+ Fngo ok

if m > 3, and Fy = 1 if m = 2. The above displayed equation shows that at
least one such partition of F,, exists; Theorem 1 of [6] implies that at most one
such partition of F),, exists. Finally, since each such partition of F;, of length
k gives rises to k! corresponding compositions, the conclusion now follows.

-1
Theorem 13. If m > 3, then ¢(F,, — 1) = {mQ J!,

Proof. F,, — 1 has a unique representation as a sum of { J distinct

Fibonacci numbers, namely

(252

Fop—-1=F, 1+ Fhp3+...= Z Fm7172j
j=0

from which the conclusion follows. (See [6], Theorem 8.)

Theorem 14. Ifn > 3, then

(14 Fan) = ¢(2+ Fan) = 3 k! = c(Fpn) — 1.
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Proof. The last equality follows from Theorem 11. It follows from the
proof of Theorem 11 that F5, has exactly n representations as sums of distinct
Fibonacci summands, namely

k

F2n :an, F2n :ZF2H+1—2J+F2"_2]€’
j=1

where 1 < k <n-—1. If 1 < kK < n — 2, then the least term in each such
representation of Fy, exceeds 3, so 1 + F5, and 2 + F5, have corresponding
representations

k
1+, = ZF2n+1—2j + Fop_op + F3,
j=1
k
24 Fon = Y Fant1-2; + Fan—ok + F.
j=1

We also have 1+ Fy,, = Fa,, + Fa, 2+ Fy, = Fy, + F5. Now (12) implies
that the largest term in any such representation of j + Fs,, where j € {1,2}
must be at least Fy,_1. Therefore, all such representations of j + F5,,, where
j € {1,2} have been accounted for. There are n — 1 such representations, one
each for each integer from 2 to n. The conclusion now follows.

Finally, let C(x) = Y c¢(n)z™ be the generating function for Fibonacci
n>0

compositions with distinct parts.

Theorem 15.
C(z) = /eft H (14 t2"5) dt.
0 J=2

Proof. Let d(n,m) count the number of Fibonacci partitions with m
parts, all distinct. We have

c(n) = Z mld(n,m).

m>1

Now
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t

Multiplying both sides by e™" and integrating from ¢t = 0 to ¢ = oo gives

/e_t anty (14+ta™)dt =1+ Zx” Z mld(n,m)
0 j=2 n>1 m>1

as required.

Remarks. Binary and Fibonacci compositions are special cases of com-
binatorial structures that are related by a sequence construction. Results
analogous to Theorem 3 and 7 appear in [1] and [2], under this more general
context. In addition, by applying general theorems concerning sequence
constructions in [2, Chapter 9] to binary or Fibonacci compositions, it also
follows that the number of summands obeys a Gaussian limiting distribution
in each case.
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