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Abstract. The general Kloosterman sum

K(m,n; k; q) =
∑

a mod (q)
(a,q)=1

e

(
mak + nāk

q

)

was studied by the second and third authors in their research of a problem of

D.H. Lehmer. In this paper, we shall improve the estimate of K(m, n; k; q)
with respect to q. We also consider the sum twisted by a Dirichlet character.

1. Introduction

In their research on a problem of D.H. Lehmer, Yi and Zhang [6] introduced
the general Kloosterman sum defined for positive integers m,n and q by

(1) K(m,n; k; q) =
q∑∗

a=1

e

(
mak + nāk

q

)
,

where k is a fixed positive integer, e(y) = exp(2πiy),
∑∗ means the summation

over all 1 ≤ a ≤ q such that the greatest common divisor of a and q denoted
by (a, q) is 1 and ā is the reciprocal to a modulo q.
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When k = 1, K(m,n; 1; q) is the classical Kloosterman sum usually
denoted by S(m, n; q) (cf. [3]):

S(m,n; q) =
q∑∗

a=1

e

(
ma + nā

q

)
.

The estimate of these sums plays important role in the theory of numbers, e.g.
it is applied to the study of upper bounds of coefficients of modular forms [3].
The well-known estimate of K(m,n; 1; q) is

(2) K(m, n; 1; q) ≤ (m,n, q)1/2q1/2d(q), q > 2.

We note that the above estimate for q = pα with a prime p and α ≥ 2 is proved
by elementary means [3]. But for the prime modulus case the estimate is very
difficult and was proved by Weil [5] through a deep consideration of algebraic
geometry.

For a general Kloostermann sum Yi and Zhang [6] proved that

(3) K(m,n; k; pα) ¿ (m, n, pα)1/2p3α/4
√

d(pα),

where f(x) ¿ g(x) means the same as f(x) = O(g(x)).
In this paper we shall improve the above estimate (3). In the sequel, we

assume that

(4) q is a positive odd integer, (k, q) = 1 and 1 ≤ m,n ≤ q − 1.

Theorem 1. Let p be an odd prime and let k be a positive integer such
that (k, p) = 1. Then we have

(5) |K(m,n, k; pα)| ≤ 2k(m,n, pα)1/2pα/2,

where α is a positive integer.

For general modulus q, we have

Theorem 2. Let q be a positive odd integer and k be a positive integer
with (k, q) = 1. Then we have

(6) |K(m,n, k; q)| ≤ d(q)log 2k/ log 2(m,n, q)1/2q1/2.
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We shall also consider a Kloosterman sum twisted by a Dirichlet character
χ mod q:

(7) Kχ(m,n, k; q) =
q∑∗

a=1

χ(a)e
(

mak + nāk

q

)
.

The estimate |Kχ(m, n, k; q)| ¿ √
q does not hold in general. In fact, Professor

Z.Y. Zheng established that |Kχ(m, n, 1; pα)| À p
2
3 α for some character χ mod

pα, where p is a prime and α ≥ 3 (see [9]). However in the case of prime
modulus we can show the following theorem.

Theorem 3. Let p be an odd prime and let χ be a Dirichlet character
mod p. Then

(8) Kχ(m,n, k; p) ¿ √
p,

where the implied constant depends only on k.

2. Proofs of Theorems 1 and 2

We assume that k ≥ 2 is a positive integer. First we shall treat the prime
modulus case of Theorem 1.

A remarkable feature in this case is that by group-theoretic considerations,
we may reduce the proof to the Weil estimate of the Kloosterman sums and to
the Chowla-Salié estimate of the twisted Kloosteman sums.

The underlying group-theoretic structure is described as follows.
Let G be a finite abelian group, let N be its subgroup and let G/N be the

quotient group. Also let (G/N)∗ denote the character group of G/N .
We extend a character ϕ ∈ (G/N)∗ to a homomorphism on G by defining

ϕ(a) = ϕ(aN).

For any complex-valued function f on G consider the sum

S :=
∑

ϕ∈(G/N)∗

∑

a∈G

ϕ(a)f(a).
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Inverting the order of summation and recalling the orthogonality of characters,
we find that

S = (G : N)
∑

α∈N

f(α),

where (G : N) = ]G/N signifies the group index.
Now specialize N to be Gk, the subgroup of all k-th powers of elements

of G. Also let Gk denote the subgroup of k-th roots of the identity element
of G. As is apparent from the homomorphism theorem, we have G/Gk ' Gk,
whence

]Gk = ]G/]Gk = (G : Gk).

Now consider the sum

S′ =
∑

a∈G

f(ak) =
∑

α∈Gk

f(α)
∑

bk=α

1.

Since bk = α = ak implies that b ∈ aGk, it follows that the number of b’s such
that bk = α is ]Gk, which is, as shown above, (G : Gk). Hence

S′ = (G : Gk)
∑

α∈Gk

f(α) = S.

Hence

(9)
∑

a∈G

f(ak) =
∑

ϕ∈(G/Gk)∗

∑

a∈G

ϕ(a)f(a).

We apply (9) with G = (Z/pZ)× and f(a) = e
(

ma+nā
p

)
to obtain

K(m,n, k; p) =
∑

ϕ∈(G/Gk)∗

∑

a∈G

ϕ(a)e
(

ma + nā

p

)
=

=
∑

ϕ∈(G/Gk)∗

Kϕ(m,n, 1; p).

In order to estimate K(m,n, k; p) we apply the Weil estimate to Kϕ0 , with
ϕ0 a trivial character and the Chowla-Salié estimate

|Kϕ(m,n, 1; p)| ≤ 2
√

p

to Kϕ with non-trivial ϕ.
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Thus we have

|K(m,n, k; p)| ≤ (G : Gk)2
√

p ≤ 2k
√

p,

where we need the fact that (G : Gk) = (k, p− 1) ≤ k. This proves Theorem 1
in the prime modulus case.

Following the method of Estermann [2], we consider the case of a prime
power modulus pα, α ≥ 2. We note that if (m,n, pα) = pξ, where 0 ≤ ξ ≤ α−1
by the assumption (4), then

(10) K(m,n, k; pα) = pξK

(
m

pξ
,

n

pξ
, k; pα−ξ

)
,

and so it is enough to consider the case (m, n, p) = 1.
Let β =

[
α
2

]
and γ = α− β, hence α = β + γ ≤ 2γ. The element a of the

reduced residue class mod pα can be written as

a = u + vpγ ,

where 1 ≤ u ≤ pγ − 1, (u, p) = 1 and 0 ≤ v ≤ pβ − 1. We choose ū so that

1 ≤ ū ≤ pα − 1 and uū ≡ 1 (mod pα).

Then we can easily see that

ā ≡ ū− ū2vpγ (mod pα),

from which we have

mak + nāk ≡ m(u + vpγ)k + n(ū− ū2vpγ)k (mod pα)(11)

≡ (muk + nūk) + kvpγ(m− ū2kn)uk−1 (mod pα).

From (11) we have

(12) K(m,n, k; pα) =
pγ−1∑
u=1

(u,p)=1

e

(
muk + nūk

pα

) pβ−1∑
v=0

e

(
kv(m− ū2kn)uk−1

pβ

)
.

The sum over v vanishes unless

m ≡ ū2kn (mod pβ),
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so that we have only to consider the case (mn, p) = 1. In this case the general
Kloosterman sum is expressed as

(13) K(m,n, k; pα) = pβ

pγ−1∑
u=1

(u,p)=1
mu2k≡n (mod pβ)

e

(
muk + nūk

pα

)
.

(i) The case β = γ

We consider the congruence equation

(14) mu2k ≡ n (mod pβ).

From the assumption (k, p) = 1 each solution of mu2k ≡ n (mod p) can
be extended uniquely to the solution of (14) and vice versa. Therefore there
are at most 2k solutions of (14). This gives us

|K(m,n, k; pα)| ≤ 2kpβ = 2kp
α
2 .

(ii) The case β = γ − 1

In (13) u runs from 1 to pγ − 1 with the condition

(15) mu2k ≡ n (mod pβ).

Let u1, u2, . . . , ur (r ≤ 2k) be all the solutions of (15). If we write

u = uj + vpβ (0 ≤ v ≤ p− 1),

then we find that

ū ≡ ūj − ūj
2vpβ + ūj

3v2p2β (mod pα),

where uj ūj ≡ 1 (mod pα). Therefore

muk + nūk ≡ (muk
j + nūj

k) + kvpβ(mu2k
j − n)ūj

k+1+

+ kv2p2β

{
1
2
m(k − 1)uk−2

j + nūj
k+2 +

1
2
n(k − 1)ūj

k+2

}
(mod pα).
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The element in the braces on the right hand side is

=
1
2
m(k − 1)uk−2

j +
1
2
n(k + 1)ūj

k+2 =

=
1
2

{
k(muk−2

j + nūj
k+2)− (muk−2

j − nūj
k+2)

} ≡

≡ 1
2

{
kūj

k+2(mu2k
j + n)− ūj

k+2(mu2k
j − n)

} ≡
≡ kūj

k+2n 6≡
6≡ 0 (mod p).

So the summation over v is a Gauss sum, hence its absolute value is bounded
by
√

p. Hence we have

|K(m,n, k; pα)| ≤ pβ2k
√

p = 2kp
α
2 .

Collecting these estimates and (10), we finally get

|K(m,n, k; pα)| ≤ 2k(m,n, pα)
1
2 p

α
2

for 1 ≤ m, n ≤ pα − 1 and (k, p) = 1, which proves Theorem 1.

For the proof of Theorem 2 we recall the multiplicative property of general
Kloosterman sum shown in [6]:

K(m,n, k; q) = K(mv̄, nv̄, k; u)K(mū, nū, k; v),

where q = uv, (u, v) = 1, vv̄ ≡ 1 (mod u) and uū ≡ 1 (mod v). Thorem 1
and the above property imply that

|K(m, n, k; q)| ≤ (2k)ν(q)(m,n, q)1/2q1/2,

where ν(q) denotes the number of different prime factors of q. The assertion of
Theorem 2 follows immediately from the fact 2ν(q) ≤ d(q).

3. Proof of Theorem 3

We shall prove Theorem 3 by induction on k.
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As noticed above, the assertion (8) in the case k = 1 is due to Chowla and
Salié [1, 4].

Now suppose k > 1 and that the assertion of Theorem 3 is valid for all
l < k.

First we consider the case that k and p − 1 are coprimes. Then k is
invertible mod p− 1, hence there exists an integer k1 such that kk1 ≡ 1 (mod
p− 1). Since

χ(a) = χk1(ak),

we have

Kχ(m,n, k; p) =
p−1∑
a=1

χk1(ak)e
(

mak + āk

p

)
=

= Kχk1 (m,n, 1; p).

Thus
|Kχ(m,n, k; p)| ≤ 2

√
p

for (k, p− 1) = 1.
Next we consider the case k0 := (k, p− 1) > 1. Put k = k0l.
Let g be a primitive root mod p, i.e. G := (Z/pZ)× = 〈g〉 and let h be an

ingeter defined by χ(g) = e
2πih
p−1 .

If k0(= (G : Gk)) divides h, i.e. h = k0f with an integer f , then we have

χ(a) = χ′(ak0) for any a and χ′ is a character such that χ′(g) = e
2πif
p−1 . Hence

we may write

Kχ(m,n, k; p) =
∑

a∈(Z/pZ)×
χ′(ak0)e

(
m(ak0)l + n(āk0)l

p

)
.

Hence, by (9)

Kχ(m, n, k; p) =
∑

ϕ∈(G/Gk0 )∗

∑

a∈G

ϕ(a)χ′(a)e
(

mal + nāl

p

)
=

=
∑

ϕ∈(G/Gk0 )∗

Kϕχ′(m,n, l; p).

Therefore we have, by the induction hypothesis,

Kχ(m,n, k; p) ¿ √
p,

where the implied constant depends only on k.
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When k0|/h, we shall show that the Kloosterman sum in question is equal
to zero. For this purpose we consider the mean square of Kχ(m,n, k; p) with
respect to m. Expanding |Kχ(m,n, k; p)|2, we have

|Kχ(m, n, k; p)|2 =
p−1∑
a=1

p−1∑

b=1

χ(a)χ̄(b)e
(

m(ak − bk) + n(āk − b̄k)
p

)
=

=
p−1∑
a=1

p−1∑

b=1

χ(a)e
(

mbk(ak − 1) + nb̄k(āk − 1)
p

)
,

where ā and b̄ are integers such that aā ≡ 1 (mod p) and bb̄ ≡ 1 (mod p),
respectively. Therefore

p−1∑
m=0

|Kχ(m,n, k; p)|2 =
p−1∑
a=1

χ(a)
p−1∑

b=1

e

(
nb̄k(āk − 1)

p

) p−1∑
m=0

e

(
mbk(ak − 1)

p

)
.

Since the last summation is equal to p if ak ≡ 1 (mod p) and 0 otherwise, we
have

(16)
p−1∑
m=0

|Kχ(m,n, k; p)|2 = p(p− 1)
p−1∑
a=1

ak≡1 (mod p)

χ(a).

When a ≡ gj (mod p) with some j, then

ak ≡ 1 (mod p) ⇔ j = rm for m = 0, 1, . . . , k0 − 1,

therefore we have

p−1∑
a=0

ak≡1 (mod p)

χ(a) =
k0−1∑
m=0

e
2πihrm

p−1 =
k0−1∑
m=0

e
2πihm

k0(17)

= 0.(18)

The equations (19) and (17) show that Kχ(m,n, k; p) = 0 when k0|/h.
This completes the proof of Theorem 3.

Remark. The above argument shows that

(19)
p−1∑
m=0

|Kχ(m,n, k; p)|2 = p(p− 1)k0,
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when k0|h.
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