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Abstract. The general Kloosterman sum

ma® + ndk>
K(m,n;k;q) = e ———
(ki) = 3 e

a mod (q)
(a,q)=1

was studied by the second and third authors in their research of a problem of
D.H. Lehmer. In this paper, we shall improve the estimate of K (m,n; k; q)
with respect to g. We also consider the sum twisted by a Dirichlet character.

1. Introduction

In their research on a problem of D.H. Lehmer, Yi and Zhang [6] introduced
the general Kloosterman sum defined for positive integers m,n and g by

9. k ~k
(1) K(m,n;kiq) =) e(mazm>,

a=1

where k is a fixed positive integer, e(y) = exp(2miy), >, means the summation
over all 1 < a < ¢ such that the greatest common divisor of a and ¢ denoted
by (a,q) is 1 and a is the reciprocal to a modulo g.
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When k£ = 1, K(m,n;1;q) is the classical Kloosterman sum usually
denoted by S(m,n;q) (cf. [3]):

q
S(m,n: q) Z <ma+na>'

The estimate of these sums plays important role in the theory of numbers, e.g.
it is applied to the study of upper bounds of coefficients of modular forms [3].
The well-known estimate of K (m,n;1;q) is

(2) K(m,n;1;q) < (m,n,q)"?¢*?d(q), q>2.

We note that the above estimate for ¢ = p® with a prime p and o > 2 is proved
by elementary means [3]. But for the prime modulus case the estimate is very
difficult and was proved by Weil [5] through a deep consideration of algebraic
geometry.

For a general Kloostermann sum Yi and Zhang [6] proved that
(3) K(m,n; k; p*) < (m,n, p*)"/2p*/*\/d(p),
where f(z) < g(z) means the same as f(z) = O(g(z)).
In this paper we shall improve the above estimate (3). In the sequel, we

assume that

(4) q is a positive odd integer, (k,q) =1 and 1 <m,n<gq-—1.

Theorem 1. Let p be an odd prime and let k be a positive integer such
that (k,p) = 1. Then we have

(5) |K(m,n,k‘;po‘)| < 2k(m,n7pa)1/2pa/2’

where « is a positive integer.
For general modulus ¢, we have

Theorem 2. Let q be a positive odd integer and k be a positive integer
with (k,q) = 1. Then we have

(6) K (m,n, k; q)| < d(g)'°*M 12 (m, n,q)" /24 /2.
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We shall also consider a Kloosterman sum twisted by a Dirichlet character
x mod q:

mak 4+ nak)
. )

(7) Ky (m,n,k;q) = Z* x(a)e (

The estimate | K, (m,n, k; q)| < /g does not hold in general. In fact, Professor

Z.Y. Zheng established that | K, (m,n,1;p%)| > p3® for some character x mod
p®, where p is a prime and a > 3 (see [9]). However in the case of prime
modulus we can show the following theorem.

Theorem 3. Let p be an odd prime and let x be a Dirichlet character
mod p. Then

(8) K, (m,n, k;p) < \/p,

where the implied constant depends only on k.
2. Proofs of Theorems 1 and 2

We assume that k > 2 is a positive integer. First we shall treat the prime
modulus case of Theorem 1.

A remarkable feature in this case is that by group-theoretic considerations,
we may reduce the proof to the Weil estimate of the Kloosterman sums and to
the Chowla-Salié estimate of the twisted Kloosteman sums.

The underlying group-theoretic structure is described as follows.

Let G be a finite abelian group, let N be its subgroup and let G/N be the
quotient group. Also let (G/N)* denote the character group of G/N.

We extend a character ¢ € (G/N)* to a homomorphism on G by defining
p(a) = p(alN).

For any complex-valued function f on G consider the sum

S = > ela)f(a).

pe(G/N)* aeG
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Inverting the order of summation and recalling the orthogonality of characters,

we find that
N) Y~ fla)
aEN
where (G : N) = §G/N signifies the group index.

Now specialize N to be G*, the subgroup of all k-th powers of elements
of G. Also let Gy denote the subgroup of k-th roots of the identity element
of G. As is apparent from the homomorphism theorem, we have G /G ~ G*,
whence

1Gr = tG/4G" = (G : G).

Now consider the sum

= fld)=> fla) > L

acG aEGF br=a

Since b* = o = a¥ implies that b € aG}, it follows that the number of b’s such
that b* = « is G, which is, as shown above, (G : G¥). Hence

S =(G:G*) > fla)=

aeGFk
Hence
(9) Y@y =Y > ela)f(a)
acG pe(G/GF)* a€G

We apply (9) with G = (Z/pZ)” and f(a) = e (%‘*‘"‘i) to obtain

Kmnkp) =Y Y ola <ma+m>=

0€(G/GF)* aEG p
= Z K, (m,n,1;p).
oE(G/CF)*

In order to estimate K (m,n, k;p) we apply the Weil estimate to K, with
o a trivial character and the Chowla-Salié estimate

|Kp(m,n, 1;p)| < 2¢/p

to K, with non-trivial ¢.
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Thus we have
|K (m,n, k;p)| < (G:G*)2y/p < 2k /D,

where we need the fact that (G : G*) = (k,p — 1) < k. This proves Theorem 1
in the prime modulus case.

Following the method of Estermann [2], we consider the case of a prime
power modulus p®, a > 2. We note that if (m,n,p®) = p¢, where 0 < ¢ < a—1
by the assumption (4), then

m n _

and so it is enough to consider the case (m,n,p) = 1.

Let 8 = [%] and v = «a — (3, hence a = 3+ v < 2. The element a of the
reduced residue class mod p® can be written as

a=u-+uvp?,
where 1 <u <p¥ -1, (u,p) =1 and 0 < v < p? — 1. We choose % so that
1<a<p*—1 and vu=1 (mod p®).
Then we can easily see that
a=1u—u*vp” (mod p®),
from which we have

(11)  ma® +na* = m(u+ vp")* + n(a — @vp”)*  (mod p®)

= (mu® + na®) + kvp? (m — @**n)u*"1  (mod p®).

From (11) we have
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so that we have only to consider the case (mn,p) = 1. In this case the general
Kloosterman sum is expressed as

p’—1 k iy
(13) K(mnkip®) =p° 3 (m“”“)

mu2k=n (mod pf)

(i) The case B =~

We consider the congruence equation
(14) mu®* =n  (mod p?).

From the assumption (k,p) = 1 each solution of mu?* =n (mod p) can

be extended uniquely to the solution of (14) and vice versa. Therefore there
are at most 2k solutions of (14). This gives us

|K (m,n, k; p®)| < 2kp® = 2kp®.

(ii) The case B =~ —1

In (13) w runs from 1 to p” — 1 with the condition
(15) mu** =n  (mod p?).
Let uy, ug, ..., u, (r < 2k) be all the solutions of (15). If we write

u:uj—i—vpﬁ 0<v<p-1),
then we find that
o =u; — u‘j%pﬂ + u‘j3v2p25 (mod p%),
where u;u; =1 (mod p®). Therefore
mu® + na* = (mu;C + na®) + kvpﬁ(muik — n)u P4

1 1
+ kv?p?? {Qm(k - l)uff2 + nag Pt 4 §n(k - 1)ujk+2} (mod p®).
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The element in the braces on the right hand side is

1 1
= omlk - Dub=2 + gk + 1a;F+? =

1
=5 {k(mul™? + na*?) = (muf =2 — na;F12)} =

1
=3 { k" +2 (mu?k +n)— u_jk+2(mu?k -n)}

= kdjk+2n 7_é

%0 (mod p).

So the summation over v is a Gauss sum, hence its absolute value is bounded
by /p. Hence we have

| K (m,n, k;p®)| < p62k\/p7 = Qkp%.

Collecting these estimates and (10), we finally get

N}

K (m,n, k; p*)| < 2k(m,n,p™)%p

for 1 <m,n <p*—1and (k,p) = 1, which proves Theorem 1.

For the proof of Theorem 2 we recall the multiplicative property of general
Kloosterman sum shown in [6]:

K(m,n,k;q) = K(mu,nv, k; u) K (ma, na, k; v),

where ¢ = uv, (u,v) = 1L,v9 =1 (mod u) and vz =1 (mod v). Thorem 1
and the above property imply that

K (m,n, ks q)] < (2k)D (m,n,q)' ¢,

where v(g) denotes the number of different prime factors of q. The assertion of
Theorem 2 follows immediately from the fact 2*(9) < d(q).

3. Proof of Theorem 3

We shall prove Theorem 3 by induction on k.



158 S. Kanemitsu, Y. Tanigawa, Yi Yuan and Zhang Wenpeng

As noticed above, the assertion (8) in the case k = 1 is due to Chowla and
Salié [1, 4].

Now suppose k£ > 1 and that the assertion of Theorem 3 is valid for all
I <k.

First we consider the case that £ and p — 1 are coprimes. Then k is
invertible mod p — 1, hence there exists an integer k; such that kk; =1 (mod
p—1). Since

we have
p—l k4 =k
ma” +a
Kyl ki) = 33 (e ()
a=1
= kal (mv n, 1;p)'
Thus

[ K (m,n, k;p)| < 2/p

for (k,p—1)=1.
Next we consider the case ko := (k,p — 1) > 1. Put k = kol.
Let g be a primitive root mod p, i.e. G := (Z/pZ)* = (g) and let h be an

2mwih

ingeter defined by x(g) =e»-1.
If ko(= (G : G*)) divides h, i.e. h = kof with an integer f, then we have

2mif

x(a) = x'(a*°) for any a and X’ is a character such that x’(g) = e»-*. Hence
we may write

m(ako)l + n(ako)l>

p

Kymnkp) = Y x’(ak°)€<

a€(Z/pZ)*
Hence, by (9)

Kymnkip) = 3 zgo(a)X/(a)e(”M):

PE(G/GR0)" aEC

= Z wa’(mvnal;p)'

©€(G/Gko)
Therefore we have, by the induction hypothesis,
Kx(m7 na kvp) << \/17)7

where the implied constant depends only on k.
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When ko[ h, we shall show that the Kloosterman sum in question is equal
to zero. For this purpose we consider the mean square of K, (m,n,k;p) with
respect to m. Expanding |K, (m,n, k;p)|?, we have

p—1p—1 a® — b 4 n(ak — bk
Ky i) = 323 (a)ee (=)

a=1b=1 p
Ly mbF(aF — 1) + nbk(a* — 1)

= (a)e ;
X z )

where @ and b are integers such that a@ = 1 (mod p) and bb =1 (mod p),
respectively. Therefore

Zu(xmnkp ;X I)Zie(”bk“‘”)mzo (mhe 1),

Since the last summation is equal to p if a* =1 (mod p) and 0 otherwise, we
have

(16) SO (mnkp)P=pp—-1) Y x(a).
m=0 a=1

ak=1 (mod p)

When a = ¢/ (mod p) with some j, then

a*=1 (modp)<j=rm for m=0,1,...,k—1,
therefore we have
p—1 ko—1 ’ ko=l
2wihrm 7r7, m

) S - e oY e

N a=0 m=0 m=0

ak=1 (mod p)
(18) =0.

The equations (19) and (17) show that K, (m,n, k;p) = 0 when ko/h.
This completes the proof of Theorem 3.

Remark. The above argument shows that

(19) S [Ky(m.m, ks ) = plp — Do
m=0
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when kolh.
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