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I. Introduction

An arithmetical function f(n) 6≡ 0 is said to be multiplicative if (n,m) = 1
implies

f(nm) = f(n)f(m)

and it is called completely multiplicative if this equation holds for all pairs
of positive integers n and m. In the following we denote by M and M∗ the
set of all integer-valued multiplicative and completely multiplicative functions,
respectively. For each positive integer D let M∗

D be the set of all arithmetical
functions f for which f(nm) = f(n)f(m) is satisfied for all n, m coprime to D.
Let IN be the set of all positive integers and P be the set of all primes. In the
following, (m,n) denotes the greatest common divisor of the integers m, n and
m ‖ n denotes that m is a unitary divisor of n, i.e. that m|n and ( n

m ,m) = 1.

In 1966 M.V. Subbarao [12] proved the following assertion: If f ∈ M
satisfies

(1) f(n + m) ≡ f(m) (mod n) for all n,m ∈ IN,

then there is a non-negative integer α such that

(2) f(n) = nα for all n ∈ IN.
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A. Iványi [3] extended this result proving that if f ∈ M∗ and (1) holds for a
fixed m ∈ IN and for all n ∈ IN , then f(n) has also the same form (2). In [9]
we improved the results of Subbarao and Iványi mentioned above by proving
that if M ∈ IN , f ∈M satisfy the conditions f(M) 6= 0 and

f(n + M) ≡ f(M) (mod n) for all n ∈ IN,

then (2) holds. Later, in the papers [5], [7] and [11] we obtained some
generalizations of this result, namely we have shown the following theorems:

Theorem A. ([7]) If the integers A > 0, B > 0, C 6= 0, N > 0 with
(A,B) = 1 and f ∈M satisfy the relation

f(An + B) ≡ C (mod n) for all n ≥ N,

then f(B) = C and there are a non-negative integer α, a real-valued Dirichlet
character χ (mod A) such that

f(n) = χ(n)nα for all n ∈ IN, (n,A) = 1.

Theorem B. ([11]) Let A, B, D be positive integers with conditions

(A,B) = 1 and (A,D, 2) = 1.

If a function f ∈M and an integer C 6= 0 satisfy the congruence

f(An + B) ≡ C (mod n) for all n ∈ IN, (n, D) = 1,

then f(B) = C and there are a non-negative integer α, a real-valued Dirichlet
character χ (mod A) such that

f(n) = χ(n)nα

holds for all n ∈ IN, (n,A) = 1.

Another characterization of nα by using congruence property was found
by A. Iványi [3], namely he proved that if f ∈M satisfies the relation

(3) f(n + m) ≡ f(n) + f(m) (mod n) for all n,m ∈ IN,

then f(n) is a power of n with positive integer exponent. It is proved in [6]
that this result continues to hold even if the relation (3) is valid for all m ∈ P
instead of for all m ∈ IN . Recently in a joint paper with J. Fehér [10] we gave
all solutions f of the congruence (3) under the conditions that f ∈ M∗ and
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the relation (3) holds for a fixed m ∈ IN and for all n ∈ IN . For further results
and generalizations of this topics we refer to the works [2], [4], [8] and [11].

Our purpose in this paper is to prove the following

Theorem. Let A, B be positive integers with conditions

(A,B) = 1 and (A, 2) = 1.

Assume that a function f ∈M and an integer C 6= 0 satisfy the congruence

(4) f(An + B) ≡ f(An) + C (mod n) for all n ∈ IN.

We have

(I) If there is a prime power πe > 1 such that (π,A) = 1 and f(πe) = 0, then

(a) π = 2 and f(An) = −1 for all n ∈ IN, (n, 2) = 1,

(b) C = 1 and f(2γ) = 0 for all γ ∈ IN in the case (B, 2) = 1,

(c)

f(2γ) =





1 if γ < α,

2− f(2α) if γ > α,
and f(2α) =

{ 2 if e > α,

0 if e = α

in the case 2α ‖ B with α ∈ IN , furthermore e ≥ α, f(A) = −1, C = 2,

(II) If f(n)f(Am) 6= 0 for all n,m ∈ IN , (n,A) = 1 and

|f(n)| = 1 for all n ∈ IN, n ≡ 1 (mod D)

holds for some fixed D ∈ IN , then

(i) f(A) + C = 1 and f(An) = f(A) for all n ∈ IN in the case when
f(Am) 6= −1 for some m ∈ IN ,

(ii) f(n) = 1 for all n ∈ IN , (n, 2A) = 1 and

f
(
2α+γ

)
= C − f (2α) for all γ ∈ IN,

where 2α ‖ B, α ≥ 0. Furthermore, if α > 0, then C = 2 and f(2δ) = 1 for
δ < α.

(III) If f(n)f(Am) 6= 0 for all n, m ∈ IN , (n, A) = 1 and |f(N)| > 1
for some N ∈ IN, (N,A) = 1, then there are a non-negative integer α and a
real-valued Dirichlet character χ (mod A) such that

f(n) = χ(n)nα

holds for all n ∈ IN, (n,A) = 1.
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II. The proof of (I)

Lemma 1. Assume that the conditions of the theorem are satisfied. If
there is a prime power πe > 1 such that (π,A) = 1 and f(πe) = 0, then

(a) π = 2 and f(An) = −1 for all n ∈ IN, (n, 2) = 1.

(b) If (B, 2) = 1, then C = 1 and f(2γ) = 0 for all γ ∈ IN .

(c) If 2α ‖ B with α ∈ IN , then e ≥ α, f(A) = −1, C = 2,

f(2γ) =





1 if γ < α,

2− f(2α) if γ > α,
and f(2α) =

{ 2 if e > α,

0 if e = α.

Proof. Assume that a prime power πe > 1 satisfies the conditions (π, A) =
= 1 and f(πe) = 0. First we prove that

(5) f(A) 6= 0.

and

(6) F (n) :=
f(An)
f(A)

= χπ(n) for all n ∈ IN, (n, π) = 1.

It is easy to check that for each prime P > max(A,B, πe, |C|) one can find
positive integers x, y such that πex = APy + B and (x, π) = (y, AP ) = 1. By
(4), we have

0 = f(πe)f(x) = f(πex) = f(APy + B) ≡ f(A)f(P )f(y) + C (mod P ),

which shows (5).

Let n0 be a positive integer for which An0 + B ≡ πe (mod πe+1). We
get from (4) that

(7) 0 = f [A(πe+1n + n0) + B] ≡ f [A(πe+1n + n0)] + C (mod πe+1n + n0)

holds for all n ∈ IN . Let M be any positive integer with M ≡ 1 (mod πe+1).
By (7), for each n ∈ IN, (πe+1n + n0, AM) = 1 we have

−Cf(AM) ≡ f(AM)f [A(πe+1n + n0)] = f(A)[f(AM)f(πe+1n + n0)] =
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= f(A)f [AM(πe+1n + n0)] ≡ −Cf(A) (mod πe+1n + n0)

is satisfied . Thus we have shown that

(8) f(AM) = f(A) for all M ≡ 1 (mod πe+1).

Repeating the argument used in the proof of Lemma 19.3 of [1], in order to
prove (6), we shall deduce from the (5) and (8) that

F (n) = F (m) if n ≡ m (mod π), (nm, π) = 1

and
F (nm) = F (n)F (m) for all n,m ∈ IN, (nm, π) = 1,

and so (6) is true.

Indeed, if (n, π) = 1 and n ≡ m (mod π), then there is a positive integer
x for which nx ≡ mx ≡ 1 (mod πe+1) and (x, Anm) = 1. From (8) we have

f(An)f(x) = f(Anx) = f(A) = f(Amx) = f(Am)f(x) 6= 0,

therefore f(An) = f(Am).

Now let n, m ∈ IN with (nm, π) = 1. Then there are positive integers
u, v such that nu ≡ 1 (mod πe+1) and mv ≡ 1 (mod πe+1) and (u,Anm) =
= (v, Anmu) = 1. Therefore, by (8) we get

f(A) = f(Anu) = f(An)f(u), f(A) = f(Amv) = f(Am)f(v)

and
f(A) = f(Anmuv) = f(Anm)f(u)f(v),

which imply f(A)f(Anm) = f(An)f(Am). Thus, the proof of (6) is completed.

Assume now that (π,B) = 1. Then for each γ ∈ IN , by (4) and (6) we
have

f(Aπγn + B) =
1

f(A)
f [A(Aπγn + B)] = χπ(Aπγn + B) = χπ(B) = f(B),

and so
f(Aπγn) ≡ f(B)− C (mod n) for all n ∈ IN.

This with n ≡ 1 (mod Aπ), n →∞ implies

f(Aπγn) = f(πγ)f(An) = f(πγ)f(A)χπ(n) = f(Aπγ)
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and
f(Aπγ) = f(B)− C for all γ ∈ IN.

This relation with γ = e shows that

f(πγ) =
f(B)− C

f(A)
= 0 for all γ ∈ IN

and so

F (n) = χπ(n) and F (An+B) ≡ f(A)F (n)+C (mod n) for all n ∈ IN.

Hence, Lemma 1 of [10] gives

π = 2, f(A) = −1, C = 1, (2, AB) = 1

and
F (n) = χ2(n) for all n ∈ IN.

The part (b) of Lemma 1 is proved.

Next assume that πα ‖ B with α ∈ IN . First we note that e ≥ α. Indeed,
if e < α, then for all n ∈ IN , (n, π) = 1, we have

0 = f(πe)f
(
An +

B

πe

)
= f(Aπen + B) ≡

≡ f(Aπen) + C = f(πe)f(An) + C = C (mod n)

which contradicts to C 6= 0.

By (4) and (6), we have

f(An + B) =
1

f(A)
f [A(An + B)] = χπ(An + B) =

= χπ(A)χπ(n) ≡ f(A)χπ(n) + C (mod n)

for all n ∈ IN, (n, π) = 1, which implies, similarly as above, that

(9) χπ(n) = 1 and f(An) = f(A) for all n ∈ IN, (n, π) = 1,

furthermore

(10) f(A) + C = 1.
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We note from (9) that

(11) f(n) = 1 for all n ∈ IN, (n, Aπ) = 1.

Let γ > α be an integer. Then by (4) and (11) we get

f(πα) = f(πα)f
(
Aπγ−αn +

B

πα

)
= f(Aπγn + B) ≡

≡ f(Aπγn) + C (mod n) for all n ∈ IN.

This and (11) with n →∞, (n,Aπ) = 1 implies

(12) f(πγ) =
f(πα)− C

f(A)
for all γ ∈ IN, γ > α.

Let δ < α be a positive integer. Then by (4) and (11), we infer that

f(πδ) = f(πδ)f
(
An +

B

πδ

)
= f(Aπδn + B) ≡

≡ f(Aπδn) + C (mod n) for all n ∈ IN, (n, π) = 1.

This and (11) with n →∞, (n,Aπ) = 1 give f(Aπδ) = f(πδ)−C, from which
and (10) we get f(πδ) = 1 for all δ < α.

Next we shall prove that f(A) = −1 and C = 2. As we have shown above,
there is a positive constant K such that |f(An + B)| < K, |f(An)| < K for all
n ∈ IN . Thus

|f(An + B)− f(An)− C| < 2K + |C| := G for all n ∈ IN,

consequently

f(An + B) = f(A)f(n) + C for all n ∈ IN, n ≥ G, (n,A) = 1.

By using induction on k, the last relation shows that

f
(
Akn+B

(
Ak−1 + . . . + A + 1

))
= f(A)kf(n)+C

[
f(A)k−1 + . . . + f(A) + 1

]

is valid for all integers k ∈ IN , n > G, (n,A) = 1. Therefore this with
n = πet > G, (t, Aπ) = 1 implies that

∣∣∣ C
[
f(A)k−1 + . . . + f(A) + 1

] ∣∣∣≤ K for all k ∈ IN.
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Since f(A) is an integer and f(A) 6= 0, f(A) 6= 1, the last relation implies
f(A) = −1.Therefore it follows from (10) that C = 2.

Finally, we prove that π = 2.
Assume that π ≥ 3. Let B = παB′. Then for each integer γ ≥ α there is

a positive integer N0 such that (Aπγ−αN0 + B′, π) = (N0, π) = 1. Then
(
Aπγ−α(πm + N0) + B′, Aπ

)
= 1,

therefore (11) implies

f [Aπγ(πm + N0) + B] = f
(
πα[Aπγ−α(πm + N0) + B′]

)
=

= f (πα) f
(
Aπγ−α(πm + N0) + B′) = f (πα) .

By (4) and (9), we have

f (πα) ≡ f [Aπγ(πm + N0)] + C = f(πγ)f [A(πm + N0)] + C =

= f(πγ)f(A) + C (mod πm + N0),

which gives
f (πα) = f(πγ)f(A) + C for all γ ≥ α.

This relation with γ = e shows that f (πα) = C, therefore f(πγ) = 0 for all
γ ≥ α. But f (πα) = C = 2, which is a contradiction. Thus we have proved
that π = 2.

By applying (12) for the case γ = e > α, we have

0 = f(πe) =
f(πα)− C

f(A)
= 2− f(πα),

which gives (c).
Lemma 1 is proved.

III. The proof of (III) in the particular case

Lemma 2. Assume that the conditions of the theorem are satisfied and
f(n) 6= 0 for all n ∈ IN, (n,A) = 1. If there are a prime p|A and a non-
negative integer a such that f(Apa) = 0, then there are a non-negative integer
α and a real-valued Dirichlet character χA (mod A) such that

f(n) = χA(n)nα for all n ∈ IN, (n,A) = 1.
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Proof. Assume that there are a prime p|A and a non-negative integer a
such that f(Apa) = 0. Let pb ‖ A.

By (4), we have

f(Apan + B) ≡ f(Apan) + C = C (mod n) for all n ∈ IN, (n, p) = 1.

Since (A,B) = (p, 2) = 1, this relation with Theorem B implies that there are a
non-negative integer α and a real-valued Dirichlet character χApa (mod Apa)
such that

(13) f(n) = χApa(n)nα for all n ∈ IN, (n,A) = 1 and f(B) = C 6= 0.

First we consider the case when α = 0. We shall prove that in this case

(14) f(Am + 1) = f(Am) + 1

and

(15) f(Apam) = 0

hold for all m ∈ IN .
Let m is a positive integer. Then by (13) we get that

f(Amn+B) = f(Am+B) and f(Amn)+C = f(Am)f(n)+C = f(Am)+C

hold for all n ∈ IN, n ≡ 1 (mod Apa), which with (4) proves that f(Am +
+B) = f(Am) + C for all m ∈ IN . It clear that (14) follows directly from this
relation and (13). Since f(B) = f(Apam + B) = f(Apam) + C = f(Apam) +
+f(B), we have f(Apam) = 0 and so (15) is proved.

Next we show

(16) f(An) = 0 for all n ∈ IN.

To see (16), first we consider the case when b ≥ a. By using (13) and (14)
we have

[f(An) + 1][f(Akn) + 1] = f(An + 1)f(Akn + 1) = f
[
An (Akn + k + 1)

]
+ 1,

and so

(17) f
[
An (Akn + k + 1)

]
= f(An)f(Akn) + f(Akn) + f(An)
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are satisfied for all k, n ∈ IN . By taking k ≡ −1 (mod pa) in (17), one can
deduce from (15) that

f(An)f(Akn) + f(Akn) + f(An) = f
[
An (Akn + k + 1)

]
= 0

for all n ∈ IN . Therefore

f(AN)f(AkN)f(n)2 + [f(AN) + f(AkN)]f(n) = 0

and so
f(AN)f(AkN)f(n) + f(AN) + f(AkN) = 0

holds for all N, n ∈ IN, (n,A) = 1. Hence we have used the fact f(n) 6= 0
for all n ∈ IN, (n,A) = 1. If f(AN) + f(AkN) 6= 0, then f(AN)f(AkN) 6= 0,
consequently f(n) = 1 for all n ∈ IN, (n,A) = 1. Thus (16) follows from
(14). If f(AN) + f(AkN) = 0, then f(AN)f(AkN) = f(AN) + f(AkN) = 0,
therefore

f(AN) = 0 for all N ∈ IN.

Thus (16) is proved for b ≥ a.

Let now b < a. In order to see (16) it is enough to prove that
f(Apa−b) = 0. By taking n = pa−bt, (t, A) = 1 and k ≡ −1 (mod pb),
we have Apa|An (Akn + k + 1), therefore by (15) and (17) we get

f(Apa−b)f(Akpa−b)f(t) + f(Apa−b) + f(Akpa−b)] = 0,

which, as above, implies that either (16) or f(Apa−b) = 0. The proof of (16) is
finished. Therefore Lemma 2 follows from (4), (16) and Theorem A.

Now we consider the case when α > 0. Let f(n) := F(n)nα for all n ∈ IN .
It is clear that F ∈ M∗

A and F(n) = χApα(n) for all n ∈ IN, (n,A) = 1. We
infer from (4) that F(An + B)Bα ≡ C (mod n), therefore

F(Am + B)Bα = F(Amn + B)Bα ≡ C (mod n)

holds for all n ∈ IN, n ≡ 1 (mod Apα). This shows that F(Am + B)Bα =
= C = f(B) = F(B)Bα, consequently F(Am + B) = F(B) for all m ∈
IN . Hence we have F(n) = χA(n) for some real-valued Dirichlet character
(mod A).

Lemma 2 is proved.
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IV. The proof of (II)

Lemma 3. Assume that the conditions of the theorem are satisfied,
furthermore

(18) f(n) 6= 0 for all n ∈ IN, (n,A) = 1.

and

(19) f(An) 6= 0 for all n ∈ IN.

If there is a positive integer D such that

|f(n)| = 1 for all n ∈ IN, n ≡ 1 (mod D),

then the following assertions hold:
(i) If f(Am) 6= −1 for a some m ∈ IN , then f(A) + C = 1,

f(An) = f(A) for all n ∈ IN

and
f(n) = 1 for all n ∈ IN, (n,A) = 1.

(ii) If f(Am) = −1 for all m ∈ IN , then

f(n) = 1 for all n ∈ IN, (n, 2A) = 1,

and
f

(
2α+γ

)
= C − f (2α) for all γ ∈ IN,

where 2α ‖ B, α ≥ 0. Furthermore, if α > 0, then C = 2 and f(2δ) = 1 for
δ < α.

Proof. First we note that if |f(n)| = 1 for all n ∈ IN, n ≡ 1 (mod D),
then

(20) |f(n)| = 1 for all n ∈ IN, (n, D) = 1,

Since (A,B) = 1, there is N0 ∈ IN satisfying the following relations
(2AN0 +B, D) = 1 and (N0, D) = 1. Then for all m ∈ IN, m ≡ 1 (mod D),
we have (2AN0m + B,D) = (2AN0 + B, D) = 1, therefore from (4) and (20),
one can infer that

1 = f(2AN0m + B)2 ≡
[
f (2AN0m) + C

]2

≡
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≡ f (2AN0m)2 + 2Cf (2AN0m) + C2 =

= f (2AN0)
2 + 2Cf (2AN0m) + C2 (mod m),

consequently

f (2AN0m) ≡ 1− C2 − f (2AN0)
2 (mod m)

holds for all m ∈ IN, m ≡ 1 (mod D). Since C and f (2AN0) are non-zero
integers, we have 1−C2 − f (2AN0)

2 6= 0. As we have seen in the proof of (8)
in Lemma 1, the above congruence implies that f(2AN0m) = f(2AN0) for all
m ∈ IN, m ≡ 1 (mod D). On the other hand, this relation also holds for
all N0 satisfying (2AN0 + B, D) = (N0, D) = 1 and for all m ∈ IN, m ≡ 1
(mod D). Hence we have

f(2Am) = f(2A) for all m ∈ IN, m ≡ 1 (mod D),

consequently

(21) f(n) = χ2AD(n) for all (n, 2AD) = 1

where χ2AD is a suitable real-valued character (mod AD).
By taking n = 2DLt in (4), where L, t ∈ IN, t ≡ 1 (mod 2AD), we get

from (21) that

f(B) = f(B)f(2ADLt + 1) = f(2ABDLt + B) ≡

≡ f(2ABDLt) + C = f(2ABDL)f(t) + C = f(2ABD) + C (mod t),

consequently

f(2ABDL) = f(B)− C = f(2ABD) for all L ∈ IN.

This with (21) shows that

|f(n)| < K for all n ∈ IN,

where K is some constant. Thus from (4) we infer that

(22) f(An + B) = f(An) + C for all n ∈ IN, n > G := 2K + |C|.

First we get easily from (22) that

(23) f(Amn + B) = f(Amn) + C for all n ∈ IN, n > G,
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and

(24) f
(
(Am)kn + B

(
(Am)k−1 + . . . + Am + 1

))
=

= (f(Am))k−1
f(Amn) + C

[
(f(Am))k−1 + . . . + f(Am) + 1

]

are valid for all integers k, m, n ∈ IN , n > G.
If f(Am) 6= −1 for some positive integer m. Since |f(n)| < K for all

n ∈ IN , therefore (24) implies
∣∣∣∣
f(Am)k−1[(f(Am)− 1)f(Amn) + Cf(Am)]− C

f(Am)− 1

∣∣∣∣ ≤ K

for all k, n ∈ IN , n > G, and so

f(Amn) =
Cf(Am)

1− f(Am)

holds for all n ∈ IN, n > G. One can easily check from this relation that
f(Amn) = f(Am) also satisfied for all n ∈ IN . Hence f(n) = 1 for all n ∈
∈ IN, (n,A) = 1, which with (22) shows that f(An) = C− f(An+B) = C− 1
for all n ∈ IN, n > G, consequently f(An) = f(A) for all n ∈ IN . Thus the
part (i) of Lemma 3 is proved.

To complete the proof of Lemma 4, it remains to consider the case when

(25) f(Am) = −1 for all m ∈ IN.

In this case, applying (24) with k = 2, we have

(26) f
(
A2mn + B (Am + 1)

)
= −f(Amn)

for all integers m,n ∈ IN , n > G. Let

µ :=
{

1 if 2| B
2 if 2 6 | B

and Rm := Am + 1 (m ∈ IN).

Since (A, 2) = 1, for each positive integer m there is a positive integer tm such
that (Rm, A2mtm+B) = (Rm, tm+B) = 1, (ARm, tm) = µ and (ARm, tm

µ ) = 1.
By considering n = Rm (ARmt + tm) and taking into account (26), it follows
from (25) that

f(Rm)f
[
A2m (ARmt + tm) + B

]
=

f (µRm)
f(µ)

f (ARmt + tm)
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for all m, t ∈ IN , t > G. This combined with (22) and (25) implies

[
f (µRm)

f(Rm)f(µ)
+ 1

]
f (ARmt + tm) = C

for all m, t ∈ IN , t > G. Hence we get from Lemma 19.3 of [1] that

f ∈M∗
ARm and f(n) = χARm(n) for all n, m ∈ IN, (n,ARm) = 1.

Since (R1, R2) = (A + 1, A2 + 1) = 2, the above relation gives

(27) f ∈M∗
2A and f(n) = χ2A(n) for all n ∈ IN, (n, 2A) = 1.

Let 2α ‖ B. Applying (22) and (27) with n = 2α+γm, γ ≥ 1, we have

f
(
2α+γAm

)
= f

[
2α

(
2γAm +

B

2α

)]
− C = f(2α)f

(
B

2α

)
− C

for all m ∈ IN . This shows that

f(n) = 1 for all n ∈ IN, (n, 2A) = 1

and
f

(
2α+γ

)
= C − f (2α) for all γ ∈ IN.

Finally, we consider the case when α > 0. In this case we have (A+B, 2) =
= 1, and so 1 = f(A + B) = f(A) + C = −1 + C, which gives C = 2. If δ < α,
then f(2δ) = f(A2δ + B) = f(A2δ) + C = −f(2δ) + 2, consequently f(2δ) = 1.
Thus the part (ii) of Lemma 3 is proved.

The proof of Lemma 3 is completed.

V. The proof of (III). Lemmas

Lemma 4. Assume that the conditions of the theorem are satisfied and
there are a prime π, infinitely many positive integers α1 < α2 < . . . and β1 <
β2 < . . . such that

πβi ‖ f(παi) (i = 1, 2, . . .).

Then
f(B) = C and f ∈M∗

Aπ.
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Proof. We assume that a prime π and the sequences {αk}∞k=1, {βk}∞k=1

of positive integers satisfy πβi ‖ f(παi) (i = 1, 2, . . .).
Let πα ‖ A, πβ ‖ B and A = παA′, B = πβB′. Since α1 < α2 < . . ., we

can assume that αi − βi > α + β for all i > i0.
Let n, m ∈ IN , (nm, Aπ) = 1. It is easy to check from the Chinese

Remainder Theorem that for all positive integers i > j with αj > α + β, there
are x, y, u and v such that

nx = Aπαi−α−βy + 1, (x, nmB) = 1, (y, π) = 1,

and
mu = Avπαj−α + B, (u, nmx) = 1, (v, π) = 1.

Therefore, by (4), we get

f(nB)f(x) = f(nxB) ≡ f(ABπαi−α−βy) + C =

= f(A′B′y)f(παi) + C ≡ C mod πβi ,

f(m)f(u) = f(mu) ≡ f(Avπαj−α) + C = f(A′v)f(παj ) + C ≡ C (mod πβj ),

and
f(nm)f(x)f(u) = f(nmxu) ≡

≡ f
[
Aπαj−α

(
Aπαi−α−βyv + Bπαi−αj−βy + v

)]
+ C ≡ C (mod πβj ),

consequently
f(nB)f(m) ≡ Cf(nm) (mod πβj ).

This shows that
f(nB)f(m) = Cf(nm)

holds for all n, m ∈ IN, (nm,Aπ) = 1. Thus f(B) = C and

f(nm) = f(n)f(m) for all n, m ∈ IN, (nm,Aπ) = 1.

Lemma 4 is proved.

Lemma 5. Assume that a multiplicative function f satisfies the condition
f(n) 6= 0 for all n ∈ IN and H is a positive integer. If the relations

(28) f(H(k + 1))f(Hk(k + 1)) = f(H(k + 1)2)f(Hk)
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and

(29) f(H(k + 1)) + f(Hk(k + 1)) = f(H(k + 1)2),

hold for all k ∈ IN , then

(30) f(Hn) = nf(H) holds for all n ∈ IN.

Proof. It is obvious that (30) holds for n = 1. From (28) and (29) we
have

(31) f(H(k + 1))f(Hk(k + 1)) = [f(H(k + 1)) + f(Hk(k + 1))] f(Hk),

which with k = 1 proves (30) for n = 2.
Assume that (30) is true for all n < N , where N ≥ 3. Since f ∈ M and

(N − 1, N) = 1, one can check from our assumption that

f(H(N − 1)N) =
f(H(N − 1))f(HN)

f(H)
= (H − 1)f(HN).

Applying (31) with k = N − 1, we infer from the last relation that

f(HN)(N − 1)f(HN) = [f(HN) + (N − 1)f(HN)] (N − 1)f(H).

Hence f(HN) = Nf(H) and so Lemma 5 is proved.

VI. The proof of the Theorem.

Assume that f(n) 6= 0 and f(Am) 6= 0 for all n,m ∈ IN, (n,A) = 1 and
|f(N)| > 1 for a some N ∈ IN, (N, A) = 1.

For each k ∈ IN, k > 1 let P = P (k) be a positive integer for which
2|ABkP (k) and let H := H(k, P ) denote the set of those n ∈ IN which
subjected to the following properties:

(32)





(ABkPn + 1, k + 1) = 1,

(2ABkPn + 1, k − 1) = 1,

(n,ABk(k2 − 1)P ) = 1.
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An application of the Chinese Remainder Theorem and the definition of
P (k) shows that H 6= ∅.

For each n ∈ H, by (4) we have

f(B)f(AB(k + 1)Pn + 1)f(AB2k(k + 1)Pn + B) =

= f(AB2(k + 1)Pn + B)f(AB2k(k + 1)Pn + B) ≡
≡ [

f(AB2(k + 1)P )f(n) + C
] [

f(AB2k(k + 1)P )f(n) + C
]

=

= f(AB2(k + 1)P )f(AB2k(k + 1)P )f(n)2+

+Cf(AB2k(k + 1)P )f(n) + Cf(AB2(k + 1)P )f(n) + C2 (mod n),

and
f(B)f(AB(k + 1)Pn + 1)f(AB2k(k + 1)Pn + B) =

= f(B)f
(
AB2(k + 1)2Pn(ABkPn + 1) + B

)
≡

≡ f(AB2(k+1)2P )f(AB2kP )f(n)2+Cf(AB2(k+1)2P )f(n)+Cf(B) (mod n).

These imply

(33) Xf(n)2 + Y f(n) ≡ C2 − Cf(B) (mod n) for all n ∈ H,

where

X = X(k, P ) = f(AB2(k+1)P )f(AB2k(k+1)P )−f(AB2(k+1)2P )f(AB2kP )

and

Y = Y (k, P ) = Cf(AB2k(k + 1)P ) + Cf(AB2(k + 1)P )−Cf(AB2(k + 1)2P ).

Let D = D(k, P ) = AB4k(k2 − 1)P . It is clear that

nm ∈ H for all n ∈ H for all m ≡ 1 (mod D).

Thus, by the above relation we get

Xf(n)2f(m)2 + Y f(n)f(m) ≡ C2 − Cf(B) (mod n),

consequently

(34) [f(m)2 − f(m)]Y f(n) ≡ (C2 − Cf(B))[f(m)2 − 1] (mod n)

for all n ∈ H and for all m ≡ 1 (mod D), (n, m) = 1.
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If f(m)2 − 1 = 0 for all m ≡ 1 (mod D), then we get a contradiction by
using Lemma 3 and the fact |f(N)| > 1. Therefore there is an m ∈ IN such
that m ≡ 1 (mod D), and [f(m)2− 1][f(m)2− f(m)] 6= 0. If C 6= f(B), then
Y 6= 0 and there are infinitely many n ∈ H such that (n,m) = 1. It follows
from (34) that

(C2 − Cf(B))[f(m)2 − 1]f(m) ≡ [f(m)2 − f(m)]Y f(n)f(m) ≡

≡ (C2 − Cf(B))[f(m)2 − 1] (mod n),

which shows that f(m) = 1, which is impossible.
Assume now that C = f(B). Then we get from (34) that

(35) [f(m)2 − f(m)]Y f(n) ≡ 0 (mod n) for all n ∈ H.

If Y 6= 0, then we infer from (35) that there are primes π1, π2 ∈ H, π1 6= π2

and

[f(m)2 − f(m)]Y f(πϕ(D)t+1
i ) ≡ 0 (mod π

ϕ(D)t+1
i ) for all t ∈ IN

hold for i = 1, 2. Hence, Lemma 4 implies that f ∈M∗
A.

Repeating the argument used above, using the fact f ∈ M∗
A, one can

deduce that

[f(m)2 − f(m)]Y f(n) ≡ 0 (mod n) for all n ∈ IN, (n,A) = 1.

Since [f(m)2 − f(m)]Y 6= 0, this congruence shows that f(n) ≡ 0 (mod n)
for all n ∈ IN, (n,A) = 1. The proof of (III) follows from (4) and Theorem B.

Finally, assume that C = f(B) and Y = 0. Then we get from (33) that
Xf(n)2 ≡ 0 (mod n) for all n ∈ H. Similarly as above, the proof of Theorem
is finished for the case when X 6= 0. Now let X = Y = 0. Then Lemma 5
shows that

f(2AB2n) = nf(2AB2) for all n ∈ IN.

This combined with Lemma 4 implies f ∈ M∗
A, consequently f(An) =

= nf(A) for all n ∈ IN and f(n) = n for n ∈ IN, (n,A) = 1.
Theorem is proved.
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