
Annales Univ. Sci. Budapest., Sect. Comp. 21 (2004) 135-151

VERTEXLIGHTS WITH FIXED DIRECTIONS
IN SIMPLE POLYGONS

A. Spillner and H.-D. Hecker
(Jena, Germany)

Abstract. We study the problem of determining the smallest α ∈ [0, 2π]
for a given simple polygon P with n vertices, such that P can be illuminated

by α-vertexlights the directions of which are fixed. We present an algorithm

that finds a solution to this problem in O(rn3) time, where r is the

number of reflex vertices of P . Furthermore we show that with the help of

parametric search the problem can be solved in O(rn2 log2 n) time. We

use the extended real RAM as the model of computation.

1. Introduction

We suppose the reader to be familiar with the concepts of polygons and
simple polygons. Given a simple polygon P we denote the interior with int(P),
the exterior with ext(P) and the boundary with bd(P). The set of vertices of P
we denote by vert(P) and the set of edges of P we denote by edge(P). Given a
point x ∈ P we will say that a point y ∈ P is visible from x, if the segment xy
is completely contained in P . With vis(x, p) we denote the set of all points in
P visible from x. A floodlight is a light source, that projects light inside a cone
C. We denote the right bounding ray of C with right(C) and the left bounding
ray with left(C). If the size of C is α, we will call C an α-floodlight. If the apex
of C is located at a vertex of a polygon, we will call C a vertexlight. We do
not allow two floodlights to share a common apex. For convenience we identify
a floodlight with the cone it projects light in. Given a simple polygon P and
a floodlight F with apex a ∈ P we will say that a point y ∈ P is illuminated
by F , if y is visible from a and y ∈ F . With ill(F, P) we denote the set of all
points in P illuminated by F . Finally we will denote the Euclidean distance

136 A. Spillner and H.-D. Hecker

between two points x and y by ‖x − y‖ and the open disk with center c and
radius % by ball(c, %).

In [6] it is shown, that for every α ∈ [0, π) there exists a simple polygon,
which cannot be illuminated by α-vertexlights. On the other hand every simple
polygon with n vertices can be illuminated by at most n− 2 π-vertexlights. In
[15] it is shown, that it is NP-hard to determine the smallest α ∈ [0, π] such
that a given simple polygon can be illuminated by α-vertexlights. We do not
know whether or not the corresponding decision problem belongs to the class
NP, but one could apply the techniques used in [12] to show that it is at least
decidable under reasonable assumptions about the input.

The proof of NP-hardness in [15] relies heavily on the fact that a vertex-
light can be rotated around its apex. In this report we try to find out what
happens, when the direction of every floodlight used is fixed. We will first study
the corresponding decision problem. To solve this we only need to combine
well known techniques in computational geometry such as ray shooting and
the computation of arrangements of line segments. Then we use this decision
algorithm to construct two algorithms for the minimization problem. The first
and less efficient one, with respect to its time complexity, is a rather direct
exploitation of the geometry in the problem. The second algorithm is more
efficient regarding the running time but only of little practical value since it
is based on the parametric search technique. A discussion of the application
of this technique in computational geometry, its shortcomings and possible
alternatives can be found in [3]. For a summary of results in the area of
visibility and illumination problem we refer the reader to [17] and [16].

2. The decision problem

First we state the problem in a more formal way:

• Instance: A simple polygon P with n vertices and for every vertex v
of P a floodlight F (v) with apex v.

Question: Is P =
⋃

v∈vert(P)

ill(F (v), P)?

We will refer to it as problem
∏

1.

2.1. Algorithmic tools

Computation of the visibility polygon

Vertexlights with fixed directions in simple polygons 137

For a point q ∈ P the set vis(q, P) is a simple polygon, which can be
determined in O(n) time [13]. From vis(q, P) we can simply extract in O(n)
time the vertices of P visible from q.

Ray shooting in simple polygons

In a ray shooting query for a given point g ∈ P and a ray R with starting
point q the following should be returned:

• The point q if there is an ε > 0 such that R ∩ ball(q, ε) ∩ int(P) = ∅.
• The point t ∈ R with t 6= q and t ∈ bd(P) and ‖q − t‖ minimal else.

In [10] a procedure is given, with the help of which we can answer such ray
shooting queries in O(log n) time after a preprocessing of the polygon P that
takes O(n) time.

Arrangements of line segments

A set of line segments will be called simple, if the intersection of every
two distinct elements is either a point or empty. Let S be a simple set of line
segments. We are interested in the following planar graph G(S):

• The set of vertices V contains every endpoint of a segment in S and
every point that is the intersection of two distinct segments.

• Two distinct vertices u and v from V will be connected by an edge, if
there is a segment S ∈ S such that uv ⊆ S and there is no vertex w distinct
from u and v with w ∈ uv.

In [5] an algorithm is given, which computes the trapezoidal decomposition
T (S) of S as DECL (Doubly Connected Edge List, [14]). Additionally we have
for every edge E of T (S) a pointer to the segment in S containing E. The
algorithm runs in O(|S| log |S|+ |V|) time and handels all possible degenerate
cases explicitely. But from T (S) we can easily obtain G(S) in O(|V|) time by
deleting appropriate edges.

A lexicographic order on line segments

For points in the plane we have the usual lexicographic order. We introduce
a similar order for line segments. Let S1 = p1q1 and S2 = p2q2 be line segments.
W.l.o.g. we suppose that p1 ≤ q1 and p2 ≤ q2, otherwise we would rename the
points. We will say S1 ≤ S2 if either p1 < p2 or p1 = p2 and q1 ≤ q2.

2.2. The algorithm

Our algorithm uses the visibility cell decomposition of a simple polygon
which can be found in [8] and [11].

138 A. Spillner and H.-D. Hecker

Algorithm 2.1

(1) Determine a list Lref of the reflex vertices of P .

(2) Determine for every v ∈ Lref a list Lvis(v) of all those vertices of P visible
from v and distinct from v.

(3) Remove for every v ∈ Lref from the List Lvis(v) all those elements w with
v 6∈ ill(F (w), P).

(4) Initialize an empty balanced search tree T for line segments. Every
segment S = p1p2 stored in T will be part of the boundary of ill(F (v), P)
for at least one v ∈ vert(P). For S we maintain an entry bor(p1, p2) which
is the number of floodlights F , such that int(ill(F, P)) is to the right when
we traverse S from p1 to p2. Similarly we maintain an entry bor(p2, p1).

(5) Perform for every v ∈ vert(P) and the ray left(F (v)) a ray shooting query
in P . Let t be the point returned. If t 6= v, we will search the segment
vt in T . If vt is not found, we will insert it, set bor(v, t) = 1 and set
bor(t, v) = 0. If we find vt in T , we will increase bor(v, t) by one. We do
the same for every v ∈ vert(P) and the ray right(F (v)).

(6) Perform for every v ∈ Lref and every w ∈ Lvis(v) a ray shooting query
with v as starting point and with the ray which is contained in the ray ~wv.
Let t be the point returned. If v 6= t, we will proceed analogously to Step
(5).

(7) Compute the graph G(S) as defined above, where S is the set of segments
in T together with the edges of P .

(8) Choose a face C in G(S) and determine a point q ∈ int(C). Determine
the number of floodlights F with q ∈ ill(F, P). Start at C a breadth-first
search on the faces of G(S). When we cross an edge E from a face C1

to a face C2 we determine the segment S = p1p2 containing E. With the
help of bor(p1, p2) and bor(p2, p1) we can from the number of floodlights
illuminating C1 determine the number of floodlights illuminating C2. If
every face of G(S) is illuminated by at least one floodlight we output yes,
else no.

Theorem 2.1. Algorithm 2.1 works correctly and it runs in O(rn log n+k)
time with k ∈ O(rn2), where r is the number of reflex vertices of P and k is
the number of vertices of the constructed planar graph. Furthermore we need
O(k) space to store this graph in the DECL.

Proof. The algorithm computes a planar graph which is related to the
visibility cell decomposition of P . It is easy to see that the interior of a face
of this graph is either completely contained in the region illuminated by a
floodlight or it is disjoint to it. In determining for every face the number

Vertexlights with fixed directions in simple polygons 139

of floodlights illuminating it, we can decide whether or not P is completely
illuminated.

The proof that the constructed graph has O(rn2) vertices can be done as
in [11]. Here we only add the 2n bounding rays of the floodlights.

So let us turn to the analysis of the time complexity of our algorithm. Step
(1) can be done in O(n) time by a single traversal of the vertices of P . Step (2)
can be done in O(rn) time by determining the visibility polygon for every reflex
vertex of P . Step (3) can also be done in O(rn) time, since we only have to test
whether or not v ∈ F (w). In Step (5) after the above mentioned preprocessing
of P a ray shooting query and an update of the balanced search tree can be
done in O(log n) time, which gives altogether O(n log n) time. Similarly Step
(6) takes O(rn log n) time. It is not hard to see, that S is a simple set of line
segments. In Step (7) we use the above mentioned algorithm from [5]. Since
we have O(rn) segments, this takes us O(rn log n + k) time. The breadth-first
search on the graph can be done in O(k) time with the help of the information
stored in the DECL.

Corollary 2.1. When P is a convex polygon, the problem
∏

1 can be
decided in O(n log n + k) time with k ∈ O(n2).

3. Minimizing the size of the given floodlights

For a point p, a ray R with starting point p and a β ∈ [0, 2π] we
denote by F (p,R, β) the floodlight with apex p, angular bisector R and size β.
Occasionally we will refer to R as the direction of the floodlight. With this we
state the following minimization problem

∏
2:

• Instance: A simple program P with n vertices and for every vertex v
a ray R(v) with starting point v.

Objective: Determine α, which is the smallest β ∈ [0, 2π] such that P =
=

⋃
v∈vert(P)

ill(F (v, R(v), β), P)?

3.1. Restricting the problem

As a first step we will attack the following problem
∏

3:

• Instance: A convex polygon Q, a finite nonempty set M of points and
for every point p in M a ray R(p) with starting point p and int(Q)∩R(p) = ∅.

140 A. Spillner and H.-D. Hecker

Objective: Determine α, which is the smallest β ∈ [0, 2π] such that Q ⊆
⊆ ∑

p∈M

F (p,R(p), β)?

For every β ∈ [0, 2π] we set

B(M,β) = {left(F (p, R(p), β)) : p ∈ M}
⋃
{right(F (p,R(p), β)) : p ∈ M}.

Lemma 3.1. For every β ∈ [0, 2π] the set cl(Q\ ⋃
p∈M

F (p, R(p), β)) is

empty or a convex polygon.

Proof. Since for every p ∈ M we have int(Q) ∩ R(p) = ∅, it is not hard
to see that Q\ ⋃

p∈M

F (p, R(p), β) is the intersection of the closed halfplanes

determined by the straight lines containing an edge of Q and some of the open
halfplanes determined by the straight lines containing a bounding ray of a
floodlight.

Lemma 3.2. It is α = 2π or there exist mutual distinct elements E1, E2

and E3 from B(M, α)
⋃

edge(Q) and a point p with p ∈ E1 ∩ E2 ∩ E3.

Proof.

Case 1. (α = 2π). Then we are done.
Case 2. (α < 2π). There could be a q ∈ M with Q ⊆ ⋃

r∈M\{q}
F (r,R(r), α).

Then we consider the set M∗ = M\{q}, because B(M∗, α) ⊆ B(M, α)
and min{β ∈ [0, 2π] : Q ⊆ ⋃

r∈M∗
F (r,R(r), β)} = α. So w.l.o.g. there

is a q ∈ M with Q 6⊆ ⋃
r∈M\{q}

F (r,R(r), α). Then we know that C =

= cl(Q\ ⋃
r∈M\{q}

F (r,R(r), α)) is a convex polygon and C ⊆ F (q,R(q), α).

Subcase 2.1 (q 6∈ C). Then there is a v ∈ vert(C) with

v ∈ left(F (q, R(q), α))
⋃

right(F (q, R(q), α))

since otherwise we would obtain a contradiction to the minimality of α.
However v is the point of intersection between two distinct elements of
B(M\{q}, α)

⋃
edge(Q).

Subcase 2.2 (q ∈ C). Then it is q ∈ bd(C) ∩ bd(Q).

Subsubcase 2.2.1 (q 6∈ vert(C)). Then q lies in the relative interior of
an edge E of C. But then at least one of the endpoints of E is an element
of left(F (q, R(q), α))

⋃
right(F (q, R(q), α)), since otherwise we would obtain

Vertexlights with fixed directions in simple polygons 141

a contradiction to the minimality of α. This endpoint of E again is the
intersection between two distinct elements of B(M\{q}, α)

⋃
edge(Q).

Subsubcase 2.2.2 (q ∈ vert(C)). Then at least two distinct elements E1 and
E2 of B(M\{q}, α)

⋃
edge(Q) intersect at the point q, such that two edges of

C incident to q are contained in E1 and E2 respectively. If E1 and E2 are edges
of Q, q will be a vertex of Q and because of the minimality of α there is a vertex
v of Q distinct from q such that v ∈ left(F (q, R(q), α))

⋃
right(F (q, R(q), α)).

So at the point v intersect two edges of Q and a bounding ray of a floodlight the
apex of which is distinct from v. If E1 is an edge of Q and E2 is a bounding ray
of a floodlight, then at q two distinct bounding rays and an edge of Q intersect.
If E1 and E2 are bounding rays, then they belong to distinct floodlights and
so three mutual distinct bounding rays intersect at the point q.

So a strategy for finding α could be to determine the set C of all those
β ∈ [0, 2π] where three mutual distinct elements from B(M, β)

⋃
edge(Q) have

nonemty intersection. Then we could search for the smallest β ∈ C with
Q ⊆ ⋃

p∈M

F (p,R(p), β). However at the moment it is not clear whether or

not searching in C will be easier than searching in the whole interval [0, 2π] for
α. We first have to explore some properties of C.

From now on we will not consider the bounding rays of the floodlights or
the edges of Q itself, but the straight lines containing them. In this sense we
will occasionally speak about the straight line corresponding to a bounding ray
or an edge of Q. Doing so, we will not miss an element of C since when three
elements of B(M, β)

⋃
edge(Q) for any β ∈ [0, 2π] have nonempty intersection

the three corresponding straight lines also have. On the other hand we gain
more clarity in the following argumentations.

Next we introduce an appropriate parameter for the straight lines corre-

sponding to the bounding rays in B(M, β) when β ∈
[
0,

π

2

]
, since the use of

β itself caused some trouble. The ranges β ∈
(

π

2
,
3π

2

]
and β ∈

(
3π

2
,2π

]

are treated analogously. For every p ∈ M we suppose that the direction
of the ray R(p) is given by the vector (a(p), b(p)). Please have a look at
Figure 1. Then the direction of right(F (p,R(p), β)) is given by the vector
(a(p), b(p))+µ(−b(p), a(p)) and the direction of left(F (p, R(p), β)) is given by

the vector (a(p), b(p)) + µ(b(p),−a(p)) with µ = tan

(
β

2

)
. So µ varies within

the interval [0, 1].
Now suppose Ax + By + C = 0 is the equation of the straight line

corresponding to left(F (p,R(p), β)). Then it is not hard to see that A,B
and C are linear expressions in µ. The same is true for the equation of

146 A. Spillner and H.-D. Hecker

(4) For every straight line G1 in Ledge and every two distinct straight lines
G2 and G3 in Lray determine the polynomial H(µ). If H(µ) 6≡ 0 then
determine the real roots of H(µ) and insert them in the list Lrel.

(5) For every three distinct straight lines G1, G2 and G3 in Lray determine
the polynomial H(µ). If H(µ) 6≡ 0 then determine the real roots of H(µ)
and insert them in the list Lrel.

(6) While Lrel contains at least two distinct values do:

(6.1) Determine the median µmed of the values in Lrel and the lists

Lless = {µ ∈ Lrel : µrel ≤ µmed} , Lgreat = {µ ∈ Lrel : µ > µmed} .

(6.2) Test with algorithm 3.2 if Q is contained in the union of the floodlights
for µmed. If this is true then set Lrel = Lless else set Lrel = Lgreat.

(7) Output an element of Lrel as a value for the parameter where the size of
the floodlights is minimal.

Algorithm 3.2. We want to test, whether or not Q is contained in the
union of the floodlights when the size of them is β.

(1) The set cl

(
Q\ ⋃

p∈M

F (p,R(p), β)

)
is contained in the intersection of the

halfspaces determined by the edges of Q and some halfspaces determined
by the bounding rays of the floodlights (Lemma 3.1). Compute a list L of
these halfspaces.

(2) Compute the intersection of the halfspaces in L.

(3) If the interior of this intersection is empty output yes else no.

Theorem 3.1. With Algorithm 3.1 we can find a value for the parameter,
such that the floodlights have minimal size α, in O

(
m3 + nm2

)
time, where

n is the number of vertices of Q and m is the number of points in M . We
use the extended real RAM as the model of computation. In fact we suppose
that we can compute square roots and cubic roots of real numbers in O(1) time.
Furthermore we need O(m3 + nm2) space for the list Lrel.

Proof. That our algorithm solves the problem, is an immediate conse-
quence of the considerations preceding the algorithm. So we can turn our
attention to the analysis of the time complexity. Step (1) takes O(n) and Step
(2) O(m) time. For Step (3) we need O(nm) time. Step (4) can be done in
O(nm2) and Step (5) in O(m3) time. The loop in Step (6) is passed at most
O(log(m3 + nm2)) time.

Vertexlights with fixed directions in simple polygons 147

To determine the running time of one pass of this loop we need to know the
time complexity of Algorithm 3.2. For one p ∈ M we can determine the points
of intersection between the bounding rays of the floodlight and the boundary
of Q in O(log n) time. Thus we can compute the list L in O(m log n) time.
We know that L contains O(n+m) halfspaces the intersection of which can be
computed in O((n + m) log(n + m)) time. Summing up over all passes of the
loop in Step (6) gives O((m + n) log2(m + n)).

The time for determining the median and the corresponding lists over all
passes of the loop gives O(m3 +nm2), which is thus the time complexity of the
whole algorithm.

3.2. A first algorithm for problem
∏

2

We now want to use the methods developed in the previous subsection to
solve the minimization problem

∏
2. Therefore we will decompose P in suitable

convex polygons. This is done in the first part of the following algorithm. This
decomposition again is related to the visibility cell decomposition of a simple
polygon [8], [11].

Algorithm 3.3

(1) Determine a list Lref of the reflex vertices of P .

(2) Determine for every v ∈ Lref the list Lvis(v) of all those vertices of P
which are visible from v and distinct from v.

(3) Initialize an empty balanced search tree T for line segments.

(4) Perform for every v ∈ vert(P) and the ray R(v) a ray shooting query in
P . Let t be the point returned. If t 6= v, then try to insert the segment vt
in T .

(5) Perform for every v ∈ Lref and every w ∈ Lvis(v) a ray shooting query
with starting point v and the ray which is contained in the ray ~wv. Let t
be the point returned. If t 6= v, then try to insert vt in T .

(6) Compute the planar graph G(S) as in Algorithm 2.1, where S is the set
of line segments in T together with edge(P).

(7) Determine for every segment E in S the straight line G containing E.
Store G in a list Ledge.

(8) Determine for every bounding ray R the straight line G containing R,
i.e. again the coefficients of the equation of G as linear functions of the
parameter µ. Store G in a list Lray.

148 A. Spillner and H.-D. Hecker

(9) For every vertex v of G(S) and every straight line G in Lray determine
the relevant values for the parameter µ where v ∈ G. Store those values
in a list Lrel.

(10) For every straight line G1 in Ledge and every two distinct straight lines in
Lray determine the polynomial H(µ). If H(µ) 6≡ 0 then find the real roots
of H(µ) and insert them in Lrel.

(11) For every three straight lines G1, G2 and G3 in Lray determine the
polynomial H(µ). If H(µ) 6≡ 0 then find the real roots of H(µ) and insert
them in Lrel.

(12) While Lrel contains at least two distinct values do:

(12.1) Determine the median µmed of the values in Lrel and the lists

Lless = {µ ∈ Lrel : µ ≤ µmed}, Lgreat = {µ ∈ Lrel : µ > µmed}.

(12.2) Test with Algorithm 2.1 whether or not for the value µmed the polygon
P is completely illuminated by the floodlights. If this is true then set
Lrel = Lless else set Lrel = Lgreat.

(13) Output an element of Lrel as a value of the parameter µ where the size of
the floodlights is minimal.

Theorem 3.2. With Algorithm 3.3 we can determine a value for the
parameter such that the floodlights have minimal size in O(rn3) time, where r
is the number of reflex vertices of P . We use the extended real RAM as the
model of computation. Furthermore we need O(rn3) space for the list Lrel.

Proof. It is not hard to see that the faces of the planar graph G(S)
are convex polygons and by construction of G(S) the rays which determine
the directions of the floodlights do not intersect the interior of any face. So
the interesting values for the parameter are collected in Lrel. In fact Lrel will
possibly contain a lot more elements than necessary, since for a face of the
graph we do not distinguish between vertices which can see this face and those
which can not. However from the values in Lrel we can determine the smallest
that suffices for illumination of P by the floodlights.

The analysis of the running time is a combination of the analysis of
Algorithm 3.1 and Algorithm 2.1, so we do not need to go into details. Please
note that G(S) again has O(rn2) vertices and that Lrel contains O(rn3)
elements.

Corollary 3.1. If P is a convex polygon Algorithm 3.3 runs in O(n3)
time.

Vertexlights with fixed directions in simple polygons 149

3.3. A second algorithm for problem
∏

2

We now want to use the parametric search technique. It can be applied to
the problem

∏
2 as follows. If we have a sequential algorithm As running in Ts

time and a parallel algorithm Ap running in Tp time using Np processors for
the decision problem

∏
1, then we can construct a sequential algorithm for the

problem
∏

2 running in O(TpNp + TsTp log Np) time.
We already have a sequential algorithm As, namely Algorithm 2.1. Thus

we have Ts ∈ O(rn2). What remains to do is describing a parallel algorithm
for the problem

∏
1.

Lemma 3.5. Problem
∏

1 can be solved by a parallel algorithm in O(log n)
time using O(rn2) processors on a CRCW-PRAM.

Proof. We will show that every step of Algorithm 2.1 can be executed in
O(log n) time with O(rn2) processors on a CRCW-PRAM. For Step (1) this
is clear. In Step (2) for the computation of the visibility polygon of a reflex
vertex we use the algorithm presented in [2]. It runs in O(log n) time and uses

O

(
n

log n

)
processors. So for computing the visibility polygon for all r reflex

vertices parallel by we need O(rn) processors. Parallelization of Step (3) is easy.
In [10] it is shown that the preprocessing of the polygon P for the ray shooting

queries in Steps (5) and (6) can be done in O(log n) time with O

(
n

log n

)

processors. The ray shooting queries itself can be performed parallelly each in
O(log n) time. Instead of a tree for storing the line segments we use a list,
which is sorted afterwards and duplicate elements are removed. All this can be
done in O(log n) time using O(rn) processors. For computation of the graph
G in Step (7) we use the algorithm from [9] which for given l line segments
computes the trapezoidal decomposition of these line segments in O(log l) time
using O(l log l+m) processors where m is the number of intersecting pairs of line
segments. Thus we can determine the graph G in O(log n) time with O(rn2)
processors. Next we compute a spanning tree T of the dual graph of G. This
can be done in O(log n) time using O(rn2) processors by an algorithm presented
in [18]. Then we root T at an arbitrary vertex w and determine the number of
floodlights that illuminate the face of G corresponding to w. Using Euler-Tour
technique and a prefix-sum algorithm we determine for every vertex of T the
number of floodlights illuminating the corresponding face of G in O(log n) time
with O(rn2) processors and decide thus problem

∏
1.

Remark 3.1. Similar ideas for developing a parallel decision algorithm
were used in [1] for computing the k-th smallest distance of a set of points in
the plane and in [4] for computing the minimum Hausdorff distance between
polygon objects.

150 A. Spillner and H.-D. Hecker

With the sequential and the parallel algorithm together we have the
following

Theorem 3.3. We can solve the problem
∏

2 in O(rn2 log2 n) time with
a sequential algorithm using parametric search.

4. Concluding remarks

We consider the problem of illuminating a simple polygon with vertexlights
the size of which is as small as possible. It could be interesting to study
similar problems in the world of simple rectilinear polygons. From [7] we know,

that for every σ ∈
[
0,

π

2

)
there is a simple rectilinear polygon, which cannot

be illuminated by σ-vertexlights and every simple rectilinear polygon can be
illuminated by

π

2
-vertexlights.

References

[1] Agarwal P.K., Aronov B., Sharir M. and Suri S., Selecting distance
in the plane, 6th Annual Symposium on Computational Geometry, 1990,
321-331.

[2] Atallah M.J., Chen D.Z. and Wagener H., An optimal parallel
algorithm for the visibility of a simple polygon from a point, J. Assoc.
Comput. Mach., 38 (1991), 516-533.

[3] Agarwal P.K. and Sharir M., Efficient algorithms for geometric opti-
mization, ACM Computing Surveys, 30 (1998), 412-458.

[4] Agarwal P.K., Sharir M. and Toledo S., Applications of parametric
searching in geometric optimization, ACM-SIAM Symposium on Discrete
Algorithms, 1992, 72-82.

[5] Burnikel C., Exact computation of Voronoi diagrams and line segment
intersection, PhD thesis, Universität Saarbrücken, 1996.

[6] Estivill-Castro V., O’Rourke J., Urrutia J. and Xu D., Illumination
of polygons with vertex lights, Information Processing Letters, 56 (1995),
9-13.

Vertexlights with fixed directions in simple polygons 151

[7] Estivill-Castro V. and Urrutia J., Optimal floodlight illumination
of orthogonal polygons, Proc. Canadian Conference on Computational
Geometry, 1994, 81-86.

[8] Guibas L.J., Motwani R. and Raghavan P., The robot localization
problem, SIAM Journal on Computing, 26 (1997), 1120-1138.

[9] Goodrich M.T., Intersecting line segments in parallel with an output-
sensitive number of processors, SIAM Journal on Computing, 20 (1991),
737-755.

[10] Hershberger J. and Suri S., A pedestrian approach to ray shooting:
Shoot a ray, take a walk, Proceedings 4th ACM-SIAM Symposium on
Discrete Algorithms, 1993, 54-63.

[11] Klein R., Algorithmische Geometrie, Addison Wesley, 1997.
[12] O’Rourke J., The complexity of computing minimum convex covers for

polygons, Proc. 20th Allerton Conference, 1982, 75-84.
[13] O’Rourke J., Art gallery theorems and algorithms, Oxford University

Press, 1987, 203-206.
[14] Preparata F.P. and Shamos M.I., Computational geometry: An

introduction, Springer, 1985.
[15] Spillner A. and Hecker H.D., Minimizing the size of vertexlights in

simple polygons, Mathematical Logic Quaterly (to appear)
[16] Shermer T., Recent results in art galleries, Proc. of the IEEE, (1990),

1384-1399.
[17] Handbook of computational geometry, eds. J.R. Sack and J. Urrutia, North

Holland, 1998.
[18] Shiloach Y. and Vishkin U., An O(log n) parallel connectivity algo-

rithm, J.of Algorithms, 3 (1982), 57-67.

(Received November 21, 2001)

A. Spillner and H.-D. Hecker
Department of Algorithms
Faculty of Mathematics and Computer Science
Friedrich Schiller University
Ernst Abbe Platz 1-4
D-07740 Jena, Germany

