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ON THE SOLUTIONS OF σ2(n) = σ2(n + `)

J.-M. De Koninck (Québec, Canada)

Abstract. For each integer n ≥ 1, let σ2(n) =
∑

d|n
d2. We show that

if a famous conjecture of Schinzel is true, then σ2(n) = σ2(n + 2) has an

infinite number of solutions. We also examine the solutions of the more

general equation σ2(n) = σ2(n + `), where ` is a fixed positive integer.

1. Introduction

For each integer n ≥ 1, let σ2(n) =
∑

d|n
d2. It is mentioned in the book of

R.Guy [1], page 68, that Paul Erdős “doubts that

(1) σ2(n) = σ2(n + 2)

has infinitely many solutions”. We shall show that if a famous conjecture of
Schinzel often called Hypothesis H is true, then (1) has an infinite number
of solutions. We will also show how to construct such an infinite family of
solutions and provide all 24 solutions < 109.

We also study the more general equation

(2) σ2(n) = σ2(n + `),

where ` is a fixed positive integer. In particular, we will show that if ` is odd,
(2) has only a finite number of solutions, while if ` is even, a large family of
solutions of (2) can be derived from those of (1) .
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2. The case ` odd

Given a positive odd integer `, we will show that

(3) σ2(n) = σ2(n + `)

has only a finite number of solutions, and in some cases none at all.
Actually we shall show that, given a fixed odd positive integer `,

σ2(n) < σ2(n + `) if n is odd,(4)
σ2(n) > σ2(n + `) if n is even and large enough.(5)

First assume n is odd. Define the positive integer α implicitely by

(6) n + ` = 2α · n + `

2α
with

(
2α,

n + `

2α

)
= 1.

The function σ2(n) being multiplicative, it follows from (6) that

σ2(n + `) = σ2(2α)σ2

(
n + `

2α

)
=

4α+1 − 1
3

σ2

(
n + `

2α

)
>

>
4α+1 − 1

3

(
n + `

2α

)2

≥ 5
4
(n + `)2.

On the other hand, since n has no even divisors,

σ2(n) < n2 +
n2

32
+

n2

52
+ . . . =

π2

8
n2.

Since
5
4

>
π2

8
, inequality (4) holds indeed for all odd n ≥ 1.

Assume now that n is even and choose α so that

n = 2α · n

2α
with

(
2α,

n

2α

)
= 1.

Then

σ2(n) = σ2(2α)σ2

( n

2α

)
=

4α+1 − 1
3

σ2

( n

2α

)
>

4α+1 − 1
3

( n

2α

)2

≥ 5
4
n2,
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while

σ2(n + `) < (n + `)2 +
(n + `)2

32
+

(n + `)2

52
+ . . . =

π2

8
(n + `)2.

Since
5
4

>
π2

8
and ` is fixed,

5
4
n2 >

π2

8
(n + `)2 if n is large enough, which

proves (5).

Note that it is easy to show that n = 6 is the only solution of (3).
Using a computer one can easily check that (3) has no solution if ` = 3, 9,

15, 27, 33, 35, 39, 45, 51, 57, 69, 75, 81, 87, 93 or 99.
On the other hand, it is easy to show that if (`, 6) = (`, 7) = 1, then n = 6`

is a solution of (3). Indeed, since σ2(6) = σ2(7), we have

σ2(n) = σ2(6`) = σ2(6)σ2(`) = σ2(7)σ2(`) = σ2(7`) = σ2(n + `).

3. The case ` = 2

We shall first look for odd solutions n of

(7) σ2(n) = σ2(n + 2)

which satisfy

(8) n = pq, n + 2 = rs,

where p > q and r < s are odd primes.
It follows from (7) and (8) that

1 + p2 + q2 + n2 = 1 + r2 + s2 + (n + 2)2

p2 + q2 = r2 + s2 + 4n + 4

p2 + q2 − 2pq = r2 + s2 + 2pq + 4

p− q = r + s.

Hence we shall look for distinct odd primes p, q, r, s such that

(9)

{ p− q = r + s, p > q,

pq + 2 = rs, r < s.
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For such primes, we must have pq + 2 = r(p − q − r) = pr − (q + r)r, from
which it follows that r > q and hence that

(10) q < r < s.

Now, using pq + 2 = rs and (10), we have

(11) q(r + s + q) + 2 = rs

and therefore 2qs + q2 + 2 > q(r + s + q) + 2 = rs, from which we obtain
2qs + (q2 + 2)− rs > 0 and hence

r < 2q +
q2 + 2

s
< 2q +

q2 + 2
r

.

It follows that r2 − 2qr − (q2 + 2) < 0, which yields

q < r < q +
√

2(q2 + 1).

Hence if we set ∆ = r − q, we have, using (11),

s =
(r + q)q + 2

r − q
=

(r + q)q + 2
∆

=
(2q + ∆)q + 2

∆
= q +

q2 + 1
∆/2

.

First consider the case ∆ = 2. In this case,

s = q2 + q + 1 and p = q + r + s = q + (q + 2) + (q2 + q + 1) = q2 + 3q + 3.

Hence, if we can find infinitely many q’s such that

(12) q, q + 2, q2 + q + 1 and q2 + 3q + 3 are all primes,

then equation (7) has infinitely many solutions. But it follows from the
following conjecture of Schinzel that there exist infinitely many such quadruples
of primes.

HYPOTHESIS H (A.Schinzel and W.Sierpinski [2]) Let k ≥ 1 and f1(x), . . . ,
fk(x) be irreducible polynomials with integer coefficients with positive leading
coefficients. Assume that there exists no integer > 1 dividing the products
f1(n) . . . fk(n) for all integers n. Then there exist infinitely many positive
integers m such that all numbers f1(m), . . . , fk(m) are primes.
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If q = 5, then the prime quadruple (5, 7, 31, 43) yields the solu-
tion n = pq = 43 · 5 = 215. The next quadruple of the form (12) is
(1 091, 1 093, 1 191 373, 1 193 557) which provides the solution

n = pq = 1193 557 · 1 091 = 1 302 170 687.

But there are smaller solutions!
Small solutions n = pq of (7) will be obtained if p and q are relatively

small. Since

p = q + r + s, r = q + ∆ and s = q +
q2 + 1
∆/2

,

the size of p will be contained if s is not too large. Hence, searching for solutions
of (7) using a computer, we need to consider those “admissible” values of ∆
which are big enough to keep 2(q2 + 1)/∆ small, but not too big so that

r = q + ∆ remains small. This will be accomplished if ∆ +
2(q2 + 1)

∆
is as

small as possible. Clearly this happens if ∆ ≈ q
√

2. Moreover it is clear that
∆ must also satisfy q2 ≡ −1 (mod ∆/2) which sets the further restriction( −1

∆/2

)
= 1. It turns out that ∆ is “admissible” if

∆ = 2α
∏

pβ‖∆
p≥5

pβ (α = 1, 2, p ≡ 1 (mod 4)).

The first values of ∆ are therefore 2, 10, 26, 34, 50, 122, 130, 202, ...

Besides the even solutions n = 24 and n = 280, we found, using the above
algorithm, 78 solutions of σ2(n) = σ2(n + 2) below 1012. Below, we give all 24
solutions smaller than 109.

We believe that, besides n = 24 and n = 280, all solutions of σ2(n) =
= σ2(n+2) are of the type described in our algorithm, but we could not prove
this.

4. The case of even ` ≥ 4

Let ` ≥ 4 be an even integer. It is clear that the method outlined in
Section 3 produces all solutions of (7) of the form n = pq, where p and q are
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