Annales Univ. Sci. Budapest., Sect. Comp. 20 (2001) 157-177

ON A VERY THIN SEQUENCE OF INTEGERS

J.-M. De Koninck and N. Doyon (Québec, Canada)

Abstract. We say that an integer n > 1 is an insolite number if it does
not contain the digit 0 and if both the sum and the product of the squares
of its digits divide n. We first display several infinite families of insolite
numbers. Denoting by /(z) the number of insolite numbers < z, we then
show that

exp {%(log log )? + O(loglog z log log log :c)} & I(z) < 20482,

We also provide a heuristic argument in favor of I(z) > z" for some real
n > 0. Finally we display the list of all 195 insolite numbers less than 1018
and show that no three consecutive insolite numbers exist.

1. Introduction

A positive integer n is called a Niven number (or a Harshad number) if
it is divisible by the sum of its (decimal) digits. Niven numbers have been
extensively studied (see for instance Kennedy & Cooper [3], Grundman [2] or
Pickover [4]). Recently [1], we showed that, given any ¢ > 0, the number N(z)
of Niven numbers not exceeding z satisfies

zloglogz

'Tf < N(z) K
log =

and conjectured that N(z) ~ cz/logz, as & — oo, with ¢ = ;—jlog 10 &~ 1.1939.
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In this paper, we consider a much thinner set of integers, namely those
integers n > 1 which do not contain the digit 0 and which are divisible by both
the sum and the product of the square of their digits. We call these integers
insolite numbers and denote their set by /.

The smallest fifteen elements of I are:
111, 11 112, 1 122 112, 111 111 111, 122 121 216, 1 111 112 112,

1111211136, 1 116 122 112, 1 211 162 112, 11 111 113 116, 11 111 121 216,
11112122 112,11 121 114 112, 11 132 111 232 and 11 133 122 112.

The list of all 195 insolite numbers < 108 is given in Section 6.

As we shall see, it turns out that the estimation of the counting function
I(z) :== {n <z : n € I} offers a much greater challenge than that of N(z).
Nevertheless, after displaying several infinite families of insolite numbers, we
shall establish that

exp {%(log log £)% + O(loglog z log log log 1)} < I(z) < 20462

and provide a heuristic argument in favour of /(z) 3> 2" for some real n > 0.
Finally we establish that no three consecutive insolite numbers exist and
conjecture that no two consecutive ones exist.
For convenience, throughout this paper, given a positive integer n, we shall
denote by p(n) (resp. s(n)) the product (resp. the sum) of the squares of its
digits.

2. Insolite numbers with certain digit patterns

The following table gives, for each positive integer k¥ < 9, the smallest
n € I containing the digit k:

k n insolite
1 111
9 11112 k n insolite
3 1111211136 6 122121216
4 11121114112 7 123412112474 112
5 8 121111216128
9

*
11...1311111311...175(%)

11 11 911131213824

The star (%) in this table indicates that the given number is only the
smallest known n € I containing the digit 5. Since an insolite number
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containing the digit 5 must be a multiple of 25, it is clear that all its digits
must be odd and that it must end with the digits 75, since otherwise it would
be a multiple of 10 and thus contain the digit 0.

It is clear that an odd integer n belongs to I only if it has an odd number
of digits. Moreover since an odd insolite number cannot have any even digit,
it is not so surprising that odd insolite numbers are quite rare. In fact,
the only odd insolite numbers < 1022 are the 7 numbers 111, 111 111 111,
11 111 731 111 111 113, 11 117 311 111 311 111, 11 131 117 111 113 111,
13111 131 117 111 111 and 17 111 113 131 111 111.

It 1s also interesting to observe that the smallest insolite number which
contains the maximum possible number of distinct digits, that is whose set of
digits is precisely {1,2,3,4,6,7,8,9}, is the 18-digit number
711 813 411 914 121 216.

3. Infinite families of insolite numbers

The sequence of insolite nurnbers is infinite. Indeed, this follows by
observing that numbers of the form 11...1  where k¥ = 3% for some positive

k
integer «, are insolite. This is easily shown by induction on a.
Among the insolite numbers < 105, only two contain the digit 9, namely

911131213824 and 691112321114112.

Nevertheless, we can show that there exist infinitely many insolite numbers
containing the digit 9.

In fact, we will show that, for each positive integer m, there exists n € I
containing m times the digit 9 and (3*™*! — 81m) times the digit 1.

We first observe that for such an integer n, we have p(n) = 3*™ and
s(n) = 3*™+1. Hence if we can show that, by placing the 9’s in the appropriate
positions in the chosen integer, then 3*™*!|n, from which it will follow that
nel.

Moreover, regardless of the positions of the 9’s, it is clear that such a
number is necessarily divisible by 9, since the sum of its digits is a multiple of

9.
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We first consider the case m = 1. In this case, we examine the numbers
containing one 9 and 162 times the digit 1. For each non-negative integer
k < 162, set

ng:=11...1911...1
e S e

k 162—k

and for any two integers k, ¢, with 0 < k < £ < 162, consider the difference

ng—ng=11...1911...1-11...1911...1=799...9200...0 =
e S~ N
k 162—k £ 162-¢ £—k-1 162—¢£

=72x11...100...0.
N N——
-k 162—¢

It is clear that 9|(ng — ng) and that

(1) 243|(nk — ne) < 27|11...1 <= 27|(£ — k).
-k

Our goal will be to show that there exists kg, 0 < kg < 26, such that ni, =
= 0 (mod 243), thereby allowing us to conclude that nx, € I. We shall proceed
by contradiction in assuming that such a number kg does not exist, that is that

(2) ng Z0 (mod243) fork=0,1,2,...,26.

But for 0 < k < £ < 26, we have that 27 does not divide £ — k, in which case
because of (1) it follows that

(3) ng #ng (mod 243).

But the 27 numbers np each belong to one of the 27 congruence classes
0,9,18,27,...,234 modulo 243 (because 9|n;, for each k). Because of hypothesis
(2), the first congruence class must be excluded and we conclude that the
27 numbers nj each belong to one of the 26 remaining congruence classes
9,18,27,...,234 modulo 243. By Dirichlet’s principle, it follows that two of the
ni’s must belong to the same congruence class, say ny and n, for certain k,#
with 0 <k < £ < 26, in which case n; = n, (mod 243), which contradicts (3).
We may therefore conclude that there exists an integer ko € [0, 26] such that
nk, = 0 (mod 243) and therefore that ny, € I.

In fact, using a computer, we find that ko = 26 is the appropriate choice
and moreover that the six 163-digit numbers

11...191, 11...1911...1, 11...1911...1, 11...1911...1,

161 134 28 107 55 80 82
11...1911...1 and 11...1911...1
S N — e =

53 109 26 136
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are all insolite numbers.

We now move to the case m = 2 and follow essentially the same reasoning.
Indeed, since 3*™+1 —81m = 19683162 = 19521, for each non-negative integer
k < 19521, we define

ng:=11...1911...19
= S —

k 19521~k

and, for 0 < k < £ < 2186 = 3" — 1, we consider the difference

ng—mne=11...1;911...19-11...1911...19=72x 11...100...0.
— S—— N—— N—— Se——N——
19521-k 4 19521-¢ -k 19522-¢

As in the case m = 1, it is clear that 9|(nx — n,) and moreover that
19683|(nk — n) if and only if 2187|(€ — k). But, for 0 < k < £ < 2186, we have
that 2187 does not divide £ — k, in which case ny # np (mod 19683). Following
the same reasoning, we conclude that there exists an integer ko € [0, 2186] such
that 19683 divides ny,, which identifies ng, as an insolite number. A computer
search reveals that kg = 1879.

For the general case, given a positive integer m, we define

(4) ngi=11...19 11...1 99...9
N—— No—— S——
k 34m+1_81m—-k m-1

and consider the difference

(5) ng—mng=72x11...1 00...0
S—— S——
L—k 34m+1_-80m-1-¢

Again we have that 9|(ny — ny) and moreover that 3*™+!|(n) — n;) if and only
if 39m=1|(¢ — k). But, for 0 < k < £ < 3*~1 — 1, we have that 3*"~! does not
divide £ — k, so that

ny #n, (mod 3*™*1).

Following the same reasoning, we conclude that there exists an integer ko €
€ [0,3%"~1—1] such that 3*™*!|n, , which identifies n, as an insolite number.

Hence to each positive integer m, there corresponds an insolite number
containing m 9’s. It follows from this that there exist an infinite number of
insolite numbers containing the digit 9.

Remark 1. Using essentially the same argument, it is possible to show
that there exist infinitely many insolite numbers containing the digit 3. Indeed
given a positive integer m, one can construct n € I made up of 3m times the
digit 3 and 35™~! — 27m times the digit 1. For such an integer n € I, we have
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p(n) = 3™, while s(n) = 35™~1. Hence proving that 3°™|n will establish that
n € I. We shall only examine the case m = 1, the general case being generally
similar to the above ”digit 9” proof.

We want to construct an integer n made up of 3 times the digit 3 and
3% — 27 = 216 times the digit 1 in such a way that if the 3’s and the 1’s are
placed in the appropriate positions, we have that n € I. To do so, for each
non-negative integer k£ < 216, we define

ng=11...1311...133.
N~ N

It is clear that 9|nj since the sum of its digits is a multiple of 9, namely 225.
Now for 0 < k < £ < 3% — 1 = 80, consider the difference

ng—ng=11...1311...133-11...1311...133 =
k 216k ¢ 216-¢

=199...9800...0=9%x22...200...0.
N N — S N——
—k-1 216-£+2 -k 216-£42

(6)

We want to show that there exists an integer ko € [0,3* — 1] such that ny, =
= 0 (mod 35). Assume the contrary, that is that

(7) ng #0 (mod3°%) fork=0,1,2,...,80.

It is clear, from (6), that 81 A(ny — n,) for 0 < k < £ < 80, which certainly
implies that

(8) ng #ne (mod 3°).

But the 81 numbers ng,n;,...,ng each belong to one of the 81 congruence
classes 0,9,18,...,720 modulo 729 (since 9|ny for all k). Because of hypothesis
(7), the first congruence class must be excluded and therefore the 81 numbers
ny must belong to the remaining 80 classes 9,18,...,720 modulo 729. Hence
by Dirichlet’s principle, two of the nx’s must belong to the same congruence
class, say ny and n, for certain k,£ with 0 < k < £ < 80, in which case we
have ny = n, (mod 3%), which contradicts (). This proves that there exists an
integer ko € [0,80] such that ng, = 0 (mod 3°) and therefore that ny, € I. A
computer search reveals that ko = 8 is the appropriate choice.

Given an arbitrary positive integer m, we consider the integers
ng=11...13 11...1 33...3,
N——r Se—_—— S=—

k 36m-1_27m—-k 3m-1
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and observe that p(ng) = 3™, s(nx) = 3°™~! and that the sum of the digits of
nk is a multiple of 9, namely 3°™~- — 18m. Then following the same argument,
we find an appropriate integer ko € [0,3%™~2 — 1] such that n;, € I.

Remark 2. A quick look at the list of insolite numbers given in Section
6 suggests that most insolite numbers are even. However, so far, we have only
displayed infinite families of odd insolite numbers. By slightly modifying the
definition of the nj’s given in Remark 1, we can construct an infinite family of
even insolite numbers. Indeed given a positive integer m, we first consider the
integers

ng=11...13 11...1 33...3122112,
—— —— ——

k 36m+4_27m_33-k 3m+l
where 0 < k < 35™~1 — 27m. For such an integer ni, we have that

- 36m+4 . 26 — 36m+4

p(ng) and  s(ng)

Clearly 2%|n for all k. Hence we only need to show that 3¥™*%|n; for some
positive integer k = ko.

But observing that 9|ni for cach k and then considering the difference
ng —ng for 0 < k < £ < 35m+2 _ 1 we obtain, following the same argument as
in Remark 1, the existence of an integer ko € [0,35™%2 — 1] such that ng, € I,
thereby putting together an infinite family of even insolite numbers.

4. An upper bound for the number of insolite numbers smaller than
a given quantity

It is clear that the set of insolite numbers is of density zero. Indeed, let
I(z) be the number of insolite numbers < z and set y := [logz/log10]. Since
by definition an insolite number does not contain the digit 0, it follows that
the number of k-digit insolite numbers < z is smaller than

9k < gH < glogz/log 10 _ zlog9/ log 10 < 1,0955,

which implies that

p
I(z) < ng <9 < logz - 209 & 209,
k=1

which proves our claim.
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This upper bound for I(z) can easily be improved. First write
9) I(z) = I(z) + (),

where I(°)(x) (resp. I1(¢)(z)) stand for the number of odd (resp. even) insolite
numbers < z. Since the only possible digits of an odd insolite number are
1,3,5,7 and 9, we have that

u
(10) I(")(a:) < Zsk < - 5H <<logl,.5logr/log10 — logx~:c’°gs/'°gw <<£L‘0'7.
k=1

On the other hand, since the only possible digits of an even insolite number
are 1,2,3,4,6,7,8 and 9, we have that

(11)
19(z) < 2#:8" <8 < logz 8082/ 10810  Jog g . 41088/ log 10 o ;,0.9031
k=1
Combining (10) and (11) in (9), we get that
I(z) < 2%,
Now using a more delicate argument, we can show that
(12) I(z) € z¢ with ¢ = 0.523.

To prove this, first write Ji for the number of k-digit even insolite numbers.
"
Fix z large and let p be as above so that I1(®)(z) = Y Ji. By writing n =
k=1
= (d1,dy ...,d;), we mean that dy,ds,...,ds are the k decimal digits of n =

k
= Z d,~10"“i.
i=1

For a given k < p, write k = r + s, where » > s > 0 are to be chosen later,
and for each non-negative integer j < r, denote by I; the number of k-digit
even insolite numbers n = (dy, ds, ..., d;,dr41,...,dr4+;) for which j of the first
r digits are different from 1.

Now fixing the number R := (dy,d>,... d;) and using the fact that p :=

.

:= [] d? divides n and that the last digit of n is even, we want to count those

i=1
integers m such that

. s = . . . s
R-10°4+11...12<n=4.-p-m< R 10°+99...96,

s—1 s-1
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that is ,
R-10°+11...12 R-10°+99...96
s—1 s—1
<m<
4p -~ 4p

Since the number of positive integers in an interval [a, b] does not exceed b—a+1,
it follows that the number of such integers m is less than

99...96 11...12 88...8
= = — N——
=l sTl o ,1_£‘10’—1+1<£ 10‘_}_1<
4p 4p 4p T 4p 9 36 p -
2 10°
<. =
<35 T +1,

since p > 47. Note further that among the first 7 digits of such an integer

n, there are <;> possible positions for these j digits, and in each of these

(;) positions we may place either one of the 7 digits 2,3,4,6,7,8,9; here we

omitted the digit 5 because n is even.
Combining these estimates, we cbtain that

(13) Jr = Z[] <
j=0

() (210 )2 gy r)(z" AL
<Jz_%(j)7 (364j+1>_9 10;220 i)\ +]§ i) =

2 7\’ P2 (1T S (1T

In the above, we only used the fact that p > 47 where j is the number of digits
among dy, ..., d, which are greater than 1. We can do better if, among these j
digits, we consider those jo digits which are greater than 2; for these we shall
get p > 972 . 47772 in which case we have

r J . s
r J i 10 _
<X (5) 2 (4)v (5 t1) -
J:

j2=0

-5 (s 5 (1)) 50)

j=0 J2 j=

zj: (fz) 6 =

J2=0
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o () E - 50)7-

j=0

S 23 " T
=10 (1—2> + 87,

.2 11
which improves (13) since l—g < T

We now take this procedure a step further, by considering, among the js
digits > 3, those ja digits which are > 4, thus providing p > 1672942734772,
Repeating this until we reach the digit 9 (again omitting the digit 5), we get
in the end

) om (5) S () N () e [
J"<]Z=:0(j)j;<12>J§<Js)j§,(i4)j§,(is>x

EEEE

je=0 Js jz=0 J P’ )

with
p* — 8147 . g4ie—i7 _49js—js ,36j4—js . lsja—jq ,gjz—ja .4i—I2

It then follows that

s . or . __ 380965
(14.) Jk < 10° - (] + 8 y with C1 = m ~ 1.49977.
It remains to choose r and thereby s = k — r so that the right hand side of the
above inequality is minimal. We therefore need to find the minimum of
ci\7"

£(r) = 10 (TG/] 48,

k being fixed. For this purpose, assume that r is real and look for ry such that
f'(ro) = 0. Doing so, we find

. klog 10 + log(log(10/c;)/log8) e+ log(log(10/c1)/ log8)
0= log(80/c1) - log(80/c1)

where
log 10

= W 72 0.579.

C2
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Hence substituting r = [c2k] back into (14) and using the fact that k < 5 =
= [log z/log 10], we finally get

Jr € 2%, with ¢3 ~ 0.5228,

which proves that
£ b z
(15) 1)z Z g J & (logz)z® < 2052,

In order to estimate I(°)(z), we use the same method. Since all the digits of
an odd insolite number are odd, we get

o< ()5 ()5 )5 ()

i=0 j2=0

10° 1
X\ §T7ea95-dao5ia—ragi-3a T 1)

=—-10° ¢} +5 < 10°- ¢} + 57,

where ¢4 &~ 1.184, which leads to
(16) [(0)(1,) < 170'431.

Combining (15) and (16), and recalling that I(z) = I(9)(z)+I(®)(z), we obtain
(12).

We shall now refine this argument in order to obtain I(z) < z%%%2; to do
this, because of (16), we only need to show that

(17) I®)(z) « ¢ with ¢ = 0.462.

Let 1 < s < k be fixed integers. Let n be a k-digit even insolite number
and write it as follows:

(18) n_(dl,dg,.., ,,(ls.{,l,...,d3+g,d3+g+1,.,.,dk),
where ¢ is to be determined later. For convenience, define u implicity by

s+t+u=r=k.
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For the moment, let the digits d1,ds, ..., d; be fixed, denoting this part of n

S
by S, and set ps = [[ d? and denote by Hs the number of such even insolite
i=1
numbers n. Consider the digits d;41,ds+2, ..., ds+¢, denoting this part of n by
T. Proceeding as above, but this time letting j be the number of digits among

those in part T" which are greater than 1, we get that

ey (N (DS EEEEE) L)

Jj2=0 ja=0 ja=C js=0

X Z( )(36105 0 “)

jr=0

where
p*(T) = 8177 . g4is—i7 . 4Qis=Js . 3gia—Js . |gIs—Js . Qi2—Js . 4i—Jz

It follows that

u .t

1
(19) Hs <220 g

Ps

where ¢, is the constant defined in (14).

We now fix the sum ¢t + © = r and look for the minimum value of the right
hand side of (19) as ¢ varies. First we write

() = 10r;. ct Lo er log 10 Cf;:)gcl-—ioglo) + gtloEs
Solving
) = et(logey—log 10)(logpc1 — log 10)e log 10 4 logs . 61985 g,
S
we find
. o
where ¢5 = loglog 8 — loglog(10/¢;) ~ 0.0368.

log(80/c1)
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In order to keep t non-negative, we shall set t = 0 if pg > 10”. Substituting
log10 —1 . :
t=tp:= [W] in the right hand side of (19), we conclude that

r—to+1 .t r
107 —toTiey® L8 < 20 - cg
(44 )

PS Ps

Hs <

where
Ce X 333, c7 ~ 0.523.

So far, we have kept the first s digits fixed. We shall now allow these digits to
vary. Recalling that J; stands for the number of k-digit even insolite numbers

and letting m denote the number of digits (among d, ..., d,) which are larger
than 1, while ma,..., m7 are defined as the j;’s above, we have if ps < 107,
that

m m my m

3 4
EAORAORAE > - (m) 2, (%)
(21) " / \ T
ms "M
<3 (m) )

where

- 81m7 i 64m¢,—m7 .49m5—m5 . 36m4—m5 . 16m3—m4 ., gmg-—mg '4m—~m2.

Proceeding as we did earlicr, we find that
(22) Jr < 20g, - g,

where

] ] 1 1 L1 1
—1 4+ L 25339,
=145 T oaer Tage T 36e Tige T oo T aer 3

It remains to consider the case ps > 107, for which we get

my

S (S (E)E ) E () 8 ()

ma=0

2 (m) X (m) e

(23)
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Thus combining (22) and (23) to cover both cases, we get
(24) Je <20-ch-cy+8 =20-cE™" . ci+8° = g(s),

say. We shall now look for the minimum of g(s) as s varies. Hence solving
g'(s) = 0, we find

klogcs loglog 8 — log log(ce/csg)
= — = k —
(25) s log(8cq/cs) log(8ce/cs) crof = e,

where cj9 ~ 0.5116 and c¢;; ~ 0.8603. Substituting s = [ci0k] in (24), we
obtain, for each k < p,

(26) Jk & clsc—cmlc—{»lcgwk + 8c10k & xcwlogS/ log 10 — 1,012’
say, where ¢;2 < 0.462, which in turn yields

m
log
I(e)(x) = ZJI: < ggg_l%‘]" & (logz)z®? & 20462

k=1

which establishes (17) and thus proves that

I(z) € z¢ with ¢ = 0.462.

5. A lower bound for I(z)

From the fact that the numbers 11...1, where @ = 1,2, ... are all insolite,
3
it follows that I(z) > loglogz.

We shall now exploit the argument dcvelopped in Section 3 to show that
(27) I(:L) > e%(loglog:)’-&O(l-;g log z log loglog =)
First we observe that while still maintaining 34™+! — 80rn — 1 — £ zeros in the

tail end of the difference ny —n, given by (5), we can vary slightly the definition
of ny given in (4), by moving to the right some or all of the m — 1 digits 9
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which now all appear in the tail of ny. In other words, our proof would have
followed the same path from relation (5) on, had we defined nj as

ng:=11...19 11...1 11...191...11...191...1,

k 34m=-1_f.) 8.34m-1_81m+41+(m—1) digits

where this last part of nj is made of 8 -3*"~! —80m + 1 times the digit 1 and

m — 1 times the digit 9. This means that the number of acceptable choices for

. . 8-3*m=1 — 80m

the definition of ny is equal to Y := < m—1 )

Noting that for a fixed positive integer m, the corresponding number nj

has 3*m+! —80m digits, it follows that, given a large number « and setting p =

= [log z/ log 10], one can easily see that for the largest integer n; < z, we have
that

(28) 3%t _80m < p < HTFUHL _go(m 4 1) = 9 343 — 80m — 80.

Hence, if m is a large enough, we have

4 , 4 1
n4m-—-1 _ = o 4m+3 _ = — .1
(29) 8-3 80m > 57 (9-3 80m — 80) > g3k > 7ag  los .

It also follows from (28) that, if m is large enough,
2.35.3%m 5 3% . 3"+ _80m — 80 > p,

so that

34m > __:u_

2.35
and therefore
logu —log(2-3%) _ 1

(30) m> 4log 3 > 5

loglog .

It follows from (29) and (30) that

(31) y> ([[%Qlogm] ) - <b>

Lloglog z]

say.
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Using Stirling’s formula in the form
1
(32) n"e "V2mn < nl< (1 + ;) n"e~"V2mn,

we obtain

al atti/2

(33) (b) = Wa—b) ~ F1/2(a— byt 71+ 1/8)(1+ 1/(a = b))var.

Using the fact that log(1 —0) < —f for 0 < # < 1 and that (14+1/b6)(1+1/(a—
—b))v2r < 3 if z is large enough, we get from (33) that

log (3] >
o8,
1 1 1 b
- — - 0 — —b - —_— —_ =
> <a+ 2) loga (b+ 2> logb (a + 2) (loga a) log 3

2

1 b ,
:bloga—blogb+b—§logb~ E+ - —log3 =

Za

=bloga—blogb+ b+ O(logb) =
= é(log log z)? + O(loglog z log log log ),

which, recalling (31), proves (27).

Remark 3. By a heuristic argument, we can show that I(z) > z" for
some real number n > 0. The argument gces as follows.

Let n = (dy,ds, ..., dx) be a k-digit number made up of m times the digit
3 and k — m times the digit 1, so that

k k
p = p(n) ::Hd?:gm and s =s(n) :::Zd?:9m+(k—m):8m+k.

i=1 i=]

In order to have that s|p, we let k = 19m (so that s = 27m)and m = 3%, 8 > 1,
so that

s =27Tm = 3F*3|32m = p,

since f + 3 < 2m. We therefore have (:; ) = (I?nm> such integers n.
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k
Noting that > d; = 3m+ (k—~m) = 2m + k = 21m = 21 - 3P it is clear
i=1
that 9|n. Therefore it follows that the expected number of insolite numbers
among these numbers n, is equal to

1 [k 1 19
o =g () =5 ()

It remains to find a lower bound for @(m). Again using (32), we get that, for
each m > 1,

1 (19m)! 9 1 1 (19m)iom
9m (18m)tm! = 2/27 /m 9™ (18m)18mmm —

S Lo p1eem 1919 ’”>(55)m
Vm 9Im 1818 T /m \ 9. 1818 '

Hence, given a large number z, let 4 = [logz/log 10]. Then let k be the largest
integer of the form k = 19 - 3% < y, so that

Q(m) =

k=19-3° < p<19. 37+
19m < p<19-3-m.

We then have |
ogz
7 — -1
STm > p> 1010~ b

so that
logz

) D ———
"2 57 og 10

It follows that
I(.’II) > 9(55)m > 9(>5.5)logz/(57»log10) - :L,r]’

where | 5
log 5 0
= 12
=57 1 =~ 0.0129,

as required.
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6. The list of insolite numbers < 10'8

To identify the insolite numbers smaller than 1
First, using a computer, one easily finds the only two insolite numbers of no
more than 6 digits, namely 111 and 11112. To find all insolite numbers of k
digits, for each integer k € (7, 18], we use the procedure developped in Section
4, treating separately the search for even insolite numbers from that of the odd

018

ones. We thus obtain the 195 elements of / given below.

111 11111121216 32111111232

11112 11112122112 111122111232
1122112 11121114112 111132122112
111111111 11132111232 111211322112
122121216 11133122112 111312122112
1111112112 11213111232 112111322112
1111211136 11311322112 113112122112
1116122112 12111213312 121111216128
1211162112 21111311232 121111322112

11111113116

31111221312

121121114112

11111111114112
11111111211 312
11111111312 112
11126112141312
11211111111312
11221121114112
11311111112112
11611142111 232
12111212122112
12111213 146112

1111111111112112
1111111137122112
1111112121434112
1111311612122112
1112111412314112
1112112142221 312

12113411162112
12121141211136
12142111113 216
21111212122112
21132161114112
21214111113 216
21311114121216
41111131226112
111111111111 312
111111111122112

1221114113114 112
1311213111386112
1312414721114112
1711122111111168
2112121221414912
2121114412122112

131111132112
131112122112
211111322112
211121114112
311112122112
911131213824
1111111113312
1111121114112
1121313321216
1331611322112

111111311111112
112221411213312
123111311118336
123412112474112
211211261116416
211912113131712
311111111111112
311111111411136
323113121114112
691112321114112

11111111111642112
11111111212122112
11111131121421312
11111713119122112
11111731111111113
11114216111112192

, we proceed as follows.
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1118123112333 312
1133111113221312
1143212114 313216
1221111131111424

11161121122271232
11311181111181312
11322114111111168
11672111311322112
11914213121114112
12111141121114112
12231111621722112
13111182132314112
13111222111322112
13111131117111111

111111113111121216
111112312223 711232
111117113126 111232
111117322241114112
111122317 121421312
111141121123418112
111211113112141824
111211114612211712
111211141121114112
111272111211131136

119612124161114112
121111313111111232
121126117121114112
121131111132122112
122291211114 381312
131121114211418112
133243141121114112
141111212114313 216
142121211121631232
161212211111411712

411181112321114112
421141121311113216
611131121414111232
623131141121114112
711813411914121216

2131214171111424
2311141121114112
2911112172122112
8111111182221312

13311611232141312
14113111811162112
14 312122311131 136
16111117116122112
16211411111411712
17111113131111111
18111112112111616
18111132422111232
18111211411341312
18211112111112192

111281413121114112
111311221121114112
111311522211418112
111711111242121216
111711312211113216
111721311311162112
112111111121114112
112172113111113216
112211418113114112
112217111114121216

164116129218 822 144
211111111261274112
211113121713242112
211117212161114112
211131112223711232
211216141313114112
211231237121114112
211311611111123712
211431132161114112
212133113111642112

11117311111311111
11121111121416192
11131111113818112
11131117111113111

21111111213311232
21113121132122112
22111111212122112
22214111618138112
22413113311113216
27121123116122112
31211413313421312
32111132114313216
32411112111194112
61161114113114112

112433111114121216
112711113121211136
113111221 344141312
113133111111122112
113171111111181312
113211111122141184
113311121411211264
113341142112141312
114217113132122112
116113171111322112

213131211611111424
217311112113242112
221371111313114112
224111222411231232
311121111114842112
313141212161114112
331111112211431424
331119133111112112
331122111127911936
371161111111322112
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7. Consecutive insolite numbers

Tt has been established by Kennedy & Cooper [3] that there exist infinitely
many 20-tuples (n,n+ 1,...,n 4+ 19) of Niven numbers and furthermore that
there was no such thing as 21 consecutive Niven numbers.

We can show that no three consecutive msolite numbers exist. Indeed
assume first that both n = (di,ds,...,di) and n+ 1 = (e;,ey1,...,ex) belong
to I (clearly they must have the same number of digits). It is obvious that
1 <dp <8andthat d; = ¢; for 1 <i < k—1. Hence d;|n and d;|n + 1 for
1< 1< k-1, which implies that d; = e; = 1for1 <i<k—1and e =dx+1.
Assuming that both n = (1,1,...,1,dx) and n+1=(1,1,...,1,dr+1) belong
to I, we consider separately the cases dy = 1,2,...,8. First observe that no
insolite number ends with the digits 14 or 18. We may also exclude dy = 5
because the last two digits of n would then be 15, instead of 75 as we have
seen in Section 2. Similarly, we can exclude d; = 3,7 because then ey = 4,8
respectively, also a nonsense. Therefore the only three remaining possibilities
are dy = 1,2 and 6.

Consider the first of these three cases. Let n = 11...1 be a k-digit number
such that n,n+ 1€ I. Since s(n+1) = k -1+ 4 = k + 3 must divide n + 1,
it follows that if we can show that k is divisible by 3, we shall have reached
a contradiction (because then both n and n + 1 would be multiples of 3).

10F -1

Since s(n) = k, we have that k . which means in a particular that

10* = 1 (mod k) and therefore that
(34) 10F=1 (mod p)

where p is the smallest prime factor of k. On the other hand if we let a be
the smallest positive integer such that 104 = 1 (mod p), then it follows from
Fermat’s Little Theorem that al(p — 1) (< p) and, because of (34), that alk.
But p being the smallest prime factor of k, this can only occur if a = 1. We
have thus established that 10 = 1 (mod p) and therefore that p = 3, thus
proving that k is a multiple of 3.

We have thus shown that in order that n,n + 1 € I, we must have n =
=(L,1,...,,dyyand n+1=(1,1,...,1,dx + 1) with dy = 2 or d; = 6. But
in the first of these cases, the number n + 2 ends with the digit 4, while in the
second case it ends with the digit 8, and therefore in both cases n+2 ¢ I, thus
proving that no three consecutive insolite numbers exist.
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As for the possibility of having two consecutive insolite numbers, it
1s most unlikely. Indeed, using a computer, one obtains that the only k-
digit insolite numbers of the form 11...12, with k < 10° are those with
k =5, 86, 3701, 7766 and 63769, while those of the form 11...13 are those
with & = 2383 and 25891. Finally, the only k-digit insolite numbers of the
form 11...16 are those with k = 193, 769 and 2281, while we did not find any
insolite number of the form 11...17 with less than one million digits.
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