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INVESTIGATION OF A CONTINUOUS
CYCLIC-WAITING PROBLEM BY
SIMULATION

G. Farkas (Budapest, Hungary)

1. Introduction

In practice one often meets so-called queueing systems in which customers
arrive, after some waiting they get the necessary service and then leave the
systemn. Because of their importance these problems constitute a special
field of probability theory, depending on the inter-arrival and service time
distributions, the number of servers and service discipline lead to different
mathematical problems and form an important area of applied mathematics,
the theory of queues.

For the investigation of queueing systems one has two possibilities. If the
system under consideration is simple enough, then it allows a mathematical
description, and one can construct a model which may be examined by exact
analytical methods. If the system is too complex or its features are too specific,
there remains the method of simulation. In the investigation of real systems by
simulation verification and validation play an essential role. One way is to use
a - possibly simpler - analytical model for which we can obtain exact results,
and to compare its characteristics with the simulation one. The parallel use of
analytical and simulation methods usually gives enough information about the
behaviour of such systems.

In conventional queueing systems the service process runs continuously,
after having completed the service of a customer, we immediately take the
next one. In systems with vacation after the service e.g. a repair is required, it
is a random variable whose distribution does not depend on the service. In this
paper we consider a model describing the landing of airplanes. Our systems
are different from the above ones, the starting moment of service is determined
by the moment of the completion of previous service and the moment of the
arrival of the actual customer. Such systems were analytically investigated is
the case of Poisson arrivals and exponentially distributed service time in [3],



226 G. Farkas

uniform service time in [4], and for discrete time case in [5,6]. Here we compare
the analytical results with data obtained by means of simulation.

2. Formulation of our problem

The problem which is in the focus of our investigation can be described
in the following way. There is an airport where the entering airplanes put a
landing request to the control tower upon arrival in the airside. Provided there
is free system, i.e. the entering entity can be serviced at the moment of the
request, the airplane can start landing. However, if the server is busy, i.e. a
formerly arrived plane has not accomplished landing yet or other planes are
already queueing for being serviced, then the incoming plane starts to circular
maneouvre. The radius of the circle is fixed in a way that it takes the airplane
T cycle time to be above the runway again, i.e. the airplane can only put
further landing request to the control tower at every n7" moment after arrival,
where n € N. Naturally, the request can only be serviced if there is no airplane
queueing before it. The reception and service of the incoming planes follow
the FIFO rule, according to which the earlier arriving planes are given landing
permission earlier. Obviously, this system only operates properly if there are
not many planes cyclic queueing.

3. Theoretical results

The above described problem has been investigated by L. Lakatos in several
papers. Here we shortly formulate his results to which we can compare our data
obtained by means of simulation.

Let us consider a queueing system in which the arriving requests form a
Poisson process with parameter A, the service time distribution is exponential
with parameter p (uniformly distributed on the interval [c,d], where ¢ and d
are the multiples of T'), and the service of a request can be started only at the
moment of its arrival or at moments differing from it by the multiples of cycle
time 7" according to the FIFO rule. The described system will be investigated
by means of the embedded Markov chain technique (see e.g. [1]). Let us define
an embedded Markov chain whose states correspond to the number of requests
in the system at moments just before starting the service of a request ¢, — 0
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(where t; is the moment of beginning of service of the k-th one). The matrix
of transition probabilities for this chain has the form

ap aj as as
ap ai; ap das
0 b b b
0 0 b b

whose elements are determined by the generating functions: in the case of
exponential service time distribution
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The generating function of ergodic distribution P (2) = E piz* for this chain
1=0

has the form

(%) P(2) = py 2L A +(u) - z—Az)Z) O+ p)

where
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in exponential case and
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if uniform.

The condition of the existence of ergodic distribution is the fulfilment of
inequalities
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In order to support the analytical results on the basis of numerical
computation, we have produced a computer program modelling the above
mentioned cyclic-waiting system. With this program we have generated random
data in accordance with the conditions of the examined system. In this
paper we present how the values, calculated by the program from the random
data, approximate the exact values acquired from the theoretical formulas.
The computations have been completed for both exponential and uniform
distribution of service times.
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4. Computed results

We carried out the experiments with different 7" and A values. In the case
of exponential distribution service times we used y, while in the case of uniform
distribution service times ¢ and d parameters. For every fixed T, A, p, ¢, d we
did 500 independent experiments with different computer generated arrival and
service times. On the basis of the above, we examined the probabilities in free
systems of having 0,1,2... airplanes (marked po, p1,p2 . . . respectively) in the
queue at the starting moments of services. In every case we recorded the results
in a table where pg,p1,ps2. .. are given in columns, and rows show the number
of the incoming airplanes.

For lack of place, we only include two tables here: Figure 1 indicating
exponential distribution service times, where A = 3,4 = 6,7 = 0.1 and Figure
4 indicating uniform distribution service times, where A = 4,¢ = 0.05,d =
0.15,7 = 0.1.

The diagrams in Figure 2, 3, 5 show the calculated results where the
horizontal lines from top to bottom express the probabilities py, p1, p2, p3, whose
exact values can be seen in the grey box in the upper line. Below the grey box
we also give pa,ps,Pps,p7 values which are not included in the diagrams. In
the lower lines one can see the average values obtained from numerical results
shown on diagrams. The average value for po is a bit increased, for the other
probabilities a bit decreased since at their computation the initial values were
included, too.

Considering not more than 500 independent experiments and the cases
60 arriving airplanes shows that the computed results clearly approximate the
exact values.
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Figure 4.
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