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ON THE LATTICE OF WAITING TIMES

G. Zbaganu (Bucharest, Roumania)

Let (Q, K, P) be a probabilized space and let (£, E) be a measurable one.
Let (Xn)n<1 be a sequence of i.i.d. random variables and let p = Po X! be
their distribution on E. Let us also denote by ¢ the quantity 1 — p: g(A) :=
:=1-p(4), YA€EE.

Let A € E be such that p(A4) := P(X, € A) > 0. For any such set A we
shall consider the random variable given by

T(A)(w) = min{n > 1 | Xn(w) € A)

and we shall denote by 7 the set of all such waiting times.

The purpose of this note is to study the lattice generated by 7. In the
sequel, the relations between sets and random variables should be understood
as occuring only almost surely; for instance T(A) < T(B) (mod P) a-s.o.

1. The distribution of T'(A)

This is classical, studied in all the handbooks of probability theory (e.g.
[2]): it is the geometrical one given by P(T'(A) = n) = p(A)q(4)"~!. Therefore
its generating function is

(1‘1) SOT(A)(I) m},
the expectation is

. _ 1
(1.2) E(T(A) =~

the tail probability is

(1.3) P(T(A) > t) = q(A)*
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for any positive integer ¢, and its variance is

_ . _ 94
(1.4) Var(T(A)) = ET(A)? - (ET(A))? = 2A)

Moreover, T(A) has all the moments of order n finite, that is T(4) €
€0 LP(Q,K, P).
P2

2. T is an inferior semilattice

Actually, the following identity holds:
(2.1) T(A)AT(B) =T(AU B).

Indeed, {T(A)AT(B) >n}={X1¢A, X1 ¢B, Xo¢A X2¢B,...  Xp ¢
¢ A X, ¢ B} ={X1¢ AUB, X2 € AUB,. ., X,, ¢ AUB} = {T(AUB) > n}.
It means that the minimum of a finite family of waiting times T(4;) 1 < j < n
is the waiting time T(A; U...U Ay), that is it is itself a member of 7.

Moreover, it is clear that

(2.2) AC B&T(A) > T(B),
(2.3) T(Q) =1,
(2.4) T(A) AT(A°) = 1.

As a consequence of (2.1) the lattice generated by 7 is

(2.5) Lattice(T) = {T(A;)V...VT(A,) [n>1, Ay,..., A, € E}.

3. The distribution and the expectation of the maximum

Let as before A;,...,An € Eand T =T(A;)V...VT(A4,).

Lemma 3.1. The generating function of T 1s
n p (LGJJ Aj) T
(3.1) ZIOEDYC D :
k=1

JC{1,2,...,»} _ .
1J1=k 1 Iq <jEJ AJ)
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and, as a consequence

n
(3.2) o7 L R e —
k=1 JC(IIJ-'?;‘;-.") p <]L€_JJ AJ>

In the particular case when the sets Ay, ..., An are disjoint we get the formulas
n z _EZJP(AJ‘)
(3.3) or(z) = Z(_l)k—l Z j
= DRI (1 2> P(Aj))
jeJ
and
n 1
(3.4) ET = Z(..l)*-l Z .
k=1 IC(L,2,.0n) E p(4;)
|J]=k jeJ

Proof. Clearly P(T > n) = P(31 < j < n such that T(A;) > n) =

=P ( M {T(A;) > n}) and then, by Poincaré’s formula we get
1<j<n

n

P(T>n) = Z(—l)k"l Z P (j@] {T(4;) > n}) =

k=1 Jo{1,2,...,n}
|Jl=k

= ;(_l)k—l Z P (]é\.] T(AJ) > 7!) =

JZ{1,2,...,n}
|J)l=k

:Z("l)k_] Z P(T<_UJ Aj) >n> ,
k=1 J(:(]ljr:}.‘.,n) J€

therefore by subtracting

P(T=n)=
=P(T>n-1)—P(T>n)= Z:;(—1)k-1 m;.,u) P (T (,E, Aj) = n> :

| 71=k

Apply eventually (1.1) and (1.2).
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We are going now to answer the question : let p; = p(4;), 1 < j < n.
Suppose that the sets (A;)1<;j<n are disjoint and let E(p;,...,pn) = ET. How
should be the numbers p;,...,p, such that ET be minimum?

Remark first that the domain of F is the set S = {p = (p1,...,pn) €
€ [0,1)" | pr+ ...+ pn <1} and that £ : S — [1,00) is continuous and
symmetrical, i.e. E(p) = E(ps(1),---,Po(n)) for any permutation o of the set
{1,...,n}. We are going to use the following result:

Lemma 3.2. (see [3]) Let f : [0,00)" - R be a continvous symmetric
function. Suppose that

+ + n
(3.5) f(pl,...,pn)zf("l—iﬂ,ﬂ—i—’-’f,m,.,.,pn) ¥p € [0,00)"

S

Then f(p) > f (7,

Proposition 3.3.

s s $ n 1 1
e > -/ - DI - = - - PR -
E(pl) yPn)_F( ) ) 5‘<1+2+ + >)

: s
—,...,—), where s=p; + ...+ pn.
n n

n'n’ n n
where s = p1+. ..+ pn, therefore the answer to our question is: ET is minimum
whenpy =ps =...=pp = 1/n.

In order to apply Lemma 3.2, let us compute the difference
D(p) = E(p) - E([))plp3) . ‘)pﬂ)

P1+ p2
2

with p = . We get

Lemma 3.4. The following equality holds

(3.6) D(p) =

n—-2
FO)- 3 fei+ Y. flitpi)- =3 =D > Y m
3<j<n 35;]1:];;5" k=0 Jc(lsj.ld;,;-.n) j€J

with f : [0,00) given by

(3.7) f(z)
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Proof. If one replaces (P1,pP2.--.,pn) With (p,p,p3,...,pn), then in (3.4)

the sum ) E— becormes
JCc{1,2,..., n}
| I]=k JEJ

> 2 Y e
p1tpa C
JCc{1,3,..., n}) Z p; Jc{1,2,..., n) 2 + Z Dj
| 7=k, JO{1,2} or J€3(1,2) JEJ |Jl=k—~1, 7€3(1,2) jEJ

After doing the difference the first term disappears.

For instance for n = 3 one gets D(p) = f(0) — f(p3); for n = 4 the formula
(3.6) becomes D(p) = f(0) — f(ps) — f(pa) + f(p3 + pa); for n = 5 one gets
D(p) = f(0) — f(p3) — f(pa) = F(ps) + f(p3 + pa) + f(p3 + ps5) + f(pa + ps)—
—f(p3+ps+ps) and so on. If one examines these quantities one sees that they
can be expressed using the difference operators A defined as

(3.8) Apf(z) = f(z) — f(z + h)

as follows: for n =3 D(p) = A,, f(0); for n = 4 D(p) can be expressed by the
”multiplication” D(p) = Ap, A, Ay, f(0) a.s.o. By induction over n one easily
checks that (3.6) becomes

(3.9) D(p) = 8, 0p, ... Ay, f(0).

Now, the difference operators are classical and they have been studied for
hundreds of ycars, beginning with Newton. The reader can find a study of
their properties in [1]. However, we did not see the following formula which
the reader can easily check by induction over n.

Lemma 3.5. The following equality holds

pP3 ta+pa tno14+Pn
(3.10) D(p):// / (=) f=D(t,)dtndtn_1 . . . dt3,

0 t3 bn-1

where f(™) is the n-th derivative of f.
Now we are going to check that (3.5) holds, i.e. that D(p) > 0.
Lemma 3.6. The function f given by (3.7) has the property that

(3.11) (=) f"N )y >0 Yz > 0.
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Proof. It is better to write f(z) = (z+2a)"!+(z+2b)"' - 2(a+b+2z)!
with @ = p1/2, b = p2/2. Then

(3.12) (—1)")’(")(1') =nl((z+2a) " 4 (z+20)" = 2c+a+ b))

Now this quantity is nonnegative due to convexity reasons: the function p(a) =
= (2 +2a)""! is convex for any z > 0 fixed, hence

) el (218) 5

Now we can prove Proposition 3.3. As the assumptions of Lemma 3.2 are
fulfilled, the first inequality is clear. Let us compute

B35 0)=2(a-Fe G-

. . . . 202 3c3
If one considers the derivative of the function z »— zC} — 25 4+ 2= —

which i1s (1 — (1 — z)")/z one can see that

Ch— =2+
x

1
2 3 — — n
= SNe Sy S EXEL

0

making the change of variable z := 1 — z one gets the result

1
2 3
I e S LT
0

Sl d ot
; s+t

Now we shall point out a similar result for the tail probabilities P(T" > t).

Proposition 3.7. (i) Let Ay, ..., A, sets from E and T = T(A1)VT(A;)V
V...T(Ag). Then

(3.13) P(T>t)=k2=1(-—1)"‘1 > ‘q (JEJA)

JC{1,5,....n)
| Jl=k

(ii) Suppose that the sets (Aj)i1<j<n are disjoint and p(A;) = p;. Let s =
=p1+p2+...+pn and denote the probability P(T > t) by ri(pi1,...,pn) with
t>n. Then

(3.14) e(P1,. .- Pn) >
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N t
(3 i Dl (- E) (i) -

Proof. (i) Apply (1.3) and (3 1).

(ii) The trick will be the same as in the proof of Proposition 3.3, except
that in this case the difference D(p) = r¢(p1,...,pn) —7:(p, P, P3, - . ., Pn) (With
p= (p1 +p2)/2) is equal to

(3.15) D(p) = 8p,Ap, .- Ap,9:(0)

with

(3.16) g(z) =1 -p1—2)'+(1~py—z)' —2(1 —p-1z).
As

(~1Y g (@) =
=Ut=1) =i+ D= pr =) (L pp = 2) T 21— p )] =

= (1 —p1)+ (1 _.pz)_%((l—m);(l _p2)>

with ¢(u) = (u — z)*~7 a convex function for any j < t + 2 it follows that
D(p) > 0 (use formula (3.10)) and that settles the first assumption of (i1). As
about the second equality in (3.14), it immediately follows from (3.13).

About the variance of T: we do not believe that it is possible to find a
nice formula for it. To see what happens, consider the case of two sets A and
B. The generating function is

(3.17) P 1= PT(ANT(B) = PT(A) T PT(B) — PT(AUB)-
Then Var(T) = ¢"(1) + ¢'(1) = (¢'(1))2. Doing the computation one gets

(3.18) Var(T) = Var(T(A)) + Var(T(B)) — Var(T(AU B))—

_2< 1 1 ) ( 1 _ 1 )
p(4) p(AUB)/ \p(B) p(AUB)/’
Now compare this formula with £7" = p(A) + (B) (AllJB)' If p(A) = a,

p(B) = bwith a < band p(AUB) = z then it is easy to see that ET is minimum
when z is minimum and maximum when z is maximum (hence ¢ = (a+b)A1).
In other words, if we want ET to be the least we should have the inclusion
A C B and if we want it to be the greatest then p(A U B) should be as great
as possible. This is not true in the case of the variance: nor the maximum,
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neither the minimum are attained in these extreme situations. For example, if
p(A) = p(B) = 0.25 then Var(T(A) vV T(B)) is maximum for p(A U B) =
and not for p(AU B) = 0.5. If a = 0.5 and b = 0.75 then, unlike the case
of expectations, Var(T(A) V T(B)) is maximum (equal to 2) for A C B and
minimum for AU B = E (equal to 2 — ), as the reader can check doing some
tedious elementary computations.

We do not know a result similar to Proposition 3.3 holds. Even in the
case n = 2 the computations are not very simple, not to mention greater n. In
other words we do not know when the variance of T 1s mintmum. At least we
can prove

Proposition 3.8. Var(T(A) VT (B)) > Var(T(A)) A Var(T(B)).

Proof. Let a, b, z as before. Then Var(7(4)) A Var(T(B)) = —1—{5—9 Let
(z) = Var(T(A) VT(B)) — Var(T(A)) A Var(T(B)) =
l-a 1-z 2r-a)(z-1")
T e z? abz? '
B 3

g:[b,(a+b)A1l] - R As g isa function of the form g(z) = A+ Pl

its derivative has at most one zero on the interval [b,(a + b) A 1]. It follows
that there are only two situations: either g increases and then decreases or g
is monotonous. Be as it be,

(3.19) ming = g(b) Ag((a+ &) A 1).

1-—
a_1-%6 > 0, all we have to check is that g((a +b6) A1) > 0.

As g(b) = 7

Case 1. 0<a<b a+6>1=>b>05 then (a+bAl=1,9g(1) =

1-af1 21-b) !
= — (a 7 ) NOWg(l)ZOQ(szA But ¢ < b and

b
b < o . ich 1 .
ST < 0.5, which 1s true

Case 2. 0 <a<b a+b<1=a<05 then(a+b)Al=a+b=
1- 3—t .
:>g(a+b):a—za———tT with t = a -+ b > 2a. We have to check that
3—t _1- -
7 < 2a for all t € [2a,1]. As the funct.iont»—-»3

t2
3-2 -
enough to check that ? < §_2a < 3-2a<4—-4a e 22 <1, whichis

4a2 — a

1s decreasing it is

true.
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4. The case of only two sets: correlation between T(4) and T'(B)

We shall be concerned now with the joint distribution of the random vector

(T(A), T(B)).

Lemma 4.1.
p(Ap(B\ A)g(AUBY tq(A)I71 ifi>j,
P(T(A) =i, T(B) = j) = { p(BIp(A\ B)a(A U B)~1q(BY ="' ifi<j,
p(AN B)g(AN B)~! if i = j.
Proof. Very easy and therefore left to the reader.
Proposition 4.2. The following equalities hold:

p(A) + p(B) — p(A)p(B)

(41) E(T(A)T(B) = p(A)p(B)p(AUB) '

(4.2) cov(T(A), T(B)) :=

p(AN B) — p(A)p(B)

.= E(T(A)T(B)) — E(T(A)E(T(B)) = p(Ap(B)p(AUB)

_ cou(T(A),T(B)) _ p(ANB) - p(A)p(B)
(43 AT = VVar(T(A)Var(T(B))  p(A)p(B)v/a(A)e(B)

Proof. The only tiresome computation is (4.1). First the reader should
compute the series

oo
(4.4) si(z,y) = Z ijei 7'y TiTl and  sy(z) = Zizxi‘l,
Hj21,1>] i=1

to establish that
(4.5)

y 2 1
2y =apnsy Tasrasyr O T T T Toee
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which further implies

(4.6)

E(T(A)T(B); T(A) > T(B)) = p(B\ A) ( 24 3 B3 T o A);((jL B)z) ;

(4.7)

. vy (2 o(5)
BAYT(B); T(A) < T(B)) = oA\ 8) { s 4~ ),

(4.8) E(T(A)T(B); T(A) = T(B)) = p(A N B) <p(/1 j 5 o LIJ B)2> |

Adding (4.6), (4.7) and (4.8) one gets

E(T(A)T(B)) =
(B\A)g(A (A\B)q(B :
P \ )‘1( ) Py ()‘)7( ) p(AnB)

_ 2p(B\A) +p(4\B) +p(AN B)) ")
- p(A U B)3 p(AU B)?

24 p(B}\,&)g(A) + P(A;(lgg&ﬂ) - p(AN B)
- p(AU B)? '
Let = p(A), y=p(B), z=p(ANB). Then

(4.9) E(T(A)T(B)) =

_2ey—ayz+(y-2)y-zy+ (@ -2z -y zty-azy
rzy(z + y— 2)? zy(z +y—z)
which is exactly (4.1).

There i1s something interesting with the random variables from 7: as in
the normal case they are independent iff they are noncorrelated, i.e. their
correlation coefficient is equal to 0.

Proposition 4.2. (Bounds on the correlation coefficient)
(1) The correlation coefficient belween T(A) and T(B) satisfies the inequalities

(4.10) -0.5 < p(T(A), T(B)) < 1.
(i1) T(A) and T(B) are noncorrelated iff they are independent. Precisely

@11)  p(T(4), T(B)) = 0 ¢ p(An B) = p(A)p(B) &
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< A and B are independent (with respect 1o the probability p) < T(A) and
T(B) are independent.

Proof. (i) The right bound in (4.10) is attained if A = B. We shall prove
the left inequality and seek the case in which the equality is attained. Let
r =p(A), y = p(B), a = p(AN B). Suppose that a is fixed. Then we consider
p as a function
a—zy

(z+y—a)/(I-2z)(1-y)

The domain of p is the set D;{(z,y) | z,y > @, £+ y < a + 1} (because
p(A),p(B) > p(ANB) and p(AUB) = ¢+ y —-a < 1). The set D, is
symmetric for any 0 < a < 1 and the function p is again symmetric (clearly
p(z,y) = p(y,x)). Suppose the sum z + y = s is fixed. Denoting u = 1 — z,
v =1-y, t? = uv we see that we can write p(z,y) = A(B/t—1). This function
is decreasing in t, that is why for any fixed s the function is minimum when
t is maximum < ¢% is maximum <> 1 —z = 1 — y & z = y. Consequently
2

plz,y) > p(z,z) = (Q—z(—}_a_)(iljzj Denote this function by g(z). The domain

plz,y) =

of g is the interval [a, (a + 1)/2]. One checkes that the derivative ¢’ < 0, hence
the minimum of g is attained for ¢ = (a + 1)/2. Consequently we get that
p(z y)>g(a+1> !
= 2 2
is attained iff a = 0 (i.e. the sets A and B are disjoint) and p(A) = p(B) = 1/2.

(i1) From (4.3) one gets p(z,y) = 0 iff p(AN B) = p(A)p(B) & A and
B are independent with respect to the probability p = P%(X,)~!. Looking
at the relations from Lemma 1 one sees that in this case T(A4) and T(B)
are independent. Conversely, if T(A) and T(B) are independent, they are
noncorrelated, too.

. We conclude that p(z,y) > —0.5 and the bound
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