ON THE LATTICE OF WAITING TIMES

G. Zbăganu (Bucharest, Roumania)

Let (Ω, \mathbf{K}, P) be a probabilized space and let (E, \mathbf{E}) be a measurable one. Let $(X_n)_{n \leq 1}$ be a sequence of i.i.d. random variables and let $p = P \circ X_n^{-1}$ be their distribution on E. Let us also denote by q the quantity 1 - p: q(A) := 1 - p(A), $\forall A \in \mathbf{E}$.

Let $A \in \mathbf{E}$ be such that $p(A) := P(X_n \in A) > 0$. For any such set A we shall consider the random variable given by

$$T(A)(\omega) = \min\{n \ge 1 \mid X_n(\omega) \in A\}$$

and we shall denote by T the set of all such waiting times.

The purpose of this note is to study the lattice generated by \mathcal{T} . In the sequel, the relations between sets and random variables should be understood as occurring only almost surely; for instance $T(A) \leq T(B) \pmod{P}$ a.s.o.

1. The distribution of T(A)

This is classical, studied in all the handbooks of probability theory (e.g. [2]): it is the geometrical one given by $P(T(A) = n) = p(A)q(A)^{n-1}$. Therefore its generating function is

(1.1)
$$\varphi_{T(A)}(x) = E(x^{T(A)}) = \frac{p(A)x}{1 - q(A)x},$$

the expectation is

(1.2)
$$E(T(A)) = \frac{1}{p(A)},$$

the tail probability is

$$(1.3) P(T(A) > t) = q(A)^t$$

for any positive integer t, and its variance is

(1.4)
$$Var(T(A)) = ET(A)^{2} - (ET(A))^{2} = \frac{q(A)}{p^{2}(A)}.$$

Moreover, T(A) has all the moments of order n finite, that is $T(A) \in \bigcap_{p>1} L^p(\Omega, \mathbf{K}, P)$.

2. T is an inferior semilattice

Actually, the following identity holds:

$$(2.1) T(A) \wedge T(B) = T(A \cup B).$$

Indeed, $\{T(A) \land T(B) > n\} = \{X_1 \notin A, X_1 \notin B, X_2 \notin A, X_2 \notin B, \ldots, X_n \notin A, X_n \notin B\} = \{X_1 \notin A \cup B, X_2 \notin A \cup B, \ldots, X_n \notin A \cup B\} = \{T(A \cup B) > n\}$. It means that the minimum of a finite family of waiting times $T(A_j)$ $1 \le j \le n$ is the waiting time $T(A_1 \cup \ldots \cup A_n)$, that is it is itself a member of T.

Moreover, it is clear that

$$(2.2) A \subset B \Leftrightarrow T(A) \ge T(B),$$

$$(2.3) T(\Omega) = 1,$$

$$(2.4) T(A) \wedge T(A^c) = 1.$$

As a consequence of (2.1) the lattice generated by T is

$$(2.5) Lattice(\mathcal{T}) = \{T(A_1) \vee \ldots \vee T(A_n) \mid n \geq 1, A_1, \ldots, A_n \in \mathbf{E}\}.$$

3. The distribution and the expectation of the maximum

Let as before $A_1, \ldots, A_n \in \mathbf{E}$ and $T = T(A_1) \vee \ldots \vee T(A_n)$.

Lemma 3.1. The generating function of T is

(3.1)
$$\varphi_T(x) = \sum_{k=1}^n (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\|J| = k}} \frac{p\left(\bigcup_{j \in J} A_j\right) x}{1 - xq\left(\bigcup_{j \in J} A_j\right)}$$

and, as a consequence

(3.2)
$$ET = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\} \\ |J|=k}} \frac{1}{p\left(\bigcup_{j \in J} A_j\right)}.$$

In the particular case when the sets A_1, \ldots, A_n are disjoint we get the formulas

(3.3)
$$\varphi_T(x) = \sum_{k=1}^n (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\|J|=k}} \frac{x \sum_{j \in J} p(A_j)}{1 - x \left(1 - \sum_{j \in J} p(A_j)\right)}$$

and

(3.4)
$$ET = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\ldots,n\}\\|J|=k}} \frac{1}{\sum_{j \in J} p(A_j)}.$$

Proof. Clearly $P(T > n) = P(\exists \ 1 \le j \le n \text{ such that } T(A_j) > n) = P(\bigcup_{1 \le j \le n} \{T(A_j) > n\})$ and then, by Poincaré's formula we get

$$P(T > n) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\|J| = k}} P\left(\bigcap_{j \in J} \{T(A_j) > n\}\right) =$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\|J| = k}} P\left(\bigwedge_{j \in J} T(A_j) > n\right) =$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\|J| = k}} P\left(T\left(\bigcup_{j \in J} A_j\right) > n\right),$$

therefore by subtracting

$$P(T = n) =$$

$$= P(T > n - 1) - P(T > n) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1, 2, \dots, n\}\\ J \neq k}} P\left(T\left(\bigcup_{j \in J} A_j\right) = n\right).$$

Apply eventually (1.1) and (1.2).

We are going now to answer the question: let $p_j = p(A_j)$, $1 \le j \le n$. Suppose that the sets $(A_j)_{1 \le j \le n}$ are disjoint and let $E(p_1, \ldots, p_n) = ET$. How should be the numbers p_1, \ldots, p_n such that ET be minimum?

Remark first that the domain of E is the set $S = \{\mathbf{p} = (p_1, \ldots, p_n) \in \{0, 1\}^n \mid p_1 + \ldots + p_n \leq 1\}$ and that $E : S \to [1, \infty)$ is continuous and symmetrical, i.e. $E(\mathbf{p}) = E(p_{\sigma(1)}, \ldots, p_{\sigma(n)})$ for any permutation σ of the set $\{1, \ldots, n\}$. We are going to use the following result:

Lemma 3.2. (see [3]) Let $f:[0,\infty)^n\to \Re$ be a continuous symmetric function. Suppose that

(3.5)
$$f(p_1, \ldots, p_n) \ge f\left(\frac{p_1 + p_2}{2}, \frac{p_1 + p_2}{2}, p_3, \ldots, p_n\right) \quad \forall \mathbf{p} \in [0, \infty)^n$$

Then
$$f(\mathbf{p}) \geq f\left(\frac{s}{n}, \frac{s}{n}, \dots, \frac{s}{n}\right)$$
, where $s = p_1 + \dots + p_n$.

Proposition 3.3.

$$E(p_1,\ldots,p_n) \geq E\left(\frac{s}{n},\frac{s}{n},\ldots,\frac{s}{n}\right) = \frac{n}{s}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right),$$

where $s = p_1 + \ldots + p_n$, therefore the answer to our question is: ET is minimum when $p_1 = p_2 = \ldots = p_n = 1/n$.

In order to apply Lemma 3.2, let us compute the difference

$$D(\mathbf{p}) := E(\mathbf{p}) - E(p, p, p_3, \dots, p_n)$$

with $p = \frac{p_1 + p_2}{2}$. We get

Lemma 3.4. The following equality holds

$$(3.6) D(\mathbf{p}) =$$

$$f(0) - \sum_{3 \le j \le n} f(p_j) + \sum_{\substack{3 \le j_1, j_2 \le n \\ j_1 \ne j_2}} f(p_{j_1} + p_{j_2}) - \ldots = \sum_{k=0}^{n-2} (-1)^k \sum_{\substack{J \subset \{3, 4, \dots, n\} \\ |J| = k}} f\left(\sum_{j \in J} p_j\right)$$

with $f: [0, \infty)$ given by

(3.7)
$$f(x) = \frac{1}{p_1 + x} + \frac{1}{p_2 + x} - \frac{2}{\frac{p_1 + p_2}{2} + x}.$$

Proof. If one replaces (p_1, p_2, \ldots, p_n) with (p, p, p_3, \ldots, p_n) , then in (3.4) the sum $\sum_{\substack{J \subset \{1, 2, \ldots, n\}\\|J| = k}} \sum_{j \in J} \frac{1}{p_j}$ becomes

$$\sum_{\substack{J\subset\{1,2,\ldots,n\}\\|J|=k,\ J\supset\{1,2\}\ \text{or}\ J^c\supset\{1,2\}}}\frac{1}{\sum\limits_{j\in J}p_j}+2\sum_{\substack{J\subset\{1,2,\ldots,n\}\\|J|=k-1,\ J^c\supset\{1,2\}}}\frac{1}{\frac{p_1+p_2}{2}+\sum\limits_{j\in J}p_j}.$$

After doing the difference the first term disappears.

For instance for n=3 one gets $D(\mathbf{p})=f(0)-f(p_3)$; for n=4 the formula (3.6) becomes $D(\mathbf{p})=f(0)-f(p_3)-f(p_4)+f(p_3+p_4)$; for n=5 one gets $D(\mathbf{p})=f(0)-f(p_3)-f(p_4)-f(p_5)+f(p_3+p_4)+f(p_3+p_5)+f(p_4+p_5)-f(p_3+p_4+p_5)$ and so on. If one examines these quantities one sees that they can be expressed using the difference operators Δ defined as

$$(3.8) \Delta_h f(x) = f(x) - f(x+h)$$

as follows: for n=3 $D(\mathbf{p})=\Delta_{p_3}f(0)$; for n=4 $D(\mathbf{p})$ can be expressed by the "multiplication" $D(\mathbf{p})=\Delta_{p_3}\Delta_{p_4}\Delta_{p_5}f(0)$ a.s.o. By induction over n one easily checks that (3.6) becomes

(3.9)
$$D(\mathbf{p}) = \Delta_{p_3} \Delta_{p_4} \dots \Delta_{p_n} f(0).$$

Now, the difference operators are classical and they have been studied for hundreds of years, beginning with Newton. The reader can find a study of their properties in [1]. However, we did not see the following formula which the reader can easily check by induction over n.

Lemma 3.5. The following equality holds

(3.10)
$$D(\mathbf{p}) = \int_{0}^{p_3} \int_{t_3}^{t_3+p_4} \int_{t_{n-1}}^{t_{n-1}+p_n} (-1)^n f^{(n-2)}(t_n) dt_n dt_{n-1} \dots dt_3,$$

where $f^{(n)}$ is the n-th derivative of f.

Now we are going to check that (3.5) holds, i.e. that $D(\mathbf{p}) \geq 0$.

Lemma 3.6. The function f given by (3.7) has the property that

(3.11)
$$(-1)^n f^{(n)}(x) \ge 0 \qquad \forall x \ge 0.$$

Proof. It is better to write $f(x) = (x+2a)^{-1} + (x+2b)^{-1} - 2(a+b+x)^{-1}$ with $a = p_1/2$, $b = p_2/2$. Then

$$(3.12) \ (-1)^n f^{(n)}(x) = n!((x+2a)^{-n-1} + (x+2b)^{-n-1} - 2(x+a+b)^{-n-1}).$$

Now this quantity is nonnegative due to convexity reasons: the function $\varphi(a) = (x+2a)^{-n-1}$ is convex for any $x \ge 0$ fixed, hence

$$\frac{\varphi(a)+\varphi(b)}{2}-\varphi\left(\frac{a+b}{2}\right)\geq 0.$$

Now we can prove Proposition 3.3. As the assumptions of Lemma 3.2 are fulfilled, the first inequality is clear. Let us compute

$$E\left(\frac{s}{n},\frac{s}{n},\ldots,\frac{s}{n}\right) = \frac{n}{s}\left(C_n^1 - \frac{C_n^2}{2} + \frac{C_n^3}{4} - \ldots\right).$$

If one considers the derivative of the function $x \mapsto xC_n^1 - \frac{x^2C_n^2}{2} + \frac{x^3C_n^3}{4} - \dots$ which is $(1 - (1-x)^n)/x$ one can see that

$$C_n^1 - \frac{C_n^2}{2} + \frac{C_n^3}{4} - \dots = \int_0^1 \frac{1 - (1 - x)^n}{x} dx;$$

making the change of variable x := 1 - x one gets the result

$$C_n^1 - \frac{C_n^2}{2} + \frac{C_n^3}{3} - \dots = \int_0^1 \frac{1 - x^n}{1 - x} dx = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

Now we shall point out a similar result for the tail probabilities P(T > t).

Proposition 3.7. (i) Let A_1, \ldots, A_n sets from E and $T = T(A_1) \vee T(A_2) \vee \cdots T(A_n)$. Then

(3.13)
$$P(T > t) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset \{1,2,\dots,n\}\\ |J| = k}} q^t \left(\bigcup_{j \in J} A_j \right).$$

(ii) Suppose that the sets $(A_j)_{1 \le j \le n}$ are disjoint and $p(A_j) = p_j$. Let $s = p_1 + p_2 + \ldots + p_n$ and denote the probability P(T > t) by $r_t(p_1, \ldots, p_n)$ with t > n. Then

$$(3.14) r_t(p_1,\ldots,p_n) \geq$$

$$\geq r_t\left(\frac{s}{n}, \frac{s}{n}, \dots, \frac{s}{n}\right) = C_n^1\left(1 - \frac{s}{n}\right)^t - C_n^2\left(1 - \frac{2s}{n}\right)^t + C_n^3\left(1 - \frac{3s}{n}\right)^t - \dots$$

Proof. (i) Apply (1.3) and (3.1).

(ii) The trick will be the same as in the proof of Proposition 3.3, except that in this case the difference $D(\mathbf{p}) = r_t(p_1, \dots, p_n) - r_t(p, p, p_3, \dots, p_n)$ (with $p = (p_1 + p_2)/2$) is equal to

$$(3.15) D(\mathbf{p}) = \Delta_{p_3} \Delta_{p_4} \dots \Delta_{p_n} g_t(0)$$

with

$$(3.16) g_t(x) = (1 - p_1 - x)^t + (1 - p_2 - x)^t - 2(1 - p - x)^t.$$

As

$$(-1)^{j} g_{t}^{(j)}(x) =$$

$$= t(t-1) \dots (t-j+1)[(1-p_{1}-x)^{t-j} + (1-p_{2}-x)^{t-j} - 2(1-p-x)^{t-j}] =$$

$$= \varphi(1-p_{1}) + \varphi(1-p_{2}) - 2\varphi\left(\frac{(1-p_{1}) + (1-p_{2})}{2}\right)$$

with $\varphi(u) = (u-x)^{t-j}$ a convex function for any j < t+2 it follows that $D(\mathbf{p}) \ge 0$ (use formula (3.10)) and that settles the first assumption of (ii). As about the second equality in (3.14), it immediately follows from (3.13).

About the variance of T: we do not believe that it is possible to find a nice formula for it. To see what happens, consider the case of two sets A and B. The generating function is

(3.17)
$$\varphi := \varphi_{T(A) \vee T(B)} = \varphi_{T(A)} + \varphi_{T(B)} - \varphi_{T(A \cup B)}.$$

Then $Var(T) = \varphi''(1) + \varphi'(1) - (\varphi'(1))^2$. Doing the computation one gets

$$(3.18) Var(T) = Var(T(A)) + Var(T(B)) - Var(T(A \cup B)) -$$

$$-2\left(\frac{1}{p(A)} - \frac{1}{p(A \cup B)}\right)\left(\frac{1}{p(B)} - \frac{1}{p(A \cup B)}\right).$$

Now compare this formula with $ET = \frac{1}{p(A)} + \frac{1}{p(B)} - \frac{1}{p(A \cup B)}$. If p(A) = a, p(B) = b with $a \le b$ and $p(A \cup B) = x$ then it is easy to see that ET is minimum when x is minimum and maximum when x is maximum (hence $x = (a+b) \land 1$). In other words, if we want ET to be the least we should have the inclusion $A \subset B$ and if we want it to be the greatest then $p(A \cup B)$ should be as great as possible. This is not true in the case of the variance: nor the maximum,

neither the minimum are attained in these extreme situations. For example, if p(A) = p(B) = 0.25 then $Var(T(A) \vee T(B))$ is maximum for $p(A \cup B) = \frac{6}{17}$ and not for $p(A \cup B) = 0.5$. If a = 0.5 and b = 0.75 then, unlike the case of expectations, $Var(T(A) \vee T(B))$ is maximum (equal to 2) for $A \subset B$ and minimum for $A \cup B = E$ (equal to $2 - \frac{2}{9}$), as the reader can check doing some tedious elementary computations.

We do not know a result similar to Proposition 3.3 holds. Even in the case n=2 the computations are not very simple, not to mention greater n. In other words we do not know when the variance of T is minimum. At least we can prove

Proposition 3.8. $Var(T(A) \vee T(B)) \geq Var(T(A)) \wedge Var(T(B))$.

Proof. Let a, b, x as before. Then $Var(T(A)) \wedge Var(T(B)) = \frac{1-b}{b^2}$. Let

$$g(x) = Var(T(A) \lor T(B)) - Var(T(A)) \land Var(T(B)) =$$

$$= \frac{1-a}{a^2} - \frac{1-x}{x^2} - \frac{2(x-a)(x-b)}{abx^2},$$

 $g:[b,(a+b)\wedge 1]\to\Re$. As g is a function of the form $g(x)=A+\frac{B}{x}-\frac{3}{x^2}$, its derivative has at most one zero on the interval $[b,(a+b)\wedge 1]$. It follows that there are only two situations: either g increases and then decreases or g is monotonous. Be as it be,

$$(3.19) \qquad \min g = g(b) \land g((a+b) \land 1).$$

As $g(b) = \frac{1-a}{a^2} - \frac{1-b}{b^2} \ge 0$, all we have to check is that $g((a+b) \land 1) \ge 0$.

Case 1. $0 < a \le b$, $a+b \ge 1 \Rightarrow b \ge 0.5$, then $(a+b) \land 1 = 1$, $g(1) = \frac{1-a}{a}\left(\frac{1}{a}-\frac{2(1-b)}{b}\right)$. Now $g(1) \ge 0 \Leftrightarrow a \le \frac{b}{2(1-b)}$. But $a \le b$ and $b \le \frac{b}{2(1-b)} \Leftrightarrow 0.5$, which is true.

Case 2. $0 < a \le b$, $a+b \le 1 \Rightarrow a \le 0.5$, then $(a+b) \land 1 = a+b \Rightarrow g(a+b) = \frac{1-a}{a^2} - \frac{3-t}{t^2}$ with $t=a+b \ge 2a$. We have to check that $\frac{3-t}{t^2} \le \frac{1-a}{a^2}$ for all $t \in [2a,1]$. As the function $t \mapsto \frac{3-t}{t^2}$ is decreasing it is enough to check that $\frac{3-2a}{4a^2} \le \frac{3-a}{a^2} \Leftrightarrow 3-2a \le 4-4a \Leftrightarrow 2a \le 1$, which is true.

4. The case of only two sets: correlation between T(A) and T(B)

We shall be concerned now with the joint distribution of the random vector (T(A), T(B)).

Lemma 4.1.

$$P(T(A) = i, \ T(B) = j) = \begin{cases} p(A)p(B \setminus A)q(A \cup B)^{j-1}q(A)^{i-j-1} & \text{if } i > j, \\ p(B)p(A \setminus B)q(A \cup B)^{i-1}q(B)^{j-i-1} & \text{if } i < j, \\ p(A \cap B)q(A \cap B)^{i-1} & \text{if } i = j. \end{cases}$$

Proof. Very easy and therefore left to the reader.

Proposition 4.2. The following equalities hold:

(4.1)
$$E(T(A)T(B)) = \frac{p(A) + p(B) - p(A)p(B)}{p(A)p(B)p(A \cup B)},$$

(4.2)
$$cov(T(A), T(B)) :=$$

$$:= E(T(A)T(B)) - E(T(A))E(T(B)) = \frac{p(A \cap B) - p(A)p(B)}{p(A)p(B)p(A \cup B)},$$

(4.3)
$$\rho(T(A), T(B)) = \frac{cov(T(A), T(B))}{\sqrt{Var(T(A))Var(T(B))}} = \frac{p(A \cap B) - p(A)p(B)}{p(A)p(B)\sqrt{q(A)q(B)}}.$$

Proof. The only tiresome computation is (4.1). First the reader should compute the series

$$(4.4) s_1(x,y) = \sum_{i,j \ge 1, i>j} ijx^{j-1}y^{i-j-1} \text{and} s_2(x) = \sum_{i=1}^{\infty} i^2x^{i-1},$$

to establish that (4.5)

$$s_1(x,y) = \frac{2}{(1-x)^3(1-y)} + \frac{y}{(1-x)^2(1-y)^2}, \quad s_2(x) = \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2}$$

which further implies (4.6)

$$E(T(A)T(B); \ T(A) > T(B)) = p(B \setminus A) \left(\frac{2}{p(A \cup B)^3} + \frac{q(A)}{p(A)p(A \cup B)^2} \right),$$

(4.7)
$$E(T(A)T(B); \ T(A) < T(B)) = p(A \setminus B) \left(\frac{2}{p(A \cup B)^3} + \frac{q(B)}{p(B)p(A \cup B)^2} \right),$$

(4.8)
$$E(T(A)T(B); T(A) = T(B)) = p(A \cap B) \left(\frac{2}{p(A \cup B)^3} - \frac{1}{p(A \cup B)^2} \right)$$

Adding (4.6), (4.7) and (4.8) one gets

$$E(T(A)T(B)) =$$

$$= \frac{2(p(B \setminus A) + p(A \setminus B) + p(A \cap B))}{p(A \cup B)^3} + \frac{\frac{p(B \setminus A)q(A)}{p(A)} + \frac{p(A \setminus B)q(B)}{p(B)} - p(A \cap B)}{p(A \cup B)^2} = \frac{2 + \frac{p(B \setminus A)q(A)}{p(A)} + \frac{p(A \setminus B)q(B)}{p(B)} - p(A \cap B)}{p(A \cup B)^2}.$$

Let x = p(A), y = p(B), $z = p(A \cap B)$. Then

$$(4.9) E(T(A)T(B)) =$$

$$= \frac{2xy - xyz + (y-z)(y-xy) + (x-z)(x-xy)}{xy(x+y-z)^2} = \frac{x+y-xy}{xy(x+y-z)}$$

which is exactly (4.1).

There is something interesting with the random variables from \mathcal{T} : as in the normal case they are independent iff they are noncorrelated, i.e. their correlation coefficient is equal to 0.

Proposition 4.2. (Bounds on the correlation coefficient)

(i) The correlation coefficient between T(A) and T(B) satisfies the inequalities

(4.10)
$$-0.5 \le \rho(T(A), \ T(B)) \le 1.$$

(ii) T(A) and T(B) are noncorrelated iff they are independent. Precisely

$$(4.11) p(T(A), T(B)) = 0 \Leftrightarrow p(A \cap B) = p(A)p(B) \Leftrightarrow$$

 $\Leftrightarrow A \text{ and } B \text{ are independent (with respect to the probability } p) \Leftrightarrow T(A) \text{ and } T(B) \text{ are independent.}$

Proof. (i) The right bound in (4.10) is attained if A = B. We shall prove the left inequality and seek the case in which the equality is attained. Let x = p(A), y = p(B), $a = p(A \cap B)$. Suppose that a is fixed. Then we consider ρ as a function

$$\rho(x,y) = \frac{a - xy}{(x + y - a)\sqrt{(1 - x)(1 - y)}}.$$

The domain of ρ is the set $D_a\{(x,y)\mid x,y\geq a,\ x+y\leq a+1\}$ (because $p(A),p(B)\geq p(A\cap B)$ and $p(A\cup B)=x+y-a\leq 1$). The set D_a is symmetric for any $0\leq a<1$ and the function ρ is again symmetric (clearly $\rho(x,y)=\rho(y,x)$). Suppose the sum x+y=s is fixed. Denoting u=1-x, v=1-y, $t^2=uv$ we see that we can write $\rho(x,y)=A(B/t-t)$. This function is decreasing in t, that is why for any fixed s the function is minimum when t is maximum $\Leftrightarrow t^2$ is maximum $\Leftrightarrow 1-x=1-y\Leftrightarrow x=y$. Consequently $\rho(x,y)\geq \rho(x,x)=\frac{a-x^2}{(2x-a)(1-x)}$. Denote this function by g(x). The domain of g is the interval [a,(a+1)/2]. One checkes that the derivative $g'\leq 0$, hence the minimum of g is attained for x=(a+1)/2. Consequently we get that $\rho(x,y)\geq g\left(\frac{a+1}{2}\right)=\frac{a-1}{2}$. We conclude that $\rho(x,y)\geq -0.5$ and the bound is attained iff a=0 (i.e. the sets A and B are disjoint) and p(A)=p(B)=1/2.

(ii) From (4.3) one gets $\rho(x,y)=0$ iff $p(A\cap B)=p(A)p(B)\Leftrightarrow A$ and B are independent with respect to the probability $p=P^0(X_n)^{-1}$. Looking at the relations from Lemma 1 one sees that in this case T(A) and T(B) are independent. Conversely, if T(A) and T(B) are independent, they are noncorrelated, too.

References

- [1] Aigner M., Combinatorial theory, Springer, 1979.
- [2] Feller W., An introduction to probability theory and its applications, John Wiley & Sons, 1957.
- [3] Zbăganu G., Some entropy-like indices and their connection with the metrization of σ-algebras, Studii şi cercetări, 38 (1) (1986), 76-88.

[4] Mărgăritescu E., Optimal properties for some Bonferroni-type inequalities, Rev. Roumaine de Math. Pures et Appl., 35 (6) (1990), 541-548.

(Received September 14, 1997)

G. Zbăganu Centre for Mathematical Statistics Calea 13 septembrie 13. Ro-76100 Buçuresti Roumania