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LYAPUNOV TRANSFORMATION AND STABILITY
OF DIFFERENTIAL EQUATION
IN BANACH SPACES

Tran Thi Loan (Hanoi, Vietnam)

Abstract. Lyapunov transformation [1] conserves the stability of solutions
of linear differential systems. vd-transformation in R™-space ([2]-[6]) is a
generalization of Lyapunov transformation, it conserves, too, the stability
of differential systems. In the article we will give the concept of vd-
transformation in Banach space and apply it to study the stability of
differential systems.

1. vd-transformation

Let E be a Banach space, G an open simple connected domain containing
the origin O of £

H=GxR={n=(z,t): z€G, t €R}.
Let us consider the continuous, monotone, strictly increasing function
Vo = R+ — ]R+

for which
vo(0) = 0; vo(t) — 400 as t — +oo.

Let be given a real function d of two variables
d: Rt xRt - R,
(71, 72) = d(71,72),

satisfying the following conditions for all ¥ > 0, y3 > v2 > 71 > O:
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(d1) d(v2,m) = —d(71,72);

(d2) d(v2,7) > d(11,7);

(d3) d(v3,72) +d(7v2,11) > d(73,m1);
(da) 7€%+ {d(v,m)} =R.

Suppose that [ is a diffeomorphismn from H to H

I: H — H,
n=(z,t) — 7' = (1)

satisfying the following equalities

1(0,t) = (0,1),

l(z,t) = (z'.1)
for all t € R. It is easy to prove that L = {{} is a group for the composition of
maps.

Let v be a real function
v: H* — Rt
n=(z,t) — v(n) = vo(llz]])

(where H* = G* x R= (G \ {0} x R).

Definition. The transformation | € L is called vd-transformation iff

sup |d{v(n), v[I(n)]}} < +oo,
n€H*

(1) / -1/,
sup |d{v(n’), v[I”"(n")]}| < +oo,
T)'GH'

i.e. 1 is vd-transformation iff -1 is vd-transformation. Therefore the L, 4-set
of vd-transformation is a subgroup of L.

Examples. 1. Let be given vo(z,t) = ||z||, do(71,72) = In(11/72) and
l(z,t) (with a fized t) is a linear transformation having bounded partial deriva-
tive with respect to t. Then | is vody-transformation if and only if it is a
Lyapunov transformation [1].

Proof. I(z,t) is a linear homogeneous transformation for z iff

L(t) € L(E); I(z,t) = (L(t)z,t)
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is a diffeomorphism, where

sup || Dal(z, 1)l <eo = sup [L{H)]] < oo

(=,1)

(D»l(z,t) is the second partial derivative [7]). Then

sup |In dﬁllg%ﬂ < 400 sup [|L(t)|| < +o0
le Lvodo — nedt L~Y(t)z t
sup |(ln HTISIT)J < 400 sup ||[L7H(t)|] < +oo
neH* 1

2. Let be given v(z,t) = |z|?, £ = R,

Vii=Vvre i 21,
d(71172): 1 1 .
-\7‘,—{-;:—\/—7—1‘ if ')/1’)’2<1

All conditions d; ) —d4) are satisfied, it can be proved by immediate verification.
Especially, here is the case when the inequality ds) holds strictly. For instance

when 7173 < 1, 7273 < 1 (and therefore 4172 > 1, where 11 > 72 > 73 > 0),
we have

1

da1,92) + dlra,20) = A, 19) = VT = VT = = eV V=

(V7= v5) (1= vTR) _
V273 '

Suppose
l(z,t) = (1‘ + %sintsinzx, t) .
It is clear that | € L,4. Indeed,

ol 0l |

9z Ot 1- lsintsin2z Lcostsin’z 1. .

T ot | — 2 3 —q1_1
g_lz_ % = l 0 1 1 2smtsm?z:;:ﬁO,
Oz Ot

this deduces the existence of differentiable I=1(z,1).

It is clear that 1(0,t) = (0,t), I(z,t) = (y,t) and

(*) sup |d{v({(n)), v(n)}| < +oo.
z#0
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In order to prove (*) we can immediately verify as follows

1
z+ —sintsin’z| - |z| for v(I(n)) - v(n) > 1,

d{v(i(z,1)), v(z,t)} =4 ', 1

lz] |z + Lsintsin®z|

for v(I(n)) - v(n) < 1.

On the other hand, it is easy to find that

1 . .
T+ §smtsm2:c

- [z]‘l < % |sintsin® z |

and
1 1 3 |sintsin® z|
el 1 2 = 1 77 S
|z| [:c+531ntsm z| |z| |z + § sintsin zl
1 |sintsin® z| sin z
= z2|1 - Llsintsin :c|| = z?
Consequently,

sup |d{v(I(n)), v(m)}| < +oo.
T#0

2. Properties of vd-transformation

Consider in Banach space E the differential equation

dz
@ {d_t =0,
f(0,t) =0.

We denote by z(t; £) the solution of (2) satisfying the initial condition z(tg;¢) =
= 6 and
A= lim sup ||z(t; &),

e—0t |g<e
t>tg

A1 = lim sup v(z(t;§).

e—=0%jgf<e
t>ty

Proposition 1. A=0 <= X; =0.
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Proof. By continuity of v we immediately find that éir% v(€) = 0. Since

v(||z||) is monotone, strictly increasing

lim =0.
v((‘)—~0£
Hence
3) lim =0 <= lim v(&)=0.
k—o00 k—o0

We assume that A = 0, then
Jim e(t; €)= 0

for all sequences {ex} C RY 1 e — 0; {€x} C E: & — Oand {tx} C R :tx > to.
Because of (3) we have

k]—i-urg: lz(te; )] =0 <= kllr& v(z(tk;€)) = 0.

It follows that A =0 <= X =0.

Proposition 2. vd-transformation conserves the stability of solution z =
= 0 of differential equation (2).

Proof. By vd-transformation

(z,t) — l(z,t)=(y,1)

the cquation (2) is transformed to

) Y = o0,

By assumption the solution z = 0 of (2) is stable, that means

lim sup ||lz(t;zo)|l =0 <= lim sup v[z(t;z0)] = 0.
e—=0% zgli<e e—0+ y(zg)<e
121 >0

If this is false the solution y = 0 of (4) is unstable and then

lim sup v[y(t;y0)] > 0.
e—0% “(yo)<e
t2tg
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It means that there exists a positive number é such that
(5) Hm}CE: nu—yo; It} CR, VneEN; wvfy(tn;n.)] > 6.

By means of
v[z(tn;€n)] = 0 as n — oo,

where (€n,t0) = 17" (7, 0), one could say
(6) v[z(tn;€n)] <6  VYneN.
From (5) and (6) we deduce
ld{v[z(tn;€n)], vly(tn;ma)IH = d{v[y(ta;mn)], viz(tn;€a)]} >
> d{6, v[z(tn;6n)]} » +oc  as n— oo
Consequently
sup [d{v[z(tn, &n)], v[I(z(tn, &n))]} = +oo,

that contradicts to the definition of d.

Proposition 3. The vd-number
Q*vd z .= lim ! sup d{v[z(to + t)], v[z(to)]}
t—oo ¢ to£0

is vd-invariant, i.e. Q*vd y = Q*vd z for alll € Lyq, (y,t) = I(z,t).
Proof. We have

d{v[y(to +1)], v[y(to)]} = d{v{l(z(to + 1)), v[{(2(t0))]} =

= d{v[z(to + 1)), v[z(to)]} + d{v[l(z(to +1))], v[i(z(to))]}-
—d{v[z(to+1)], v[l(z(t0))]} +d{v[z(to+1)], v[i(2(t))] - d{v[z(to+1)], v[z(to)]}}
= d{v[z(to + t)], v[z(t0)]} + A+ B,
where
[A] = |d{v[l(z(to + 1), v[l(z(20))]} — d{v[z(to + )], v[i(z(t0))]} <
< 2d{uli(a(to + 1), vlz(to + B},
|B| = |d{vll(z(to +1))], v[i(=(to))]} - dfv(z(to + 1)}, v[z(to)]} <
< 2{d{v{l(z(to + 1)), v[z(to + )]},
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therefore A, B are bounded. Consequently,

Q*vdy = Q*vdz.

Proposition 4. The vd - small number

Qudz =

= max{tl?n;%d{v[w(to +8)], v[z(to)]}- tl_l'rg %d{v[z(to +1)], v[r(to)]}}

is vd-invariant.

Proof. Because of
d{v[y(to +1)], vly(to)]} = d{v[z(to +1)], v[z(to)]} + A+ B

and A, B are bounded, we immediately find that
T 1d{ofu(ts +0), viu(to)}} = T d{ofz(to + 0, +lz(to)])
On the other hand
d{v[y(to — 1)}, v[y(to)]} = d{v[z(to — 1)), v[z(to)]} + C + D,

where

IC| = ld{v[i(z(to = 1)), vil(z(to))]} — d{v[z(to — 1)), v[i(z(to))]}] <
< 2ld{v[l(z(to — 1)}, v[z(to — )]},

|D| = |d{v[z(to — 1)), v[(z(ta))]} — d{v[z(to — 1)), v[z(to)]}] <
< 2ld{vi(z(t0))], vlz(to)]}.

i.e. C, D are bounded. Therefore, the following equality is true

Jim %—d{v[y(to—t)], wfy(to)]} = lim %d{v[m(to—t)], vfz(to)]} = Qvdy = Tuda.
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3. Regular system

Definition. The transformation y = (t)x is a generalized Lyapunov one
if
(7) X[L(®)] = x[L™' ()] = 0.

Remark. By definition we immediately find that generalized Lyapunov
transformation conserves Lyapunov exponents.

Theorem. A necessary and sufficient condition that the system

dz
(8) E = A(t)z,

where A(t) € C(t,R™), z € R", to be regular one ([1]) is that there exists a
generalized Lyapunov transformation which carries the system (8) to the systemn
with constant matriz

— = DBy.
9) 7 By

Proof. Let y = L(t)z be a generalized Lyapunov transformation, X (t)
a normal fundamental matrix of (8). It follows that Y (¢) = L(t)X(¢t) is a
fundamental matrix of (9) and

detY (t) = det L(t)det X(t)

¢
&detY (to) exp(t — to)SpB = detL(t)detX(to)exp/SpA(tl)dtl
to

t
@exp/SpA(tl)dtl = |C(to)||detL ' (¢) exp(t — to)SpB,
to

where

C(to) = det[Y (to) X~ (to)]

t
to

t
,—1
=Tm / SpA(ty)dt; = SpB + x[detL~1(1)].
to
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Because of x[L~!(t)] = 0 we have
X[det L= (1)] < my(L ()] = 0.
Analogously from x[L(¢)] = 0 it follows that
x[detL(t)] < 0.
On the other hand, since
detL(t) - detL™'(t) =1,
the following holds

x[detL(t)] + x[detL™*(¢)] > 0.
Therefore x[detL(t)] = x[detL~"'(¢)] = 0. It follows from these equalities that

1
tlim ?ln |det L= (t)| = 0

and finally
t

o
lim - /SpA(tl)dtl = SpB.
t—oo 1 N
‘o
Since the Lyapunov transformation conserves Lyapunov exponents and the
normality of X, Y, and

t
o1
ox =0y =SpB = ox :tl_l‘r<r)1o ?/SpA(tl)dtl,
to

i.e. the system (8) is regular.

Let the system (8) be regular. We will denote by X(t) the fundamental
normal matrix of (8) which has the exponent numbers A; < A2 < ... < A,.
Consider the Jordan matrix B in which Aq,..., A, are the diagonal elements.
Denoting by Y (t) the fundamental normal matrix of the system (9) we constate
that it has the column of same exponent numbers as (7) A1, Az, ..., An.

Putting L(t) = Y(¢)X~!(¢) we will prove that y = L(t)z is a generalized
Lyapunov transformation. Suppose that

y1i(t)  wi2(t) Yin(t)
Y(t) = y21:(t) yzzz(t) y2n'(t)

’

yn;(t) ynZ.(t) ynr;(t)
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z21(t)  z22(1) zon(t)

X7t) =

Because of the
4,1‘)5”). We

17nl(t) mn?(t) Inn
-y Ynk

then x[y®)] = A, where y*) = colon(yk(t
regularity of (7) we have x[z(¥)] = =X, whcre (k)
consider now the diagonal matrix

z11(t)  z12(1) Tin t)}
))-
(zx

1)
k(1

A = diag(M, Az ..., AR).

We find then
L(t)=Y()e "B ®X71(t) = &(t) - ¥(t)

in which ®(¢) = Y(t)e~'4, ¥(t) = "X~ '(¢). It follows that

X[®(t)] = max Xlyjxe™ M =0,

Akt 0

]
J

x[T@)] = l]’ldX x[zj.e

Consequently
xX[L(1)] < x[®(®)] + x[¥(1)] = 0.

But from L(t) - L~ 1(t) =E we

Analogously we can prove that x[L~ ( )] <
> 0.ie x[LO]+x[L7H ()] = 0.

0.
immediately find that x[L(¢)] + x[L~'(¢)] > 0
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